Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Manivannan Sadhasivam | 7952 | 99.66% | 34 | 87.18% |
Bo Liu | 21 | 0.26% | 1 | 2.56% |
Erick Archer | 2 | 0.03% | 1 | 2.56% |
Dan Carpenter | 2 | 0.03% | 2 | 5.13% |
Greg Kroah-Hartman | 2 | 0.03% | 1 | 2.56% |
Total | 7979 | 39 |
// SPDX-License-Identifier: GPL-2.0 /* * MHI Endpoint bus stack * * Copyright (C) 2022 Linaro Ltd. * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/dma-direction.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/mhi_ep.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include "internal.h" #define M0_WAIT_DELAY_MS 100 #define M0_WAIT_COUNT 100 static DEFINE_IDA(mhi_ep_cntrl_ida); static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id); static int mhi_ep_destroy_device(struct device *dev, void *data); static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx, struct mhi_ring_element *el, bool bei) { struct device *dev = &mhi_cntrl->mhi_dev->dev; union mhi_ep_ring_ctx *ctx; struct mhi_ep_ring *ring; int ret; mutex_lock(&mhi_cntrl->event_lock); ring = &mhi_cntrl->mhi_event[ring_idx].ring; ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx]; if (!ring->started) { ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx); if (ret) { dev_err(dev, "Error starting event ring (%u)\n", ring_idx); goto err_unlock; } } /* Add element to the event ring */ ret = mhi_ep_ring_add_element(ring, el); if (ret) { dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx); goto err_unlock; } mutex_unlock(&mhi_cntrl->event_lock); /* * As per the MHI specification, section 4.3, Interrupt moderation: * * 1. If BEI flag is not set, cancel any pending intmodt work if started * for the event ring and raise IRQ immediately. * * 2. If both BEI and intmodt are set, and if no IRQ is pending for the * same event ring, start the IRQ delayed work as per the value of * intmodt. If previous IRQ is pending, then do nothing as the pending * IRQ is enough for the host to process the current event ring element. * * 3. If BEI is set and intmodt is not set, no need to raise IRQ. */ if (!bei) { if (READ_ONCE(ring->irq_pending)) cancel_delayed_work(&ring->intmodt_work); mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector); } else if (ring->intmodt && !READ_ONCE(ring->irq_pending)) { WRITE_ONCE(ring->irq_pending, true); schedule_delayed_work(&ring->intmodt_work, msecs_to_jiffies(ring->intmodt)); } return 0; err_unlock: mutex_unlock(&mhi_cntrl->event_lock); return ret; } static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring, struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code) { struct mhi_ring_element *event; int ret; event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA); if (!event) return -ENOMEM; event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre)); event->dword[0] = MHI_TRE_EV_DWORD0(code, len); event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT); ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre)); kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); return ret; } int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state) { struct mhi_ring_element *event; int ret; event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA); if (!event) return -ENOMEM; event->dword[0] = MHI_SC_EV_DWORD0(state); event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT); ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0); kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); return ret; } int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env) { struct mhi_ring_element *event; int ret; event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA); if (!event) return -ENOMEM; event->dword[0] = MHI_EE_EV_DWORD0(exec_env); event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT); ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0); kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); return ret; } static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code) { struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring; struct mhi_ring_element *event; int ret; event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA); if (!event) return -ENOMEM; event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element)); event->dword[0] = MHI_CC_EV_DWORD0(code); event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT); ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0); kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); return ret; } static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el) { struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl; struct device *dev = &mhi_cntrl->mhi_dev->dev; struct mhi_result result = {}; struct mhi_ep_chan *mhi_chan; struct mhi_ep_ring *ch_ring; u32 tmp, ch_id; int ret; ch_id = MHI_TRE_GET_CMD_CHID(el); /* Check if the channel is supported by the controller */ if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) { dev_dbg(dev, "Channel (%u) not supported!\n", ch_id); return -ENODEV; } mhi_chan = &mhi_cntrl->mhi_chan[ch_id]; ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring; switch (MHI_TRE_GET_CMD_TYPE(el)) { case MHI_PKT_TYPE_START_CHAN_CMD: dev_dbg(dev, "Received START command for channel (%u)\n", ch_id); mutex_lock(&mhi_chan->lock); /* Initialize and configure the corresponding channel ring */ if (!ch_ring->started) { ret = mhi_ep_ring_start(mhi_cntrl, ch_ring, (union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]); if (ret) { dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id); ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_UNDEFINED_ERR); if (ret) dev_err(dev, "Error sending completion event: %d\n", ret); goto err_unlock; } mhi_chan->rd_offset = ch_ring->rd_offset; } /* Set channel state to RUNNING */ mhi_chan->state = MHI_CH_STATE_RUNNING; tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg); tmp &= ~CHAN_CTX_CHSTATE_MASK; tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING); mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp); ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS); if (ret) { dev_err(dev, "Error sending command completion event (%u)\n", MHI_EV_CC_SUCCESS); goto err_unlock; } mutex_unlock(&mhi_chan->lock); /* * Create MHI device only during UL channel start. Since the MHI * channels operate in a pair, we'll associate both UL and DL * channels to the same device. * * We also need to check for mhi_dev != NULL because, the host * will issue START_CHAN command during resume and we don't * destroy the device during suspend. */ if (!(ch_id % 2) && !mhi_chan->mhi_dev) { ret = mhi_ep_create_device(mhi_cntrl, ch_id); if (ret) { dev_err(dev, "Error creating device for channel (%u)\n", ch_id); mhi_ep_handle_syserr(mhi_cntrl); return ret; } } /* Finally, enable DB for the channel */ mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id); break; case MHI_PKT_TYPE_STOP_CHAN_CMD: dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id); if (!ch_ring->started) { dev_err(dev, "Channel (%u) not opened\n", ch_id); return -ENODEV; } mutex_lock(&mhi_chan->lock); /* Disable DB for the channel */ mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id); /* Send channel disconnect status to client drivers */ if (mhi_chan->xfer_cb) { result.transaction_status = -ENOTCONN; result.bytes_xferd = 0; mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); } /* Set channel state to STOP */ mhi_chan->state = MHI_CH_STATE_STOP; tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg); tmp &= ~CHAN_CTX_CHSTATE_MASK; tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP); mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp); ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS); if (ret) { dev_err(dev, "Error sending command completion event (%u)\n", MHI_EV_CC_SUCCESS); goto err_unlock; } mutex_unlock(&mhi_chan->lock); break; case MHI_PKT_TYPE_RESET_CHAN_CMD: dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id); if (!ch_ring->started) { dev_err(dev, "Channel (%u) not opened\n", ch_id); return -ENODEV; } mutex_lock(&mhi_chan->lock); /* Stop and reset the transfer ring */ mhi_ep_ring_reset(mhi_cntrl, ch_ring); /* Send channel disconnect status to client driver */ if (mhi_chan->xfer_cb) { result.transaction_status = -ENOTCONN; result.bytes_xferd = 0; mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); } /* Set channel state to DISABLED */ mhi_chan->state = MHI_CH_STATE_DISABLED; tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg); tmp &= ~CHAN_CTX_CHSTATE_MASK; tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED); mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp); ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS); if (ret) { dev_err(dev, "Error sending command completion event (%u)\n", MHI_EV_CC_SUCCESS); goto err_unlock; } mutex_unlock(&mhi_chan->lock); break; default: dev_err(dev, "Invalid command received: %lu for channel (%u)\n", MHI_TRE_GET_CMD_TYPE(el), ch_id); return -EINVAL; } return 0; err_unlock: mutex_unlock(&mhi_chan->lock); return ret; } bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir) { struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan : mhi_dev->ul_chan; struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; return !!(mhi_chan->rd_offset == ring->wr_offset); } EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty); static void mhi_ep_read_completion(struct mhi_ep_buf_info *buf_info) { struct mhi_ep_device *mhi_dev = buf_info->mhi_dev; struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_ep_chan *mhi_chan = mhi_dev->ul_chan; struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset]; struct mhi_result result = {}; int ret; if (mhi_chan->xfer_cb) { result.buf_addr = buf_info->cb_buf; result.dir = mhi_chan->dir; result.bytes_xferd = buf_info->size; mhi_chan->xfer_cb(mhi_dev, &result); } /* * The host will split the data packet into multiple TREs if it can't fit * the packet in a single TRE. In that case, CHAIN flag will be set by the * host for all TREs except the last one. */ if (buf_info->code != MHI_EV_CC_OVERFLOW) { if (MHI_TRE_DATA_GET_CHAIN(el)) { /* * IEOB (Interrupt on End of Block) flag will be set by the host if * it expects the completion event for all TREs of a TD. */ if (MHI_TRE_DATA_GET_IEOB(el)) { ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, MHI_TRE_DATA_GET_LEN(el), MHI_EV_CC_EOB); if (ret < 0) { dev_err(&mhi_chan->mhi_dev->dev, "Error sending transfer compl. event\n"); goto err_free_tre_buf; } } } else { /* * IEOT (Interrupt on End of Transfer) flag will be set by the host * for the last TRE of the TD and expects the completion event for * the same. */ if (MHI_TRE_DATA_GET_IEOT(el)) { ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, MHI_TRE_DATA_GET_LEN(el), MHI_EV_CC_EOT); if (ret < 0) { dev_err(&mhi_chan->mhi_dev->dev, "Error sending transfer compl. event\n"); goto err_free_tre_buf; } } } } mhi_ep_ring_inc_index(ring); err_free_tre_buf: kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_info->cb_buf); } static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring) { struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id]; struct device *dev = &mhi_cntrl->mhi_dev->dev; size_t tr_len, read_offset, write_offset; struct mhi_ep_buf_info buf_info = {}; u32 len = MHI_EP_DEFAULT_MTU; struct mhi_ring_element *el; bool tr_done = false; void *buf_addr; u32 buf_left; int ret; buf_left = len; do { /* Don't process the transfer ring if the channel is not in RUNNING state */ if (mhi_chan->state != MHI_CH_STATE_RUNNING) { dev_err(dev, "Channel not available\n"); return -ENODEV; } el = &ring->ring_cache[mhi_chan->rd_offset]; /* Check if there is data pending to be read from previous read operation */ if (mhi_chan->tre_bytes_left) { dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left); tr_len = min(buf_left, mhi_chan->tre_bytes_left); } else { mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el); mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el); mhi_chan->tre_bytes_left = mhi_chan->tre_size; tr_len = min(buf_left, mhi_chan->tre_size); } read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left; write_offset = len - buf_left; buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL | GFP_DMA); if (!buf_addr) return -ENOMEM; buf_info.host_addr = mhi_chan->tre_loc + read_offset; buf_info.dev_addr = buf_addr + write_offset; buf_info.size = tr_len; buf_info.cb = mhi_ep_read_completion; buf_info.cb_buf = buf_addr; buf_info.mhi_dev = mhi_chan->mhi_dev; if (mhi_chan->tre_bytes_left - tr_len) buf_info.code = MHI_EV_CC_OVERFLOW; dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id); ret = mhi_cntrl->read_async(mhi_cntrl, &buf_info); if (ret < 0) { dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n"); goto err_free_buf_addr; } buf_left -= tr_len; mhi_chan->tre_bytes_left -= tr_len; if (!mhi_chan->tre_bytes_left) { if (MHI_TRE_DATA_GET_IEOT(el)) tr_done = true; mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size; } } while (buf_left && !tr_done); return 0; err_free_buf_addr: kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_addr); return ret; } static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring) { struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl; struct mhi_result result = {}; struct mhi_ep_chan *mhi_chan; int ret; mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id]; /* * Bail out if transfer callback is not registered for the channel. * This is most likely due to the client driver not loaded at this point. */ if (!mhi_chan->xfer_cb) { dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n"); return -ENODEV; } if (ring->ch_id % 2) { /* DL channel */ result.dir = mhi_chan->dir; mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); } else { /* UL channel */ do { ret = mhi_ep_read_channel(mhi_cntrl, ring); if (ret < 0) { dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n"); return ret; } /* Read until the ring becomes empty */ } while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE)); } return 0; } static void mhi_ep_skb_completion(struct mhi_ep_buf_info *buf_info) { struct mhi_ep_device *mhi_dev = buf_info->mhi_dev; struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan; struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset]; struct device *dev = &mhi_dev->dev; struct mhi_result result = {}; int ret; if (mhi_chan->xfer_cb) { result.buf_addr = buf_info->cb_buf; result.dir = mhi_chan->dir; result.bytes_xferd = buf_info->size; mhi_chan->xfer_cb(mhi_dev, &result); } ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, buf_info->size, buf_info->code); if (ret) { dev_err(dev, "Error sending transfer completion event\n"); return; } mhi_ep_ring_inc_index(ring); } /* TODO: Handle partially formed TDs */ int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb) { struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan; struct device *dev = &mhi_chan->mhi_dev->dev; struct mhi_ep_buf_info buf_info = {}; struct mhi_ring_element *el; u32 buf_left, read_offset; struct mhi_ep_ring *ring; size_t tr_len; u32 tre_len; int ret; buf_left = skb->len; ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; mutex_lock(&mhi_chan->lock); do { /* Don't process the transfer ring if the channel is not in RUNNING state */ if (mhi_chan->state != MHI_CH_STATE_RUNNING) { dev_err(dev, "Channel not available\n"); ret = -ENODEV; goto err_exit; } if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) { dev_err(dev, "TRE not available!\n"); ret = -ENOSPC; goto err_exit; } el = &ring->ring_cache[mhi_chan->rd_offset]; tre_len = MHI_TRE_DATA_GET_LEN(el); tr_len = min(buf_left, tre_len); read_offset = skb->len - buf_left; buf_info.dev_addr = skb->data + read_offset; buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el); buf_info.size = tr_len; buf_info.cb = mhi_ep_skb_completion; buf_info.cb_buf = skb; buf_info.mhi_dev = mhi_dev; /* * For all TREs queued by the host for DL channel, only the EOT flag will be set. * If the packet doesn't fit into a single TRE, send the OVERFLOW event to * the host so that the host can adjust the packet boundary to next TREs. Else send * the EOT event to the host indicating the packet boundary. */ if (buf_left - tr_len) buf_info.code = MHI_EV_CC_OVERFLOW; else buf_info.code = MHI_EV_CC_EOT; dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id); ret = mhi_cntrl->write_async(mhi_cntrl, &buf_info); if (ret < 0) { dev_err(dev, "Error writing to the channel\n"); goto err_exit; } buf_left -= tr_len; /* * Update the read offset cached in mhi_chan. Actual read offset * will be updated by the completion handler. */ mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size; } while (buf_left); mutex_unlock(&mhi_chan->lock); return 0; err_exit: mutex_unlock(&mhi_chan->lock); return ret; } EXPORT_SYMBOL_GPL(mhi_ep_queue_skb); static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl) { size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size; struct device *dev = &mhi_cntrl->mhi_dev->dev; int ret; /* Update the number of event rings (NER) programmed by the host */ mhi_ep_mmio_update_ner(mhi_cntrl); dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n", mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings); ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan; ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings; cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS; /* Get the channel context base pointer from host */ mhi_ep_mmio_get_chc_base(mhi_cntrl); /* Allocate and map memory for caching host channel context */ ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, &mhi_cntrl->ch_ctx_cache_phys, (void __iomem **) &mhi_cntrl->ch_ctx_cache, ch_ctx_host_size); if (ret) { dev_err(dev, "Failed to allocate and map ch_ctx_cache\n"); return ret; } /* Get the event context base pointer from host */ mhi_ep_mmio_get_erc_base(mhi_cntrl); /* Allocate and map memory for caching host event context */ ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, &mhi_cntrl->ev_ctx_cache_phys, (void __iomem **) &mhi_cntrl->ev_ctx_cache, ev_ctx_host_size); if (ret) { dev_err(dev, "Failed to allocate and map ev_ctx_cache\n"); goto err_ch_ctx; } /* Get the command context base pointer from host */ mhi_ep_mmio_get_crc_base(mhi_cntrl); /* Allocate and map memory for caching host command context */ ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, &mhi_cntrl->cmd_ctx_cache_phys, (void __iomem **) &mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size); if (ret) { dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n"); goto err_ev_ctx; } /* Initialize command ring */ ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring, (union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache); if (ret) { dev_err(dev, "Failed to start the command ring\n"); goto err_cmd_ctx; } return ret; err_cmd_ctx: mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys, (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size); err_ev_ctx: mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys, (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size); err_ch_ctx: mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys, (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size); return ret; } static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl) { size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size; ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan; ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings; cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS; mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys, (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size); mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys, (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size); mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys, (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size); } static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl) { /* * Doorbell interrupts are enabled when the corresponding channel gets started. * Enabling all interrupts here triggers spurious irqs as some of the interrupts * associated with hw channels always get triggered. */ mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl); mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl); } static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl) { struct device *dev = &mhi_cntrl->mhi_dev->dev; enum mhi_state state; bool mhi_reset; u32 count = 0; int ret; /* Wait for Host to set the M0 state */ do { msleep(M0_WAIT_DELAY_MS); mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset); if (mhi_reset) { /* Clear the MHI reset if host is in reset state */ mhi_ep_mmio_clear_reset(mhi_cntrl); dev_info(dev, "Detected Host reset while waiting for M0\n"); } count++; } while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT); if (state != MHI_STATE_M0) { dev_err(dev, "Host failed to enter M0\n"); return -ETIMEDOUT; } ret = mhi_ep_cache_host_cfg(mhi_cntrl); if (ret) { dev_err(dev, "Failed to cache host config\n"); return ret; } mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS); /* Enable all interrupts now */ mhi_ep_enable_int(mhi_cntrl); return 0; } static void mhi_ep_cmd_ring_worker(struct work_struct *work) { struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work); struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring; struct device *dev = &mhi_cntrl->mhi_dev->dev; struct mhi_ring_element *el; int ret; /* Update the write offset for the ring */ ret = mhi_ep_update_wr_offset(ring); if (ret) { dev_err(dev, "Error updating write offset for ring\n"); return; } /* Sanity check to make sure there are elements in the ring */ if (ring->rd_offset == ring->wr_offset) return; /* * Process command ring element till write offset. In case of an error, just try to * process next element. */ while (ring->rd_offset != ring->wr_offset) { el = &ring->ring_cache[ring->rd_offset]; ret = mhi_ep_process_cmd_ring(ring, el); if (ret && ret != -ENODEV) dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset); mhi_ep_ring_inc_index(ring); } } static void mhi_ep_ch_ring_worker(struct work_struct *work) { struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work); struct device *dev = &mhi_cntrl->mhi_dev->dev; struct mhi_ep_ring_item *itr, *tmp; struct mhi_ep_ring *ring; struct mhi_ep_chan *chan; unsigned long flags; LIST_HEAD(head); int ret; spin_lock_irqsave(&mhi_cntrl->list_lock, flags); list_splice_tail_init(&mhi_cntrl->ch_db_list, &head); spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags); /* Process each queued channel ring. In case of an error, just process next element. */ list_for_each_entry_safe(itr, tmp, &head, node) { list_del(&itr->node); ring = itr->ring; chan = &mhi_cntrl->mhi_chan[ring->ch_id]; mutex_lock(&chan->lock); /* * The ring could've stopped while we waited to grab the (chan->lock), so do * a sanity check before going further. */ if (!ring->started) { mutex_unlock(&chan->lock); kfree(itr); continue; } /* Update the write offset for the ring */ ret = mhi_ep_update_wr_offset(ring); if (ret) { dev_err(dev, "Error updating write offset for ring\n"); mutex_unlock(&chan->lock); kmem_cache_free(mhi_cntrl->ring_item_cache, itr); continue; } /* Sanity check to make sure there are elements in the ring */ if (chan->rd_offset == ring->wr_offset) { mutex_unlock(&chan->lock); kmem_cache_free(mhi_cntrl->ring_item_cache, itr); continue; } dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id); ret = mhi_ep_process_ch_ring(ring); if (ret) { dev_err(dev, "Error processing ring for channel (%u): %d\n", ring->ch_id, ret); mutex_unlock(&chan->lock); kmem_cache_free(mhi_cntrl->ring_item_cache, itr); continue; } mutex_unlock(&chan->lock); kmem_cache_free(mhi_cntrl->ring_item_cache, itr); } } static void mhi_ep_state_worker(struct work_struct *work) { struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work); struct device *dev = &mhi_cntrl->mhi_dev->dev; struct mhi_ep_state_transition *itr, *tmp; unsigned long flags; LIST_HEAD(head); int ret; spin_lock_irqsave(&mhi_cntrl->list_lock, flags); list_splice_tail_init(&mhi_cntrl->st_transition_list, &head); spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags); list_for_each_entry_safe(itr, tmp, &head, node) { list_del(&itr->node); dev_dbg(dev, "Handling MHI state transition to %s\n", mhi_state_str(itr->state)); switch (itr->state) { case MHI_STATE_M0: ret = mhi_ep_set_m0_state(mhi_cntrl); if (ret) dev_err(dev, "Failed to transition to M0 state\n"); break; case MHI_STATE_M3: ret = mhi_ep_set_m3_state(mhi_cntrl); if (ret) dev_err(dev, "Failed to transition to M3 state\n"); break; default: dev_err(dev, "Invalid MHI state transition: %d\n", itr->state); break; } kfree(itr); } } static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int, u32 ch_idx) { struct mhi_ep_ring_item *item; struct mhi_ep_ring *ring; bool work = !!ch_int; LIST_HEAD(head); u32 i; /* First add the ring items to a local list */ for_each_set_bit(i, &ch_int, 32) { /* Channel index varies for each register: 0, 32, 64, 96 */ u32 ch_id = ch_idx + i; ring = &mhi_cntrl->mhi_chan[ch_id].ring; item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC); if (!item) return; item->ring = ring; list_add_tail(&item->node, &head); } /* Now, splice the local list into ch_db_list and queue the work item */ if (work) { spin_lock(&mhi_cntrl->list_lock); list_splice_tail_init(&head, &mhi_cntrl->ch_db_list); spin_unlock(&mhi_cntrl->list_lock); queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work); } } /* * Channel interrupt statuses are contained in 4 registers each of 32bit length. * For checking all interrupts, we need to loop through each registers and then * check for bits set. */ static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl) { u32 ch_int, ch_idx, i; /* Bail out if there is no channel doorbell interrupt */ if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl)) return; for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) { ch_idx = i * MHI_MASK_CH_LEN; /* Only process channel interrupt if the mask is enabled */ ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask; if (ch_int) { mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx); mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i), mhi_cntrl->chdb[i].status); } } } static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state) { struct mhi_ep_state_transition *item; item = kzalloc(sizeof(*item), GFP_ATOMIC); if (!item) return; item->state = state; spin_lock(&mhi_cntrl->list_lock); list_add_tail(&item->node, &mhi_cntrl->st_transition_list); spin_unlock(&mhi_cntrl->list_lock); queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work); } /* * Interrupt handler that services interrupts raised by the host writing to * MHICTRL and Command ring doorbell (CRDB) registers for state change and * channel interrupts. */ static irqreturn_t mhi_ep_irq(int irq, void *data) { struct mhi_ep_cntrl *mhi_cntrl = data; struct device *dev = &mhi_cntrl->mhi_dev->dev; enum mhi_state state; u32 int_value; bool mhi_reset; /* Acknowledge the ctrl interrupt */ int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS); mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value); /* Check for ctrl interrupt */ if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) { dev_dbg(dev, "Processing ctrl interrupt\n"); mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset); if (mhi_reset) { dev_info(dev, "Host triggered MHI reset!\n"); disable_irq_nosync(mhi_cntrl->irq); schedule_work(&mhi_cntrl->reset_work); return IRQ_HANDLED; } mhi_ep_process_ctrl_interrupt(mhi_cntrl, state); } /* Check for command doorbell interrupt */ if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) { dev_dbg(dev, "Processing command doorbell interrupt\n"); queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work); } /* Check for channel interrupts */ mhi_ep_check_channel_interrupt(mhi_cntrl); return IRQ_HANDLED; } static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl) { struct mhi_ep_ring *ch_ring, *ev_ring; struct mhi_result result = {}; struct mhi_ep_chan *mhi_chan; int i; /* Stop all the channels */ for (i = 0; i < mhi_cntrl->max_chan; i++) { mhi_chan = &mhi_cntrl->mhi_chan[i]; if (!mhi_chan->ring.started) continue; mutex_lock(&mhi_chan->lock); /* Send channel disconnect status to client drivers */ if (mhi_chan->xfer_cb) { result.transaction_status = -ENOTCONN; result.bytes_xferd = 0; mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); } mhi_chan->state = MHI_CH_STATE_DISABLED; mutex_unlock(&mhi_chan->lock); } flush_workqueue(mhi_cntrl->wq); /* Destroy devices associated with all channels */ device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device); /* Stop and reset the transfer rings */ for (i = 0; i < mhi_cntrl->max_chan; i++) { mhi_chan = &mhi_cntrl->mhi_chan[i]; if (!mhi_chan->ring.started) continue; ch_ring = &mhi_cntrl->mhi_chan[i].ring; mutex_lock(&mhi_chan->lock); mhi_ep_ring_reset(mhi_cntrl, ch_ring); mutex_unlock(&mhi_chan->lock); } /* Stop and reset the event rings */ for (i = 0; i < mhi_cntrl->event_rings; i++) { ev_ring = &mhi_cntrl->mhi_event[i].ring; if (!ev_ring->started) continue; mutex_lock(&mhi_cntrl->event_lock); mhi_ep_ring_reset(mhi_cntrl, ev_ring); mutex_unlock(&mhi_cntrl->event_lock); } /* Stop and reset the command ring */ mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring); mhi_ep_free_host_cfg(mhi_cntrl); mhi_ep_mmio_mask_interrupts(mhi_cntrl); mhi_cntrl->enabled = false; } static void mhi_ep_reset_worker(struct work_struct *work) { struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work); enum mhi_state cur_state; mhi_ep_power_down(mhi_cntrl); mutex_lock(&mhi_cntrl->state_lock); /* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */ mhi_ep_mmio_reset(mhi_cntrl); cur_state = mhi_cntrl->mhi_state; /* * Only proceed further if the reset is due to SYS_ERR. The host will * issue reset during shutdown also and we don't need to do re-init in * that case. */ if (cur_state == MHI_STATE_SYS_ERR) mhi_ep_power_up(mhi_cntrl); mutex_unlock(&mhi_cntrl->state_lock); } /* * We don't need to do anything special other than setting the MHI SYS_ERR * state. The host will reset all contexts and issue MHI RESET so that we * could also recover from error state. */ void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl) { struct device *dev = &mhi_cntrl->mhi_dev->dev; int ret; ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR); if (ret) return; /* Signal host that the device went to SYS_ERR state */ ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR); if (ret) dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret); } int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl) { struct device *dev = &mhi_cntrl->mhi_dev->dev; int ret, i; /* * Mask all interrupts until the state machine is ready. Interrupts will * be enabled later with mhi_ep_enable(). */ mhi_ep_mmio_mask_interrupts(mhi_cntrl); mhi_ep_mmio_init(mhi_cntrl); mhi_cntrl->mhi_event = kcalloc(mhi_cntrl->event_rings, sizeof(*mhi_cntrl->mhi_event), GFP_KERNEL); if (!mhi_cntrl->mhi_event) return -ENOMEM; /* Initialize command, channel and event rings */ mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0); for (i = 0; i < mhi_cntrl->max_chan; i++) mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i); for (i = 0; i < mhi_cntrl->event_rings; i++) mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i); mhi_cntrl->mhi_state = MHI_STATE_RESET; /* Set AMSS EE before signaling ready state */ mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS); /* All set, notify the host that we are ready */ ret = mhi_ep_set_ready_state(mhi_cntrl); if (ret) goto err_free_event; dev_dbg(dev, "READY state notification sent to the host\n"); ret = mhi_ep_enable(mhi_cntrl); if (ret) { dev_err(dev, "Failed to enable MHI endpoint\n"); goto err_free_event; } enable_irq(mhi_cntrl->irq); mhi_cntrl->enabled = true; return 0; err_free_event: kfree(mhi_cntrl->mhi_event); return ret; } EXPORT_SYMBOL_GPL(mhi_ep_power_up); void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl) { if (mhi_cntrl->enabled) { mhi_ep_abort_transfer(mhi_cntrl); kfree(mhi_cntrl->mhi_event); disable_irq(mhi_cntrl->irq); } } EXPORT_SYMBOL_GPL(mhi_ep_power_down); void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl) { struct mhi_ep_chan *mhi_chan; u32 tmp; int i; for (i = 0; i < mhi_cntrl->max_chan; i++) { mhi_chan = &mhi_cntrl->mhi_chan[i]; if (!mhi_chan->mhi_dev) continue; mutex_lock(&mhi_chan->lock); /* Skip if the channel is not currently running */ tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg); if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) { mutex_unlock(&mhi_chan->lock); continue; } dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n"); /* Set channel state to SUSPENDED */ mhi_chan->state = MHI_CH_STATE_SUSPENDED; tmp &= ~CHAN_CTX_CHSTATE_MASK; tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED); mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp); mutex_unlock(&mhi_chan->lock); } } void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl) { struct mhi_ep_chan *mhi_chan; u32 tmp; int i; for (i = 0; i < mhi_cntrl->max_chan; i++) { mhi_chan = &mhi_cntrl->mhi_chan[i]; if (!mhi_chan->mhi_dev) continue; mutex_lock(&mhi_chan->lock); /* Skip if the channel is not currently suspended */ tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg); if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) { mutex_unlock(&mhi_chan->lock); continue; } dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n"); /* Set channel state to RUNNING */ mhi_chan->state = MHI_CH_STATE_RUNNING; tmp &= ~CHAN_CTX_CHSTATE_MASK; tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING); mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp); mutex_unlock(&mhi_chan->lock); } } static void mhi_ep_release_device(struct device *dev) { struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) mhi_dev->mhi_cntrl->mhi_dev = NULL; /* * We need to set the mhi_chan->mhi_dev to NULL here since the MHI * devices for the channels will only get created in mhi_ep_create_device() * if the mhi_dev associated with it is NULL. */ if (mhi_dev->ul_chan) mhi_dev->ul_chan->mhi_dev = NULL; if (mhi_dev->dl_chan) mhi_dev->dl_chan->mhi_dev = NULL; kfree(mhi_dev); } static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_device_type dev_type) { struct mhi_ep_device *mhi_dev; struct device *dev; mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL); if (!mhi_dev) return ERR_PTR(-ENOMEM); dev = &mhi_dev->dev; device_initialize(dev); dev->bus = &mhi_ep_bus_type; dev->release = mhi_ep_release_device; /* Controller device is always allocated first */ if (dev_type == MHI_DEVICE_CONTROLLER) /* for MHI controller device, parent is the bus device (e.g. PCI EPF) */ dev->parent = mhi_cntrl->cntrl_dev; else /* for MHI client devices, parent is the MHI controller device */ dev->parent = &mhi_cntrl->mhi_dev->dev; mhi_dev->mhi_cntrl = mhi_cntrl; mhi_dev->dev_type = dev_type; return mhi_dev; } /* * MHI channels are always defined in pairs with UL as the even numbered * channel and DL as odd numbered one. This function gets UL channel (primary) * as the ch_id and always looks after the next entry in channel list for * the corresponding DL channel (secondary). */ static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id) { struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id]; struct device *dev = mhi_cntrl->cntrl_dev; struct mhi_ep_device *mhi_dev; int ret; /* Check if the channel name is same for both UL and DL */ if (strcmp(mhi_chan->name, mhi_chan[1].name)) { dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n", mhi_chan->name, mhi_chan[1].name); return -EINVAL; } mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER); if (IS_ERR(mhi_dev)) return PTR_ERR(mhi_dev); /* Configure primary channel */ mhi_dev->ul_chan = mhi_chan; get_device(&mhi_dev->dev); mhi_chan->mhi_dev = mhi_dev; /* Configure secondary channel as well */ mhi_chan++; mhi_dev->dl_chan = mhi_chan; get_device(&mhi_dev->dev); mhi_chan->mhi_dev = mhi_dev; /* Channel name is same for both UL and DL */ mhi_dev->name = mhi_chan->name; ret = dev_set_name(&mhi_dev->dev, "%s_%s", dev_name(&mhi_cntrl->mhi_dev->dev), mhi_dev->name); if (ret) { put_device(&mhi_dev->dev); return ret; } ret = device_add(&mhi_dev->dev); if (ret) put_device(&mhi_dev->dev); return ret; } static int mhi_ep_destroy_device(struct device *dev, void *data) { struct mhi_ep_device *mhi_dev; struct mhi_ep_cntrl *mhi_cntrl; struct mhi_ep_chan *ul_chan, *dl_chan; if (dev->bus != &mhi_ep_bus_type) return 0; mhi_dev = to_mhi_ep_device(dev); mhi_cntrl = mhi_dev->mhi_cntrl; /* Only destroy devices created for channels */ if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) return 0; ul_chan = mhi_dev->ul_chan; dl_chan = mhi_dev->dl_chan; if (ul_chan) put_device(&ul_chan->mhi_dev->dev); if (dl_chan) put_device(&dl_chan->mhi_dev->dev); dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n", mhi_dev->name); /* Notify the client and remove the device from MHI bus */ device_del(dev); put_device(dev); return 0; } static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl, const struct mhi_ep_cntrl_config *config) { const struct mhi_ep_channel_config *ch_cfg; struct device *dev = mhi_cntrl->cntrl_dev; u32 chan, i; int ret = -EINVAL; mhi_cntrl->max_chan = config->max_channels; /* * Allocate max_channels supported by the MHI endpoint and populate * only the defined channels */ mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan), GFP_KERNEL); if (!mhi_cntrl->mhi_chan) return -ENOMEM; for (i = 0; i < config->num_channels; i++) { struct mhi_ep_chan *mhi_chan; ch_cfg = &config->ch_cfg[i]; chan = ch_cfg->num; if (chan >= mhi_cntrl->max_chan) { dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n", chan, mhi_cntrl->max_chan); goto error_chan_cfg; } /* Bi-directional and direction less channels are not supported */ if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) { dev_err(dev, "Invalid direction (%u) for channel (%u)\n", ch_cfg->dir, chan); goto error_chan_cfg; } mhi_chan = &mhi_cntrl->mhi_chan[chan]; mhi_chan->name = ch_cfg->name; mhi_chan->chan = chan; mhi_chan->dir = ch_cfg->dir; mutex_init(&mhi_chan->lock); } return 0; error_chan_cfg: kfree(mhi_cntrl->mhi_chan); return ret; } /* * Allocate channel and command rings here. Event rings will be allocated * in mhi_ep_power_up() as the config comes from the host. */ int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl, const struct mhi_ep_cntrl_config *config) { struct mhi_ep_device *mhi_dev; int ret; if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq) return -EINVAL; if (!mhi_cntrl->read_sync || !mhi_cntrl->write_sync || !mhi_cntrl->read_async || !mhi_cntrl->write_async) return -EINVAL; ret = mhi_ep_chan_init(mhi_cntrl, config); if (ret) return ret; mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL); if (!mhi_cntrl->mhi_cmd) { ret = -ENOMEM; goto err_free_ch; } mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el", sizeof(struct mhi_ring_element), 0, SLAB_CACHE_DMA, NULL); if (!mhi_cntrl->ev_ring_el_cache) { ret = -ENOMEM; goto err_free_cmd; } mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0, SLAB_CACHE_DMA, NULL); if (!mhi_cntrl->tre_buf_cache) { ret = -ENOMEM; goto err_destroy_ev_ring_el_cache; } mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item", sizeof(struct mhi_ep_ring_item), 0, 0, NULL); if (!mhi_cntrl->ring_item_cache) { ret = -ENOMEM; goto err_destroy_tre_buf_cache; } INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker); INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker); INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker); INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker); mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0); if (!mhi_cntrl->wq) { ret = -ENOMEM; goto err_destroy_ring_item_cache; } INIT_LIST_HEAD(&mhi_cntrl->st_transition_list); INIT_LIST_HEAD(&mhi_cntrl->ch_db_list); spin_lock_init(&mhi_cntrl->list_lock); mutex_init(&mhi_cntrl->state_lock); mutex_init(&mhi_cntrl->event_lock); /* Set MHI version and AMSS EE before enumeration */ mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version); mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS); /* Set controller index */ ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL); if (ret < 0) goto err_destroy_wq; mhi_cntrl->index = ret; irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN); ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH, "doorbell_irq", mhi_cntrl); if (ret) { dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n"); goto err_ida_free; } /* Allocate the controller device */ mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER); if (IS_ERR(mhi_dev)) { dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n"); ret = PTR_ERR(mhi_dev); goto err_free_irq; } ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index); if (ret) goto err_put_dev; mhi_dev->name = dev_name(&mhi_dev->dev); mhi_cntrl->mhi_dev = mhi_dev; ret = device_add(&mhi_dev->dev); if (ret) goto err_put_dev; dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n"); return 0; err_put_dev: put_device(&mhi_dev->dev); err_free_irq: free_irq(mhi_cntrl->irq, mhi_cntrl); err_ida_free: ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index); err_destroy_wq: destroy_workqueue(mhi_cntrl->wq); err_destroy_ring_item_cache: kmem_cache_destroy(mhi_cntrl->ring_item_cache); err_destroy_ev_ring_el_cache: kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache); err_destroy_tre_buf_cache: kmem_cache_destroy(mhi_cntrl->tre_buf_cache); err_free_cmd: kfree(mhi_cntrl->mhi_cmd); err_free_ch: kfree(mhi_cntrl->mhi_chan); return ret; } EXPORT_SYMBOL_GPL(mhi_ep_register_controller); /* * It is expected that the controller drivers will power down the MHI EP stack * using "mhi_ep_power_down()" before calling this function to unregister themselves. */ void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl) { struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev; destroy_workqueue(mhi_cntrl->wq); free_irq(mhi_cntrl->irq, mhi_cntrl); kmem_cache_destroy(mhi_cntrl->tre_buf_cache); kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache); kmem_cache_destroy(mhi_cntrl->ring_item_cache); kfree(mhi_cntrl->mhi_cmd); kfree(mhi_cntrl->mhi_chan); device_del(&mhi_dev->dev); put_device(&mhi_dev->dev); ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index); } EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller); static int mhi_ep_driver_probe(struct device *dev) { struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver); struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan; struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan; ul_chan->xfer_cb = mhi_drv->ul_xfer_cb; dl_chan->xfer_cb = mhi_drv->dl_xfer_cb; return mhi_drv->probe(mhi_dev, mhi_dev->id); } static int mhi_ep_driver_remove(struct device *dev) { struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver); struct mhi_result result = {}; struct mhi_ep_chan *mhi_chan; int dir; /* Skip if it is a controller device */ if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) return 0; /* Disconnect the channels associated with the driver */ for (dir = 0; dir < 2; dir++) { mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; if (!mhi_chan) continue; mutex_lock(&mhi_chan->lock); /* Send channel disconnect status to the client driver */ if (mhi_chan->xfer_cb) { result.transaction_status = -ENOTCONN; result.bytes_xferd = 0; mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); } mhi_chan->state = MHI_CH_STATE_DISABLED; mhi_chan->xfer_cb = NULL; mutex_unlock(&mhi_chan->lock); } /* Remove the client driver now */ mhi_drv->remove(mhi_dev); return 0; } int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner) { struct device_driver *driver = &mhi_drv->driver; if (!mhi_drv->probe || !mhi_drv->remove) return -EINVAL; /* Client drivers should have callbacks defined for both channels */ if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb) return -EINVAL; driver->bus = &mhi_ep_bus_type; driver->owner = owner; driver->probe = mhi_ep_driver_probe; driver->remove = mhi_ep_driver_remove; return driver_register(driver); } EXPORT_SYMBOL_GPL(__mhi_ep_driver_register); void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv) { driver_unregister(&mhi_drv->driver); } EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister); static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT, mhi_dev->name); } static int mhi_ep_match(struct device *dev, struct device_driver *drv) { struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv); const struct mhi_device_id *id; /* * If the device is a controller type then there is no client driver * associated with it */ if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) return 0; for (id = mhi_drv->id_table; id->chan[0]; id++) if (!strcmp(mhi_dev->name, id->chan)) { mhi_dev->id = id; return 1; } return 0; }; struct bus_type mhi_ep_bus_type = { .name = "mhi_ep", .dev_name = "mhi_ep", .match = mhi_ep_match, .uevent = mhi_ep_uevent, }; static int __init mhi_ep_init(void) { return bus_register(&mhi_ep_bus_type); } static void __exit mhi_ep_exit(void) { bus_unregister(&mhi_ep_bus_type); } postcore_initcall(mhi_ep_init); module_exit(mhi_ep_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MHI Bus Endpoint stack"); MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1