Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Lechner | 3318 | 98.75% | 2 | 20.00% |
Maxime Ripard | 24 | 0.71% | 2 | 20.00% |
Rob Herring | 7 | 0.21% | 1 | 10.00% |
Kees Cook | 4 | 0.12% | 1 | 10.00% |
Yang Yingliang | 4 | 0.12% | 1 | 10.00% |
Ding Xiang | 1 | 0.03% | 1 | 10.00% |
Krzysztof Kozlowski | 1 | 0.03% | 1 | 10.00% |
Dan Carpenter | 1 | 0.03% | 1 | 10.00% |
Total | 3360 | 10 |
// SPDX-License-Identifier: GPL-2.0 /* * Clock driver for DA8xx/AM17xx/AM18xx/OMAP-L13x CFGCHIP * * Copyright (C) 2018 David Lechner <david@lechnology.com> */ #include <linux/clk-provider.h> #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/init.h> #include <linux/mfd/da8xx-cfgchip.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/platform_data/clk-da8xx-cfgchip.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/slab.h> /* --- Gate clocks --- */ #define DA8XX_GATE_CLOCK_IS_DIV4P5 BIT(1) struct da8xx_cfgchip_gate_clk_info { const char *name; u32 cfgchip; u32 bit; u32 flags; }; struct da8xx_cfgchip_gate_clk { struct clk_hw hw; struct regmap *regmap; u32 reg; u32 mask; }; #define to_da8xx_cfgchip_gate_clk(_hw) \ container_of((_hw), struct da8xx_cfgchip_gate_clk, hw) static int da8xx_cfgchip_gate_clk_enable(struct clk_hw *hw) { struct da8xx_cfgchip_gate_clk *clk = to_da8xx_cfgchip_gate_clk(hw); return regmap_write_bits(clk->regmap, clk->reg, clk->mask, clk->mask); } static void da8xx_cfgchip_gate_clk_disable(struct clk_hw *hw) { struct da8xx_cfgchip_gate_clk *clk = to_da8xx_cfgchip_gate_clk(hw); regmap_write_bits(clk->regmap, clk->reg, clk->mask, 0); } static int da8xx_cfgchip_gate_clk_is_enabled(struct clk_hw *hw) { struct da8xx_cfgchip_gate_clk *clk = to_da8xx_cfgchip_gate_clk(hw); unsigned int val; regmap_read(clk->regmap, clk->reg, &val); return !!(val & clk->mask); } static unsigned long da8xx_cfgchip_div4p5_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { /* this clock divides by 4.5 */ return parent_rate * 2 / 9; } static const struct clk_ops da8xx_cfgchip_gate_clk_ops = { .enable = da8xx_cfgchip_gate_clk_enable, .disable = da8xx_cfgchip_gate_clk_disable, .is_enabled = da8xx_cfgchip_gate_clk_is_enabled, }; static const struct clk_ops da8xx_cfgchip_div4p5_clk_ops = { .enable = da8xx_cfgchip_gate_clk_enable, .disable = da8xx_cfgchip_gate_clk_disable, .is_enabled = da8xx_cfgchip_gate_clk_is_enabled, .recalc_rate = da8xx_cfgchip_div4p5_recalc_rate, }; static struct da8xx_cfgchip_gate_clk * __init da8xx_cfgchip_gate_clk_register(struct device *dev, const struct da8xx_cfgchip_gate_clk_info *info, struct regmap *regmap) { struct clk *parent; const char *parent_name; struct da8xx_cfgchip_gate_clk *gate; struct clk_init_data init; int ret; parent = devm_clk_get(dev, NULL); if (IS_ERR(parent)) return ERR_CAST(parent); parent_name = __clk_get_name(parent); gate = devm_kzalloc(dev, sizeof(*gate), GFP_KERNEL); if (!gate) return ERR_PTR(-ENOMEM); init.name = info->name; if (info->flags & DA8XX_GATE_CLOCK_IS_DIV4P5) init.ops = &da8xx_cfgchip_div4p5_clk_ops; else init.ops = &da8xx_cfgchip_gate_clk_ops; init.parent_names = &parent_name; init.num_parents = 1; init.flags = 0; gate->hw.init = &init; gate->regmap = regmap; gate->reg = info->cfgchip; gate->mask = info->bit; ret = devm_clk_hw_register(dev, &gate->hw); if (ret < 0) return ERR_PTR(ret); return gate; } static const struct da8xx_cfgchip_gate_clk_info da8xx_tbclksync_info __initconst = { .name = "ehrpwm_tbclk", .cfgchip = CFGCHIP(1), .bit = CFGCHIP1_TBCLKSYNC, }; static int __init da8xx_cfgchip_register_tbclk(struct device *dev, struct regmap *regmap) { struct da8xx_cfgchip_gate_clk *gate; gate = da8xx_cfgchip_gate_clk_register(dev, &da8xx_tbclksync_info, regmap); if (IS_ERR(gate)) return PTR_ERR(gate); clk_hw_register_clkdev(&gate->hw, "tbclk", "ehrpwm.0"); clk_hw_register_clkdev(&gate->hw, "tbclk", "ehrpwm.1"); return 0; } static const struct da8xx_cfgchip_gate_clk_info da8xx_div4p5ena_info __initconst = { .name = "div4.5", .cfgchip = CFGCHIP(3), .bit = CFGCHIP3_DIV45PENA, .flags = DA8XX_GATE_CLOCK_IS_DIV4P5, }; static int __init da8xx_cfgchip_register_div4p5(struct device *dev, struct regmap *regmap) { struct da8xx_cfgchip_gate_clk *gate; gate = da8xx_cfgchip_gate_clk_register(dev, &da8xx_div4p5ena_info, regmap); return PTR_ERR_OR_ZERO(gate); } static int __init of_da8xx_cfgchip_gate_clk_init(struct device *dev, const struct da8xx_cfgchip_gate_clk_info *info, struct regmap *regmap) { struct da8xx_cfgchip_gate_clk *gate; gate = da8xx_cfgchip_gate_clk_register(dev, info, regmap); if (IS_ERR(gate)) return PTR_ERR(gate); return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, gate); } static int __init of_da8xx_tbclksync_init(struct device *dev, struct regmap *regmap) { return of_da8xx_cfgchip_gate_clk_init(dev, &da8xx_tbclksync_info, regmap); } static int __init of_da8xx_div4p5ena_init(struct device *dev, struct regmap *regmap) { return of_da8xx_cfgchip_gate_clk_init(dev, &da8xx_div4p5ena_info, regmap); } /* --- MUX clocks --- */ struct da8xx_cfgchip_mux_clk_info { const char *name; const char *parent0; const char *parent1; u32 cfgchip; u32 bit; }; struct da8xx_cfgchip_mux_clk { struct clk_hw hw; struct regmap *regmap; u32 reg; u32 mask; }; #define to_da8xx_cfgchip_mux_clk(_hw) \ container_of((_hw), struct da8xx_cfgchip_mux_clk, hw) static int da8xx_cfgchip_mux_clk_set_parent(struct clk_hw *hw, u8 index) { struct da8xx_cfgchip_mux_clk *clk = to_da8xx_cfgchip_mux_clk(hw); unsigned int val = index ? clk->mask : 0; return regmap_write_bits(clk->regmap, clk->reg, clk->mask, val); } static u8 da8xx_cfgchip_mux_clk_get_parent(struct clk_hw *hw) { struct da8xx_cfgchip_mux_clk *clk = to_da8xx_cfgchip_mux_clk(hw); unsigned int val; regmap_read(clk->regmap, clk->reg, &val); return (val & clk->mask) ? 1 : 0; } static const struct clk_ops da8xx_cfgchip_mux_clk_ops = { .determine_rate = clk_hw_determine_rate_no_reparent, .set_parent = da8xx_cfgchip_mux_clk_set_parent, .get_parent = da8xx_cfgchip_mux_clk_get_parent, }; static struct da8xx_cfgchip_mux_clk * __init da8xx_cfgchip_mux_clk_register(struct device *dev, const struct da8xx_cfgchip_mux_clk_info *info, struct regmap *regmap) { const char * const parent_names[] = { info->parent0, info->parent1 }; struct da8xx_cfgchip_mux_clk *mux; struct clk_init_data init; int ret; mux = devm_kzalloc(dev, sizeof(*mux), GFP_KERNEL); if (!mux) return ERR_PTR(-ENOMEM); init.name = info->name; init.ops = &da8xx_cfgchip_mux_clk_ops; init.parent_names = parent_names; init.num_parents = 2; init.flags = 0; mux->hw.init = &init; mux->regmap = regmap; mux->reg = info->cfgchip; mux->mask = info->bit; ret = devm_clk_hw_register(dev, &mux->hw); if (ret < 0) return ERR_PTR(ret); return mux; } static const struct da8xx_cfgchip_mux_clk_info da850_async1_info __initconst = { .name = "async1", .parent0 = "pll0_sysclk3", .parent1 = "div4.5", .cfgchip = CFGCHIP(3), .bit = CFGCHIP3_EMA_CLKSRC, }; static int __init da8xx_cfgchip_register_async1(struct device *dev, struct regmap *regmap) { struct da8xx_cfgchip_mux_clk *mux; mux = da8xx_cfgchip_mux_clk_register(dev, &da850_async1_info, regmap); if (IS_ERR(mux)) return PTR_ERR(mux); clk_hw_register_clkdev(&mux->hw, "async1", "da850-psc0"); return 0; } static const struct da8xx_cfgchip_mux_clk_info da850_async3_info __initconst = { .name = "async3", .parent0 = "pll0_sysclk2", .parent1 = "pll1_sysclk2", .cfgchip = CFGCHIP(3), .bit = CFGCHIP3_ASYNC3_CLKSRC, }; static int __init da850_cfgchip_register_async3(struct device *dev, struct regmap *regmap) { struct da8xx_cfgchip_mux_clk *mux; struct clk_hw *parent; mux = da8xx_cfgchip_mux_clk_register(dev, &da850_async3_info, regmap); if (IS_ERR(mux)) return PTR_ERR(mux); clk_hw_register_clkdev(&mux->hw, "async3", "da850-psc1"); /* pll1_sysclk2 is not affected by CPU scaling, so use it for async3 */ parent = clk_hw_get_parent_by_index(&mux->hw, 1); if (parent) clk_set_parent(mux->hw.clk, parent->clk); else dev_warn(dev, "Failed to find async3 parent clock\n"); return 0; } static int __init of_da8xx_cfgchip_init_mux_clock(struct device *dev, const struct da8xx_cfgchip_mux_clk_info *info, struct regmap *regmap) { struct da8xx_cfgchip_mux_clk *mux; mux = da8xx_cfgchip_mux_clk_register(dev, info, regmap); if (IS_ERR(mux)) return PTR_ERR(mux); return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, &mux->hw); } static int __init of_da850_async1_init(struct device *dev, struct regmap *regmap) { return of_da8xx_cfgchip_init_mux_clock(dev, &da850_async1_info, regmap); } static int __init of_da850_async3_init(struct device *dev, struct regmap *regmap) { return of_da8xx_cfgchip_init_mux_clock(dev, &da850_async3_info, regmap); } /* --- USB 2.0 PHY clock --- */ struct da8xx_usb0_clk48 { struct clk_hw hw; struct clk *fck; struct regmap *regmap; }; #define to_da8xx_usb0_clk48(_hw) \ container_of((_hw), struct da8xx_usb0_clk48, hw) static int da8xx_usb0_clk48_prepare(struct clk_hw *hw) { struct da8xx_usb0_clk48 *usb0 = to_da8xx_usb0_clk48(hw); /* The USB 2.0 PSC clock is only needed temporarily during the USB 2.0 * PHY clock enable, but since clk_prepare() can't be called in an * atomic context (i.e. in clk_enable()), we have to prepare it here. */ return clk_prepare(usb0->fck); } static void da8xx_usb0_clk48_unprepare(struct clk_hw *hw) { struct da8xx_usb0_clk48 *usb0 = to_da8xx_usb0_clk48(hw); clk_unprepare(usb0->fck); } static int da8xx_usb0_clk48_enable(struct clk_hw *hw) { struct da8xx_usb0_clk48 *usb0 = to_da8xx_usb0_clk48(hw); unsigned int mask, val; int ret; /* Locking the USB 2.O PLL requires that the USB 2.O PSC is enabled * temporaily. It can be turned back off once the PLL is locked. */ clk_enable(usb0->fck); /* Turn on the USB 2.0 PHY, but just the PLL, and not OTG. The USB 1.1 * PHY may use the USB 2.0 PLL clock without USB 2.0 OTG being used. */ mask = CFGCHIP2_RESET | CFGCHIP2_PHYPWRDN | CFGCHIP2_PHY_PLLON; val = CFGCHIP2_PHY_PLLON; regmap_write_bits(usb0->regmap, CFGCHIP(2), mask, val); ret = regmap_read_poll_timeout(usb0->regmap, CFGCHIP(2), val, val & CFGCHIP2_PHYCLKGD, 0, 500000); clk_disable(usb0->fck); return ret; } static void da8xx_usb0_clk48_disable(struct clk_hw *hw) { struct da8xx_usb0_clk48 *usb0 = to_da8xx_usb0_clk48(hw); unsigned int val; val = CFGCHIP2_PHYPWRDN; regmap_write_bits(usb0->regmap, CFGCHIP(2), val, val); } static int da8xx_usb0_clk48_is_enabled(struct clk_hw *hw) { struct da8xx_usb0_clk48 *usb0 = to_da8xx_usb0_clk48(hw); unsigned int val; regmap_read(usb0->regmap, CFGCHIP(2), &val); return !!(val & CFGCHIP2_PHYCLKGD); } static unsigned long da8xx_usb0_clk48_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct da8xx_usb0_clk48 *usb0 = to_da8xx_usb0_clk48(hw); unsigned int mask, val; /* The parent clock rate must be one of the following */ mask = CFGCHIP2_REFFREQ_MASK; switch (parent_rate) { case 12000000: val = CFGCHIP2_REFFREQ_12MHZ; break; case 13000000: val = CFGCHIP2_REFFREQ_13MHZ; break; case 19200000: val = CFGCHIP2_REFFREQ_19_2MHZ; break; case 20000000: val = CFGCHIP2_REFFREQ_20MHZ; break; case 24000000: val = CFGCHIP2_REFFREQ_24MHZ; break; case 26000000: val = CFGCHIP2_REFFREQ_26MHZ; break; case 38400000: val = CFGCHIP2_REFFREQ_38_4MHZ; break; case 40000000: val = CFGCHIP2_REFFREQ_40MHZ; break; case 48000000: val = CFGCHIP2_REFFREQ_48MHZ; break; default: return 0; } regmap_write_bits(usb0->regmap, CFGCHIP(2), mask, val); /* USB 2.0 PLL always supplies 48MHz */ return 48000000; } static int da8xx_usb0_clk48_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { req->rate = 48000000; return 0; } static int da8xx_usb0_clk48_set_parent(struct clk_hw *hw, u8 index) { struct da8xx_usb0_clk48 *usb0 = to_da8xx_usb0_clk48(hw); return regmap_write_bits(usb0->regmap, CFGCHIP(2), CFGCHIP2_USB2PHYCLKMUX, index ? CFGCHIP2_USB2PHYCLKMUX : 0); } static u8 da8xx_usb0_clk48_get_parent(struct clk_hw *hw) { struct da8xx_usb0_clk48 *usb0 = to_da8xx_usb0_clk48(hw); unsigned int val; regmap_read(usb0->regmap, CFGCHIP(2), &val); return (val & CFGCHIP2_USB2PHYCLKMUX) ? 1 : 0; } static const struct clk_ops da8xx_usb0_clk48_ops = { .prepare = da8xx_usb0_clk48_prepare, .unprepare = da8xx_usb0_clk48_unprepare, .enable = da8xx_usb0_clk48_enable, .disable = da8xx_usb0_clk48_disable, .is_enabled = da8xx_usb0_clk48_is_enabled, .recalc_rate = da8xx_usb0_clk48_recalc_rate, .determine_rate = da8xx_usb0_clk48_determine_rate, .set_parent = da8xx_usb0_clk48_set_parent, .get_parent = da8xx_usb0_clk48_get_parent, }; static struct da8xx_usb0_clk48 * da8xx_cfgchip_register_usb0_clk48(struct device *dev, struct regmap *regmap) { const char * const parent_names[] = { "usb_refclkin", "pll0_auxclk" }; struct clk *fck_clk; struct da8xx_usb0_clk48 *usb0; struct clk_init_data init; int ret; fck_clk = devm_clk_get(dev, "fck"); if (IS_ERR(fck_clk)) { dev_err_probe(dev, PTR_ERR(fck_clk), "Missing fck clock\n"); return ERR_CAST(fck_clk); } usb0 = devm_kzalloc(dev, sizeof(*usb0), GFP_KERNEL); if (!usb0) return ERR_PTR(-ENOMEM); init.name = "usb0_clk48"; init.ops = &da8xx_usb0_clk48_ops; init.parent_names = parent_names; init.num_parents = 2; usb0->hw.init = &init; usb0->fck = fck_clk; usb0->regmap = regmap; ret = devm_clk_hw_register(dev, &usb0->hw); if (ret < 0) return ERR_PTR(ret); return usb0; } /* --- USB 1.1 PHY clock --- */ struct da8xx_usb1_clk48 { struct clk_hw hw; struct regmap *regmap; }; #define to_da8xx_usb1_clk48(_hw) \ container_of((_hw), struct da8xx_usb1_clk48, hw) static int da8xx_usb1_clk48_set_parent(struct clk_hw *hw, u8 index) { struct da8xx_usb1_clk48 *usb1 = to_da8xx_usb1_clk48(hw); return regmap_write_bits(usb1->regmap, CFGCHIP(2), CFGCHIP2_USB1PHYCLKMUX, index ? CFGCHIP2_USB1PHYCLKMUX : 0); } static u8 da8xx_usb1_clk48_get_parent(struct clk_hw *hw) { struct da8xx_usb1_clk48 *usb1 = to_da8xx_usb1_clk48(hw); unsigned int val; regmap_read(usb1->regmap, CFGCHIP(2), &val); return (val & CFGCHIP2_USB1PHYCLKMUX) ? 1 : 0; } static const struct clk_ops da8xx_usb1_clk48_ops = { .determine_rate = clk_hw_determine_rate_no_reparent, .set_parent = da8xx_usb1_clk48_set_parent, .get_parent = da8xx_usb1_clk48_get_parent, }; /** * da8xx_cfgchip_register_usb1_clk48 - Register a new USB 1.1 PHY clock * @dev: The device * @regmap: The CFGCHIP regmap */ static struct da8xx_usb1_clk48 * da8xx_cfgchip_register_usb1_clk48(struct device *dev, struct regmap *regmap) { const char * const parent_names[] = { "usb0_clk48", "usb_refclkin" }; struct da8xx_usb1_clk48 *usb1; struct clk_init_data init; int ret; usb1 = devm_kzalloc(dev, sizeof(*usb1), GFP_KERNEL); if (!usb1) return ERR_PTR(-ENOMEM); init.name = "usb1_clk48"; init.ops = &da8xx_usb1_clk48_ops; init.parent_names = parent_names; init.num_parents = 2; usb1->hw.init = &init; usb1->regmap = regmap; ret = devm_clk_hw_register(dev, &usb1->hw); if (ret < 0) return ERR_PTR(ret); return usb1; } static int da8xx_cfgchip_register_usb_phy_clk(struct device *dev, struct regmap *regmap) { struct da8xx_usb0_clk48 *usb0; struct da8xx_usb1_clk48 *usb1; struct clk_hw *parent; usb0 = da8xx_cfgchip_register_usb0_clk48(dev, regmap); if (IS_ERR(usb0)) return PTR_ERR(usb0); /* * All existing boards use pll0_auxclk as the parent and new boards * should use device tree, so hard-coding the value (1) here. */ parent = clk_hw_get_parent_by_index(&usb0->hw, 1); if (parent) clk_set_parent(usb0->hw.clk, parent->clk); else dev_warn(dev, "Failed to find usb0 parent clock\n"); usb1 = da8xx_cfgchip_register_usb1_clk48(dev, regmap); if (IS_ERR(usb1)) return PTR_ERR(usb1); /* * All existing boards use usb0_clk48 as the parent and new boards * should use device tree, so hard-coding the value (0) here. */ parent = clk_hw_get_parent_by_index(&usb1->hw, 0); if (parent) clk_set_parent(usb1->hw.clk, parent->clk); else dev_warn(dev, "Failed to find usb1 parent clock\n"); clk_hw_register_clkdev(&usb0->hw, "usb0_clk48", "da8xx-usb-phy"); clk_hw_register_clkdev(&usb1->hw, "usb1_clk48", "da8xx-usb-phy"); return 0; } static int of_da8xx_usb_phy_clk_init(struct device *dev, struct regmap *regmap) { struct clk_hw_onecell_data *clk_data; struct da8xx_usb0_clk48 *usb0; struct da8xx_usb1_clk48 *usb1; clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, 2), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->num = 2; usb0 = da8xx_cfgchip_register_usb0_clk48(dev, regmap); if (IS_ERR(usb0)) { if (PTR_ERR(usb0) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_warn(dev, "Failed to register usb0_clk48 (%ld)\n", PTR_ERR(usb0)); clk_data->hws[0] = ERR_PTR(-ENOENT); } else { clk_data->hws[0] = &usb0->hw; } usb1 = da8xx_cfgchip_register_usb1_clk48(dev, regmap); if (IS_ERR(usb1)) { if (PTR_ERR(usb1) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_warn(dev, "Failed to register usb1_clk48 (%ld)\n", PTR_ERR(usb1)); clk_data->hws[1] = ERR_PTR(-ENOENT); } else { clk_data->hws[1] = &usb1->hw; } return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data); } /* --- platform device --- */ static const struct of_device_id da8xx_cfgchip_of_match[] = { { .compatible = "ti,da830-tbclksync", .data = of_da8xx_tbclksync_init, }, { .compatible = "ti,da830-div4p5ena", .data = of_da8xx_div4p5ena_init, }, { .compatible = "ti,da850-async1-clksrc", .data = of_da850_async1_init, }, { .compatible = "ti,da850-async3-clksrc", .data = of_da850_async3_init, }, { .compatible = "ti,da830-usb-phy-clocks", .data = of_da8xx_usb_phy_clk_init, }, { } }; static const struct platform_device_id da8xx_cfgchip_id_table[] = { { .name = "da830-tbclksync", .driver_data = (kernel_ulong_t)da8xx_cfgchip_register_tbclk, }, { .name = "da830-div4p5ena", .driver_data = (kernel_ulong_t)da8xx_cfgchip_register_div4p5, }, { .name = "da850-async1-clksrc", .driver_data = (kernel_ulong_t)da8xx_cfgchip_register_async1, }, { .name = "da850-async3-clksrc", .driver_data = (kernel_ulong_t)da850_cfgchip_register_async3, }, { .name = "da830-usb-phy-clks", .driver_data = (kernel_ulong_t)da8xx_cfgchip_register_usb_phy_clk, }, { } }; typedef int (*da8xx_cfgchip_init)(struct device *dev, struct regmap *regmap); static int da8xx_cfgchip_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct da8xx_cfgchip_clk_platform_data *pdata = dev->platform_data; da8xx_cfgchip_init clk_init = NULL; struct regmap *regmap = NULL; clk_init = device_get_match_data(dev); if (clk_init) { struct device_node *parent; parent = of_get_parent(dev->of_node); regmap = syscon_node_to_regmap(parent); of_node_put(parent); } else if (pdev->id_entry && pdata) { clk_init = (void *)pdev->id_entry->driver_data; regmap = pdata->cfgchip; } if (!clk_init) { dev_err(dev, "unable to find driver data\n"); return -EINVAL; } if (IS_ERR_OR_NULL(regmap)) { dev_err(dev, "no regmap for CFGCHIP syscon\n"); return regmap ? PTR_ERR(regmap) : -ENOENT; } return clk_init(dev, regmap); } static struct platform_driver da8xx_cfgchip_driver = { .probe = da8xx_cfgchip_probe, .driver = { .name = "da8xx-cfgchip-clk", .of_match_table = da8xx_cfgchip_of_match, }, .id_table = da8xx_cfgchip_id_table, }; static int __init da8xx_cfgchip_driver_init(void) { return platform_driver_register(&da8xx_cfgchip_driver); } /* has to be postcore_initcall because PSC devices depend on the async3 clock */ postcore_initcall(da8xx_cfgchip_driver_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1