Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tedd Ho-Jeong An | 3425 | 60.98% | 1 | 11.11% |
Kiran K | 2179 | 38.79% | 4 | 44.44% |
Loic Poulain | 6 | 0.11% | 1 | 11.11% |
Marcel Holtmann | 4 | 0.07% | 1 | 11.11% |
Linus Torvalds | 2 | 0.04% | 1 | 11.11% |
Vijay Satija | 1 | 0.02% | 1 | 11.11% |
Total | 5617 | 9 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * * Bluetooth support for Intel PCIe devices * * Copyright (C) 2024 Intel Corporation */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/firmware.h> #include <linux/pci.h> #include <linux/wait.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <asm/unaligned.h> #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #include "btintel.h" #include "btintel_pcie.h" #define VERSION "0.1" #define BTINTEL_PCI_DEVICE(dev, subdev) \ .vendor = PCI_VENDOR_ID_INTEL, \ .device = (dev), \ .subvendor = PCI_ANY_ID, \ .subdevice = (subdev), \ .driver_data = 0 #define POLL_INTERVAL_US 10 /* Intel Bluetooth PCIe device id table */ static const struct pci_device_id btintel_pcie_table[] = { { BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) }, { 0 } }; MODULE_DEVICE_TABLE(pci, btintel_pcie_table); /* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */ #define BTINTEL_PCIE_HCI_TYPE_LEN 4 #define BTINTEL_PCIE_HCI_CMD_PKT 0x00000001 #define BTINTEL_PCIE_HCI_ACL_PKT 0x00000002 #define BTINTEL_PCIE_HCI_SCO_PKT 0x00000003 #define BTINTEL_PCIE_HCI_EVT_PKT 0x00000004 static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia, u16 queue_num) { bt_dev_dbg(hdev, "IA: %s: tr-h:%02u tr-t:%02u cr-h:%02u cr-t:%02u", queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ", ia->tr_hia[queue_num], ia->tr_tia[queue_num], ia->cr_hia[queue_num], ia->cr_tia[queue_num]); } static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1, u16 index) { bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x", index, urbd1->frbd_tag, urbd1->status, urbd1->fixed); } static int btintel_pcie_poll_bit(struct btintel_pcie_data *data, u32 offset, u32 bits, u32 mask, int timeout_us) { int t = 0; u32 reg; do { reg = btintel_pcie_rd_reg32(data, offset); if ((reg & mask) == (bits & mask)) return t; udelay(POLL_INTERVAL_US); t += POLL_INTERVAL_US; } while (t < timeout_us); return -ETIMEDOUT; } static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry) { u8 queue = entry->entry; struct msix_entry *entries = entry - queue; return container_of(entries, struct btintel_pcie_data, msix_entries[0]); } /* Set the doorbell for TXQ to notify the device that @index (actually index-1) * of the TFD is updated and ready to transmit. */ static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index) { u32 val; val = index; val |= (BTINTEL_PCIE_TX_DB_VEC << 16); btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val); } /* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer * descriptor) with the data length and the DMA address of the data buffer. */ static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index, struct sk_buff *skb) { struct data_buf *buf; struct tfd *tfd; tfd = &txq->tfds[tfd_index]; memset(tfd, 0, sizeof(*tfd)); buf = &txq->bufs[tfd_index]; tfd->size = skb->len; tfd->addr = buf->data_p_addr; /* Copy the outgoing data to DMA buffer */ memcpy(buf->data, skb->data, tfd->size); } static int btintel_pcie_send_sync(struct btintel_pcie_data *data, struct sk_buff *skb) { int ret; u16 tfd_index; struct txq *txq = &data->txq; tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM]; if (tfd_index > txq->count) return -ERANGE; /* Prepare for TX. It updates the TFD with the length of data and * address of the DMA buffer, and copy the data to the DMA buffer */ btintel_pcie_prepare_tx(txq, tfd_index, skb); tfd_index = (tfd_index + 1) % txq->count; data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index; /* Arm wait event condition */ data->tx_wait_done = false; /* Set the doorbell to notify the device */ btintel_pcie_set_tx_db(data, tfd_index); /* Wait for the complete interrupt - URBD0 */ ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done, msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS)); if (!ret) return -ETIME; return 0; } /* Set the doorbell for RXQ to notify the device that @index (actually index-1) * is available to receive the data */ static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index) { u32 val; val = index; val |= (BTINTEL_PCIE_RX_DB_VEC << 16); btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val); } /* Update the FRBD (free buffer descriptor) with the @frbd_index and the * DMA address of the free buffer. */ static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index) { struct data_buf *buf; struct frbd *frbd; /* Get the buffer of the FRBD for DMA */ buf = &rxq->bufs[frbd_index]; frbd = &rxq->frbds[frbd_index]; memset(frbd, 0, sizeof(*frbd)); /* Update FRBD */ frbd->tag = frbd_index; frbd->addr = buf->data_p_addr; } static int btintel_pcie_submit_rx(struct btintel_pcie_data *data) { u16 frbd_index; struct rxq *rxq = &data->rxq; frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM]; if (frbd_index > rxq->count) return -ERANGE; /* Prepare for RX submit. It updates the FRBD with the address of DMA * buffer */ btintel_pcie_prepare_rx(rxq, frbd_index); frbd_index = (frbd_index + 1) % rxq->count; data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index; ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM); /* Set the doorbell to notify the device */ btintel_pcie_set_rx_db(data, frbd_index); return 0; } static int btintel_pcie_start_rx(struct btintel_pcie_data *data) { int i, ret; for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) { ret = btintel_pcie_submit_rx(data); if (ret) return ret; } return 0; } static void btintel_pcie_reset_ia(struct btintel_pcie_data *data) { memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); } static void btintel_pcie_reset_bt(struct btintel_pcie_data *data) { btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET); } /* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in * BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with * BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0. * Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage * from BTINTEL_PCIE_CSR_BOOT_STAGE_REG. */ static int btintel_pcie_enable_bt(struct btintel_pcie_data *data) { int err; data->gp0_received = false; /* Update the DMA address of CI struct to CSR */ btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG, data->ci_p_addr & 0xffffffff); btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG, (u64)data->ci_p_addr >> 32); /* Reset the cached value of boot stage. it is updated by the MSI-X * gp0 interrupt handler. */ data->boot_stage_cache = 0x0; /* Set MAC_INIT bit to start primary bootloader */ btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT); /* Wait until MAC_ACCESS is granted */ err = btintel_pcie_poll_bit(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS, BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS, BTINTEL_DEFAULT_MAC_ACCESS_TIMEOUT_US); if (err < 0) return -ENODEV; /* MAC is ready. Enable BT FUNC */ btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA | BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT); btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); /* wait for interrupt from the device after booting up to primary * bootloader. */ err = wait_event_timeout(data->gp0_wait_q, data->gp0_received, msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT)); if (!err) return -ETIME; /* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */ if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM) return -ENODEV; return 0; } /* This function handles the MSI-X interrupt for gp0 cause (bit 0 in * BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response. */ static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data) { u32 reg; /* This interrupt is for three different causes and it is not easy to * know what causes the interrupt. So, it compares each register value * with cached value and update it before it wake up the queue. */ reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG); if (reg != data->boot_stage_cache) data->boot_stage_cache = reg; reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG); if (reg != data->img_resp_cache) data->img_resp_cache = reg; data->gp0_received = true; /* If the boot stage is OP or IML, reset IA and start RX again */ if (data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW || data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML) { btintel_pcie_reset_ia(data); btintel_pcie_start_rx(data); } wake_up(&data->gp0_wait_q); } /* This function handles the MSX-X interrupt for rx queue 0 which is for TX */ static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data) { u16 cr_tia, cr_hia; struct txq *txq; struct urbd0 *urbd0; cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM]; cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM]; if (cr_tia == cr_hia) return; txq = &data->txq; while (cr_tia != cr_hia) { data->tx_wait_done = true; wake_up(&data->tx_wait_q); urbd0 = &txq->urbd0s[cr_tia]; if (urbd0->tfd_index > txq->count) return; cr_tia = (cr_tia + 1) % txq->count; data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia; ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM); } } /* Process the received rx data * It check the frame header to identify the data type and create skb * and calling HCI API */ static int btintel_pcie_recv_frame(struct btintel_pcie_data *data, struct sk_buff *skb) { int ret; u8 pkt_type; u16 plen; u32 pcie_pkt_type; struct sk_buff *new_skb; void *pdata; struct hci_dev *hdev = data->hdev; spin_lock(&data->hci_rx_lock); /* The first 4 bytes indicates the Intel PCIe specific packet type */ pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN); if (!pdata) { bt_dev_err(hdev, "Corrupted packet received"); ret = -EILSEQ; goto exit_error; } pcie_pkt_type = get_unaligned_le32(pdata); switch (pcie_pkt_type) { case BTINTEL_PCIE_HCI_ACL_PKT: if (skb->len >= HCI_ACL_HDR_SIZE) { plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen); pkt_type = HCI_ACLDATA_PKT; } else { bt_dev_err(hdev, "ACL packet is too short"); ret = -EILSEQ; goto exit_error; } break; case BTINTEL_PCIE_HCI_SCO_PKT: if (skb->len >= HCI_SCO_HDR_SIZE) { plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen; pkt_type = HCI_SCODATA_PKT; } else { bt_dev_err(hdev, "SCO packet is too short"); ret = -EILSEQ; goto exit_error; } break; case BTINTEL_PCIE_HCI_EVT_PKT: if (skb->len >= HCI_EVENT_HDR_SIZE) { plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen; pkt_type = HCI_EVENT_PKT; } else { bt_dev_err(hdev, "Event packet is too short"); ret = -EILSEQ; goto exit_error; } break; default: bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x", pcie_pkt_type); ret = -EINVAL; goto exit_error; } if (skb->len < plen) { bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x", pkt_type); ret = -EILSEQ; goto exit_error; } bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen); new_skb = bt_skb_alloc(plen, GFP_ATOMIC); if (!new_skb) { bt_dev_err(hdev, "Failed to allocate memory for skb of len: %u", skb->len); ret = -ENOMEM; goto exit_error; } hci_skb_pkt_type(new_skb) = pkt_type; skb_put_data(new_skb, skb->data, plen); hdev->stat.byte_rx += plen; if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT) ret = btintel_recv_event(hdev, new_skb); else ret = hci_recv_frame(hdev, new_skb); exit_error: if (ret) hdev->stat.err_rx++; spin_unlock(&data->hci_rx_lock); return ret; } static void btintel_pcie_rx_work(struct work_struct *work) { struct btintel_pcie_data *data = container_of(work, struct btintel_pcie_data, rx_work); struct sk_buff *skb; int err; struct hci_dev *hdev = data->hdev; /* Process the sk_buf in queue and send to the HCI layer */ while ((skb = skb_dequeue(&data->rx_skb_q))) { err = btintel_pcie_recv_frame(data, skb); if (err) bt_dev_err(hdev, "Failed to send received frame: %d", err); kfree_skb(skb); } } /* create sk_buff with data and save it to queue and start RX work */ static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status, void *buf) { int ret, len; struct rfh_hdr *rfh_hdr; struct sk_buff *skb; rfh_hdr = buf; len = rfh_hdr->packet_len; if (len <= 0) { ret = -EINVAL; goto resubmit; } /* Remove RFH header */ buf += sizeof(*rfh_hdr); skb = alloc_skb(len, GFP_ATOMIC); if (!skb) { ret = -ENOMEM; goto resubmit; } skb_put_data(skb, buf, len); skb_queue_tail(&data->rx_skb_q, skb); queue_work(data->workqueue, &data->rx_work); resubmit: ret = btintel_pcie_submit_rx(data); return ret; } /* Handles the MSI-X interrupt for rx queue 1 which is for RX */ static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data) { u16 cr_hia, cr_tia; struct rxq *rxq; struct urbd1 *urbd1; struct data_buf *buf; int ret; struct hci_dev *hdev = data->hdev; cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM]; cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM]; bt_dev_dbg(hdev, "RXQ: cr_hia: %u cr_tia: %u", cr_hia, cr_tia); /* Check CR_TIA and CR_HIA for change */ if (cr_tia == cr_hia) { bt_dev_warn(hdev, "RXQ: no new CD found"); return; } rxq = &data->rxq; /* The firmware sends multiple CD in a single MSI-X and it needs to * process all received CDs in this interrupt. */ while (cr_tia != cr_hia) { urbd1 = &rxq->urbd1s[cr_tia]; ipc_print_urbd1(data->hdev, urbd1, cr_tia); buf = &rxq->bufs[urbd1->frbd_tag]; if (!buf) { bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d", urbd1->frbd_tag); return; } ret = btintel_pcie_submit_rx_work(data, urbd1->status, buf->data); if (ret) { bt_dev_err(hdev, "RXQ: failed to submit rx request"); return; } cr_tia = (cr_tia + 1) % rxq->count; data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia; ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM); } } static irqreturn_t btintel_pcie_msix_isr(int irq, void *data) { return IRQ_WAKE_THREAD; } static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id) { struct msix_entry *entry = dev_id; struct btintel_pcie_data *data = btintel_pcie_get_data(entry); u32 intr_fh, intr_hw; spin_lock(&data->irq_lock); intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES); intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES); /* Clear causes registers to avoid being handling the same cause */ btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh); btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw); spin_unlock(&data->irq_lock); if (unlikely(!(intr_fh | intr_hw))) { /* Ignore interrupt, inta == 0 */ return IRQ_NONE; } /* This interrupt is triggered by the firmware after updating * boot_stage register and image_response register */ if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0) btintel_pcie_msix_gp0_handler(data); /* For TX */ if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0) btintel_pcie_msix_tx_handle(data); /* For RX */ if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1) btintel_pcie_msix_rx_handle(data); /* * Before sending the interrupt the HW disables it to prevent a nested * interrupt. This is done by writing 1 to the corresponding bit in * the mask register. After handling the interrupt, it should be * re-enabled by clearing this bit. This register is defined as write 1 * clear (W1C) register, meaning that it's cleared by writing 1 * to the bit. */ btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST, BIT(entry->entry)); return IRQ_HANDLED; } /* This function requests the irq for MSI-X and registers the handlers per irq. * Currently, it requests only 1 irq for all interrupt causes. */ static int btintel_pcie_setup_irq(struct btintel_pcie_data *data) { int err; int num_irqs, i; for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++) data->msix_entries[i].entry = i; num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN, BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX); if (num_irqs < 0) return num_irqs; data->alloc_vecs = num_irqs; data->msix_enabled = 1; data->def_irq = 0; /* setup irq handler */ for (i = 0; i < data->alloc_vecs; i++) { struct msix_entry *msix_entry; msix_entry = &data->msix_entries[i]; msix_entry->vector = pci_irq_vector(data->pdev, i); err = devm_request_threaded_irq(&data->pdev->dev, msix_entry->vector, btintel_pcie_msix_isr, btintel_pcie_irq_msix_handler, IRQF_SHARED, KBUILD_MODNAME, msix_entry); if (err) { pci_free_irq_vectors(data->pdev); data->alloc_vecs = 0; return err; } } return 0; } struct btintel_pcie_causes_list { u32 cause; u32 mask_reg; u8 cause_num; }; static struct btintel_pcie_causes_list causes_list[] = { { BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x00 }, { BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x01 }, { BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x20 }, }; /* This function configures the interrupt masks for both HW_INT_CAUSES and * FH_INT_CAUSES which are meaningful to us. * * After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver * need to call this function again to configure since the masks * are reset to 0xFFFFFFFF after reset. */ static void btintel_pcie_config_msix(struct btintel_pcie_data *data) { int i; int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE; /* Set Non Auto Clear Cause */ for (i = 0; i < ARRAY_SIZE(causes_list); i++) { btintel_pcie_wr_reg8(data, BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num), val); btintel_pcie_clr_reg_bits(data, causes_list[i].mask_reg, causes_list[i].cause); } /* Save the initial interrupt mask */ data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK); data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK); } static int btintel_pcie_config_pcie(struct pci_dev *pdev, struct btintel_pcie_data *data) { int err; err = pcim_enable_device(pdev); if (err) return err; pci_set_master(pdev); err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) { err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) return err; } err = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME); if (err) return err; data->base_addr = pcim_iomap_table(pdev)[0]; if (!data->base_addr) return -ENODEV; err = btintel_pcie_setup_irq(data); if (err) return err; /* Configure MSI-X with causes list */ btintel_pcie_config_msix(data); return 0; } static void btintel_pcie_init_ci(struct btintel_pcie_data *data, struct ctx_info *ci) { ci->version = 0x1; ci->size = sizeof(*ci); ci->config = 0x0000; ci->addr_cr_hia = data->ia.cr_hia_p_addr; ci->addr_tr_tia = data->ia.tr_tia_p_addr; ci->addr_cr_tia = data->ia.cr_tia_p_addr; ci->addr_tr_hia = data->ia.tr_hia_p_addr; ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES; ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES; ci->addr_urbdq0 = data->txq.urbd0s_p_addr; ci->addr_tfdq = data->txq.tfds_p_addr; ci->num_tfdq = data->txq.count; ci->num_urbdq0 = data->txq.count; ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM; ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM; ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K; ci->addr_frbdq = data->rxq.frbds_p_addr; ci->num_frbdq = data->rxq.count; ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM; ci->addr_urbdq1 = data->rxq.urbd1s_p_addr; ci->num_urbdq1 = data->rxq.count; ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM; } static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data, struct txq *txq) { /* Free data buffers first */ dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE, txq->buf_v_addr, txq->buf_p_addr); kfree(txq->bufs); } static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data, struct txq *txq) { int i; struct data_buf *buf; /* Allocate the same number of buffers as the descriptor */ txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL); if (!txq->bufs) return -ENOMEM; /* Allocate full chunk of data buffer for DMA first and do indexing and * initialization next, so it can be freed easily */ txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE, &txq->buf_p_addr, GFP_KERNEL | __GFP_NOWARN); if (!txq->buf_v_addr) { kfree(txq->bufs); return -ENOMEM; } memset(txq->buf_v_addr, 0, txq->count * BTINTEL_PCIE_BUFFER_SIZE); /* Setup the allocated DMA buffer to bufs. Each data_buf should * have virtual address and physical address */ for (i = 0; i < txq->count; i++) { buf = &txq->bufs[i]; buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); } return 0; } static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data, struct rxq *rxq) { /* Free data buffers first */ dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE, rxq->buf_v_addr, rxq->buf_p_addr); kfree(rxq->bufs); } static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data, struct rxq *rxq) { int i; struct data_buf *buf; /* Allocate the same number of buffers as the descriptor */ rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL); if (!rxq->bufs) return -ENOMEM; /* Allocate full chunk of data buffer for DMA first and do indexing and * initialization next, so it can be freed easily */ rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE, &rxq->buf_p_addr, GFP_KERNEL | __GFP_NOWARN); if (!rxq->buf_v_addr) { kfree(rxq->bufs); return -ENOMEM; } memset(rxq->buf_v_addr, 0, rxq->count * BTINTEL_PCIE_BUFFER_SIZE); /* Setup the allocated DMA buffer to bufs. Each data_buf should * have virtual address and physical address */ for (i = 0; i < rxq->count; i++) { buf = &rxq->bufs[i]; buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); } return 0; } static void btintel_pcie_setup_ia(struct btintel_pcie_data *data, dma_addr_t p_addr, void *v_addr, struct ia *ia) { /* TR Head Index Array */ ia->tr_hia_p_addr = p_addr; ia->tr_hia = v_addr; /* TR Tail Index Array */ ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES; ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES; /* CR Head index Array */ ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2); ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2); /* CR Tail Index Array */ ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3); ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3); } static void btintel_pcie_free(struct btintel_pcie_data *data) { btintel_pcie_free_rxq_bufs(data, &data->rxq); btintel_pcie_free_txq_bufs(data, &data->txq); dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr); dma_pool_destroy(data->dma_pool); } /* Allocate tx and rx queues, any related data structures and buffers. */ static int btintel_pcie_alloc(struct btintel_pcie_data *data) { int err = 0; size_t total; dma_addr_t p_addr; void *v_addr; /* Allocate the chunk of DMA memory for descriptors, index array, and * context information, instead of allocating individually. * The DMA memory for data buffer is allocated while setting up the * each queue. * * Total size is sum of the following * + size of TFD * Number of descriptors in queue * + size of URBD0 * Number of descriptors in queue * + size of FRBD * Number of descriptors in queue * + size of URBD1 * Number of descriptors in queue * + size of index * Number of queues(2) * type of index array(4) * + size of context information */ total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd) + sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT; /* Add the sum of size of index array and size of ci struct */ total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info); /* Allocate DMA Pool */ data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev, total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0); if (!data->dma_pool) { err = -ENOMEM; goto exit_error; } v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN, &p_addr); if (!v_addr) { dma_pool_destroy(data->dma_pool); err = -ENOMEM; goto exit_error; } data->dma_p_addr = p_addr; data->dma_v_addr = v_addr; /* Setup descriptor count */ data->txq.count = BTINTEL_DESCS_COUNT; data->rxq.count = BTINTEL_DESCS_COUNT; /* Setup tfds */ data->txq.tfds_p_addr = p_addr; data->txq.tfds = v_addr; p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT); v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT); /* Setup urbd0 */ data->txq.urbd0s_p_addr = p_addr; data->txq.urbd0s = v_addr; p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT); v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT); /* Setup FRBD*/ data->rxq.frbds_p_addr = p_addr; data->rxq.frbds = v_addr; p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT); v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT); /* Setup urbd1 */ data->rxq.urbd1s_p_addr = p_addr; data->rxq.urbd1s = v_addr; p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT); v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT); /* Setup data buffers for txq */ err = btintel_pcie_setup_txq_bufs(data, &data->txq); if (err) goto exit_error_pool; /* Setup data buffers for rxq */ err = btintel_pcie_setup_rxq_bufs(data, &data->rxq); if (err) goto exit_error_txq; /* Setup Index Array */ btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia); /* Setup Context Information */ p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4; v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4; data->ci = v_addr; data->ci_p_addr = p_addr; /* Initialize the CI */ btintel_pcie_init_ci(data, data->ci); return 0; exit_error_txq: btintel_pcie_free_txq_bufs(data, &data->txq); exit_error_pool: dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr); dma_pool_destroy(data->dma_pool); exit_error: return err; } static int btintel_pcie_open(struct hci_dev *hdev) { bt_dev_dbg(hdev, ""); return 0; } static int btintel_pcie_close(struct hci_dev *hdev) { bt_dev_dbg(hdev, ""); return 0; } static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) { struct sk_buff *skb; struct hci_event_hdr *hdr; struct hci_ev_cmd_complete *evt; skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL); if (!skb) return -ENOMEM; hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr)); hdr->evt = HCI_EV_CMD_COMPLETE; hdr->plen = sizeof(*evt) + 1; evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt)); evt->ncmd = 0x01; evt->opcode = cpu_to_le16(opcode); *(u8 *)skb_put(skb, 1) = 0x00; hci_skb_pkt_type(skb) = HCI_EVENT_PKT; return hci_recv_frame(hdev, skb); } static int btintel_pcie_send_frame(struct hci_dev *hdev, struct sk_buff *skb) { struct btintel_pcie_data *data = hci_get_drvdata(hdev); int ret; u32 type; /* Due to the fw limitation, the type header of the packet should be * 4 bytes unlike 1 byte for UART. In UART, the firmware can read * the first byte to get the packet type and redirect the rest of data * packet to the right handler. * * But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data * from DMA memory and by the time it reads the first 4 bytes, it has * already consumed some part of packet. Thus the packet type indicator * for iBT PCIe is 4 bytes. * * Luckily, when HCI core creates the skb, it allocates 8 bytes of * head room for profile and driver use, and before sending the data * to the device, append the iBT PCIe packet type in the front. */ switch (hci_skb_pkt_type(skb)) { case HCI_COMMAND_PKT: type = BTINTEL_PCIE_HCI_CMD_PKT; if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) { struct hci_command_hdr *cmd = (void *)skb->data; __u16 opcode = le16_to_cpu(cmd->opcode); /* When the 0xfc01 command is issued to boot into * the operational firmware, it will actually not * send a command complete event. To keep the flow * control working inject that event here. */ if (opcode == 0xfc01) btintel_pcie_inject_cmd_complete(hdev, opcode); } hdev->stat.cmd_tx++; break; case HCI_ACLDATA_PKT: type = BTINTEL_PCIE_HCI_ACL_PKT; hdev->stat.acl_tx++; break; case HCI_SCODATA_PKT: type = BTINTEL_PCIE_HCI_SCO_PKT; hdev->stat.sco_tx++; break; default: bt_dev_err(hdev, "Unknown HCI packet type"); return -EILSEQ; } memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &type, BTINTEL_PCIE_HCI_TYPE_LEN); ret = btintel_pcie_send_sync(data, skb); if (ret) { hdev->stat.err_tx++; bt_dev_err(hdev, "Failed to send frame (%d)", ret); goto exit_error; } hdev->stat.byte_tx += skb->len; kfree_skb(skb); exit_error: return ret; } static void btintel_pcie_release_hdev(struct btintel_pcie_data *data) { struct hci_dev *hdev; hdev = data->hdev; hci_unregister_dev(hdev); hci_free_dev(hdev); data->hdev = NULL; } static int btintel_pcie_setup(struct hci_dev *hdev) { const u8 param[1] = { 0xFF }; struct intel_version_tlv ver_tlv; struct sk_buff *skb; int err; BT_DBG("%s", hdev->name); skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reading Intel version command failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } /* Check the status */ if (skb->data[0]) { bt_dev_err(hdev, "Intel Read Version command failed (%02x)", skb->data[0]); err = -EIO; goto exit_error; } /* Apply the common HCI quirks for Intel device */ set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks); /* Set up the quality report callback for Intel devices */ hdev->set_quality_report = btintel_set_quality_report; memset(&ver_tlv, 0, sizeof(ver_tlv)); /* For TLV type device, parse the tlv data */ err = btintel_parse_version_tlv(hdev, &ver_tlv, skb); if (err) { bt_dev_err(hdev, "Failed to parse TLV version information"); goto exit_error; } switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) { case 0x37: break; default: bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); err = -EINVAL; goto exit_error; } /* Check for supported iBT hardware variants of this firmware * loading method. * * This check has been put in place to ensure correct forward * compatibility options when newer hardware variants come * along. */ switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { case 0x1e: /* BzrI */ /* Display version information of TLV type */ btintel_version_info_tlv(hdev, &ver_tlv); /* Apply the device specific HCI quirks for TLV based devices * * All TLV based devices support WBS */ set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); /* Apply LE States quirk from solar onwards */ set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); /* Setup MSFT Extension support */ btintel_set_msft_opcode(hdev, INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); err = btintel_bootloader_setup_tlv(hdev, &ver_tlv); if (err) goto exit_error; break; default: bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); err = -EINVAL; break; } exit_error: kfree_skb(skb); return err; } static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data) { int err; struct hci_dev *hdev; hdev = hci_alloc_dev(); if (!hdev) return -ENOMEM; hdev->bus = HCI_PCI; hci_set_drvdata(hdev, data); data->hdev = hdev; SET_HCIDEV_DEV(hdev, &data->pdev->dev); hdev->manufacturer = 2; hdev->open = btintel_pcie_open; hdev->close = btintel_pcie_close; hdev->send = btintel_pcie_send_frame; hdev->setup = btintel_pcie_setup; hdev->shutdown = btintel_shutdown_combined; hdev->hw_error = btintel_hw_error; hdev->set_diag = btintel_set_diag; hdev->set_bdaddr = btintel_set_bdaddr; err = hci_register_dev(hdev); if (err < 0) { BT_ERR("Failed to register to hdev (%d)", err); goto exit_error; } return 0; exit_error: hci_free_dev(hdev); return err; } static int btintel_pcie_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int err; struct btintel_pcie_data *data; if (!pdev) return -ENODEV; data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->pdev = pdev; spin_lock_init(&data->irq_lock); spin_lock_init(&data->hci_rx_lock); init_waitqueue_head(&data->gp0_wait_q); data->gp0_received = false; init_waitqueue_head(&data->tx_wait_q); data->tx_wait_done = false; data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI); if (!data->workqueue) return -ENOMEM; skb_queue_head_init(&data->rx_skb_q); INIT_WORK(&data->rx_work, btintel_pcie_rx_work); data->boot_stage_cache = 0x00; data->img_resp_cache = 0x00; err = btintel_pcie_config_pcie(pdev, data); if (err) goto exit_error; pci_set_drvdata(pdev, data); err = btintel_pcie_alloc(data); if (err) goto exit_error; err = btintel_pcie_enable_bt(data); if (err) goto exit_error; /* CNV information (CNVi and CNVr) is in CSR */ data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG); data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG); err = btintel_pcie_start_rx(data); if (err) goto exit_error; err = btintel_pcie_setup_hdev(data); if (err) goto exit_error; bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi, data->cnvr); return 0; exit_error: /* reset device before exit */ btintel_pcie_reset_bt(data); pci_clear_master(pdev); pci_set_drvdata(pdev, NULL); return err; } static void btintel_pcie_remove(struct pci_dev *pdev) { struct btintel_pcie_data *data; data = pci_get_drvdata(pdev); btintel_pcie_reset_bt(data); pci_free_irq_vectors(pdev); btintel_pcie_release_hdev(data); flush_work(&data->rx_work); destroy_workqueue(data->workqueue); btintel_pcie_free(data); pci_clear_master(pdev); pci_set_drvdata(pdev, NULL); } static struct pci_driver btintel_pcie_driver = { .name = KBUILD_MODNAME, .id_table = btintel_pcie_table, .probe = btintel_pcie_probe, .remove = btintel_pcie_remove, }; module_pci_driver(btintel_pcie_driver); MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>"); MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1