Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daire McNamara | 1406 | 65.09% | 1 | 4.76% |
Conor Dooley | 754 | 34.91% | 20 | 95.24% |
Total | 2160 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* * PolarFire SoC MSS/core complex clock control * * Copyright (C) 2020-2022 Microchip Technology Inc. All rights reserved. */ #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/clock/microchip,mpfs-clock.h> #include <soc/microchip/mpfs.h> /* address offset of control registers */ #define REG_MSSPLL_REF_CR 0x08u #define REG_MSSPLL_POSTDIV01_CR 0x10u #define REG_MSSPLL_POSTDIV23_CR 0x14u #define REG_MSSPLL_SSCG_2_CR 0x2Cu #define REG_CLOCK_CONFIG_CR 0x08u #define REG_RTC_CLOCK_CR 0x0Cu #define REG_SUBBLK_CLOCK_CR 0x84u #define REG_SUBBLK_RESET_CR 0x88u #define MSSPLL_FBDIV_SHIFT 0x00u #define MSSPLL_FBDIV_WIDTH 0x0Cu #define MSSPLL_REFDIV_SHIFT 0x08u #define MSSPLL_REFDIV_WIDTH 0x06u #define MSSPLL_POSTDIV02_SHIFT 0x08u #define MSSPLL_POSTDIV13_SHIFT 0x18u #define MSSPLL_POSTDIV_WIDTH 0x07u #define MSSPLL_FIXED_DIV 4u /* * This clock ID is defined here, rather than the binding headers, as it is an * internal clock only, and therefore has no consumers in other peripheral * blocks. */ #define CLK_MSSPLL_INTERNAL 38u struct mpfs_clock_data { struct device *dev; void __iomem *base; void __iomem *msspll_base; struct clk_hw_onecell_data hw_data; }; struct mpfs_msspll_hw_clock { void __iomem *base; struct clk_hw hw; struct clk_init_data init; unsigned int id; u32 reg_offset; u32 shift; u32 width; u32 flags; }; #define to_mpfs_msspll_clk(_hw) container_of(_hw, struct mpfs_msspll_hw_clock, hw) struct mpfs_msspll_out_hw_clock { void __iomem *base; struct clk_divider output; struct clk_init_data init; unsigned int id; u32 reg_offset; }; #define to_mpfs_msspll_out_clk(_hw) container_of(_hw, struct mpfs_msspll_out_hw_clock, hw) struct mpfs_cfg_hw_clock { struct clk_divider cfg; struct clk_init_data init; unsigned int id; u32 reg_offset; }; struct mpfs_periph_hw_clock { struct clk_gate periph; unsigned int id; }; /* * mpfs_clk_lock prevents anything else from writing to the * mpfs clk block while a software locked register is being written. */ static DEFINE_SPINLOCK(mpfs_clk_lock); static const struct clk_parent_data mpfs_ext_ref[] = { { .index = 0 }, }; static const struct clk_div_table mpfs_div_cpu_axi_table[] = { { 0, 1 }, { 1, 2 }, { 2, 4 }, { 3, 8 }, { 0, 0 } }; static const struct clk_div_table mpfs_div_ahb_table[] = { { 1, 2 }, { 2, 4}, { 3, 8 }, { 0, 0 } }; /* * The only two supported reference clock frequencies for the PolarFire SoC are * 100 and 125 MHz, as the rtc reference is required to be 1 MHz. * It therefore only needs to have divider table entries corresponding to * divide by 100 and 125. */ static const struct clk_div_table mpfs_div_rtcref_table[] = { { 100, 100 }, { 125, 125 }, { 0, 0 } }; /* * MSS PLL internal clock */ static unsigned long mpfs_clk_msspll_recalc_rate(struct clk_hw *hw, unsigned long prate) { struct mpfs_msspll_hw_clock *msspll_hw = to_mpfs_msspll_clk(hw); void __iomem *mult_addr = msspll_hw->base + msspll_hw->reg_offset; void __iomem *ref_div_addr = msspll_hw->base + REG_MSSPLL_REF_CR; u32 mult, ref_div; mult = readl_relaxed(mult_addr) >> MSSPLL_FBDIV_SHIFT; mult &= clk_div_mask(MSSPLL_FBDIV_WIDTH); ref_div = readl_relaxed(ref_div_addr) >> MSSPLL_REFDIV_SHIFT; ref_div &= clk_div_mask(MSSPLL_REFDIV_WIDTH); return prate * mult / (ref_div * MSSPLL_FIXED_DIV); } static const struct clk_ops mpfs_clk_msspll_ops = { .recalc_rate = mpfs_clk_msspll_recalc_rate, }; #define CLK_PLL(_id, _name, _parent, _shift, _width, _flags, _offset) { \ .id = _id, \ .flags = _flags, \ .shift = _shift, \ .width = _width, \ .reg_offset = _offset, \ .hw.init = CLK_HW_INIT_PARENTS_DATA(_name, _parent, &mpfs_clk_msspll_ops, 0), \ } static struct mpfs_msspll_hw_clock mpfs_msspll_clks[] = { CLK_PLL(CLK_MSSPLL_INTERNAL, "clk_msspll_internal", mpfs_ext_ref, MSSPLL_FBDIV_SHIFT, MSSPLL_FBDIV_WIDTH, 0, REG_MSSPLL_SSCG_2_CR), }; static int mpfs_clk_register_mssplls(struct device *dev, struct mpfs_msspll_hw_clock *msspll_hws, unsigned int num_clks, struct mpfs_clock_data *data) { unsigned int i; int ret; for (i = 0; i < num_clks; i++) { struct mpfs_msspll_hw_clock *msspll_hw = &msspll_hws[i]; msspll_hw->base = data->msspll_base; ret = devm_clk_hw_register(dev, &msspll_hw->hw); if (ret) return dev_err_probe(dev, ret, "failed to register msspll id: %d\n", CLK_MSSPLL_INTERNAL); data->hw_data.hws[msspll_hw->id] = &msspll_hw->hw; } return 0; } /* * MSS PLL output clocks */ #define CLK_PLL_OUT(_id, _name, _parent, _flags, _shift, _width, _offset) { \ .id = _id, \ .output.shift = _shift, \ .output.width = _width, \ .output.table = NULL, \ .reg_offset = _offset, \ .output.flags = _flags, \ .output.hw.init = CLK_HW_INIT(_name, _parent, &clk_divider_ops, 0), \ .output.lock = &mpfs_clk_lock, \ } static struct mpfs_msspll_out_hw_clock mpfs_msspll_out_clks[] = { CLK_PLL_OUT(CLK_MSSPLL0, "clk_msspll", "clk_msspll_internal", CLK_DIVIDER_ONE_BASED, MSSPLL_POSTDIV02_SHIFT, MSSPLL_POSTDIV_WIDTH, REG_MSSPLL_POSTDIV01_CR), CLK_PLL_OUT(CLK_MSSPLL1, "clk_msspll1", "clk_msspll_internal", CLK_DIVIDER_ONE_BASED, MSSPLL_POSTDIV13_SHIFT, MSSPLL_POSTDIV_WIDTH, REG_MSSPLL_POSTDIV01_CR), CLK_PLL_OUT(CLK_MSSPLL2, "clk_msspll2", "clk_msspll_internal", CLK_DIVIDER_ONE_BASED, MSSPLL_POSTDIV02_SHIFT, MSSPLL_POSTDIV_WIDTH, REG_MSSPLL_POSTDIV23_CR), CLK_PLL_OUT(CLK_MSSPLL3, "clk_msspll3", "clk_msspll_internal", CLK_DIVIDER_ONE_BASED, MSSPLL_POSTDIV13_SHIFT, MSSPLL_POSTDIV_WIDTH, REG_MSSPLL_POSTDIV23_CR), }; static int mpfs_clk_register_msspll_outs(struct device *dev, struct mpfs_msspll_out_hw_clock *msspll_out_hws, unsigned int num_clks, struct mpfs_clock_data *data) { unsigned int i; int ret; for (i = 0; i < num_clks; i++) { struct mpfs_msspll_out_hw_clock *msspll_out_hw = &msspll_out_hws[i]; msspll_out_hw->output.reg = data->msspll_base + msspll_out_hw->reg_offset; ret = devm_clk_hw_register(dev, &msspll_out_hw->output.hw); if (ret) return dev_err_probe(dev, ret, "failed to register msspll out id: %d\n", msspll_out_hw->id); data->hw_data.hws[msspll_out_hw->id] = &msspll_out_hw->output.hw; } return 0; } /* * "CFG" clocks */ #define CLK_CFG(_id, _name, _parent, _shift, _width, _table, _flags, _offset) { \ .id = _id, \ .cfg.shift = _shift, \ .cfg.width = _width, \ .cfg.table = _table, \ .reg_offset = _offset, \ .cfg.flags = _flags, \ .cfg.hw.init = CLK_HW_INIT(_name, _parent, &clk_divider_ops, 0), \ .cfg.lock = &mpfs_clk_lock, \ } #define CLK_CPU_OFFSET 0u #define CLK_AXI_OFFSET 1u #define CLK_AHB_OFFSET 2u #define CLK_RTCREF_OFFSET 3u static struct mpfs_cfg_hw_clock mpfs_cfg_clks[] = { CLK_CFG(CLK_CPU, "clk_cpu", "clk_msspll", 0, 2, mpfs_div_cpu_axi_table, 0, REG_CLOCK_CONFIG_CR), CLK_CFG(CLK_AXI, "clk_axi", "clk_msspll", 2, 2, mpfs_div_cpu_axi_table, 0, REG_CLOCK_CONFIG_CR), CLK_CFG(CLK_AHB, "clk_ahb", "clk_msspll", 4, 2, mpfs_div_ahb_table, 0, REG_CLOCK_CONFIG_CR), { .id = CLK_RTCREF, .cfg.shift = 0, .cfg.width = 12, .cfg.table = mpfs_div_rtcref_table, .reg_offset = REG_RTC_CLOCK_CR, .cfg.flags = CLK_DIVIDER_ONE_BASED, .cfg.hw.init = CLK_HW_INIT_PARENTS_DATA("clk_rtcref", mpfs_ext_ref, &clk_divider_ops, 0), } }; static int mpfs_clk_register_cfgs(struct device *dev, struct mpfs_cfg_hw_clock *cfg_hws, unsigned int num_clks, struct mpfs_clock_data *data) { unsigned int i, id; int ret; for (i = 0; i < num_clks; i++) { struct mpfs_cfg_hw_clock *cfg_hw = &cfg_hws[i]; cfg_hw->cfg.reg = data->base + cfg_hw->reg_offset; ret = devm_clk_hw_register(dev, &cfg_hw->cfg.hw); if (ret) return dev_err_probe(dev, ret, "failed to register clock id: %d\n", cfg_hw->id); id = cfg_hw->id; data->hw_data.hws[id] = &cfg_hw->cfg.hw; } return 0; } /* * peripheral clocks - devices connected to axi or ahb buses. */ #define CLK_PERIPH(_id, _name, _parent, _shift, _flags) { \ .id = _id, \ .periph.bit_idx = _shift, \ .periph.hw.init = CLK_HW_INIT_HW(_name, _parent, &clk_gate_ops, \ _flags), \ .periph.lock = &mpfs_clk_lock, \ } #define PARENT_CLK(PARENT) (&mpfs_cfg_clks[CLK_##PARENT##_OFFSET].cfg.hw) /* * Critical clocks: * - CLK_ENVM: reserved by hart software services (hss) superloop monitor/m mode interrupt * trap handler * - CLK_MMUART0: reserved by the hss * - CLK_DDRC: provides clock to the ddr subsystem * - CLK_RTC: the onboard RTC's AHB bus clock must be kept running as the rtc will stop * if the AHB interface clock is disabled * - CLK_FICx: these provide the processor side clocks to the "FIC" (Fabric InterConnect) * clock domain crossers which provide the interface to the FPGA fabric. Disabling them * causes the FPGA fabric to go into reset. * - CLK_ATHENA: The athena clock is FIC4, which is reserved for the Athena TeraFire. */ static struct mpfs_periph_hw_clock mpfs_periph_clks[] = { CLK_PERIPH(CLK_ENVM, "clk_periph_envm", PARENT_CLK(AHB), 0, CLK_IS_CRITICAL), CLK_PERIPH(CLK_MAC0, "clk_periph_mac0", PARENT_CLK(AHB), 1, 0), CLK_PERIPH(CLK_MAC1, "clk_periph_mac1", PARENT_CLK(AHB), 2, 0), CLK_PERIPH(CLK_MMC, "clk_periph_mmc", PARENT_CLK(AHB), 3, 0), CLK_PERIPH(CLK_TIMER, "clk_periph_timer", PARENT_CLK(RTCREF), 4, 0), CLK_PERIPH(CLK_MMUART0, "clk_periph_mmuart0", PARENT_CLK(AHB), 5, CLK_IS_CRITICAL), CLK_PERIPH(CLK_MMUART1, "clk_periph_mmuart1", PARENT_CLK(AHB), 6, 0), CLK_PERIPH(CLK_MMUART2, "clk_periph_mmuart2", PARENT_CLK(AHB), 7, 0), CLK_PERIPH(CLK_MMUART3, "clk_periph_mmuart3", PARENT_CLK(AHB), 8, 0), CLK_PERIPH(CLK_MMUART4, "clk_periph_mmuart4", PARENT_CLK(AHB), 9, 0), CLK_PERIPH(CLK_SPI0, "clk_periph_spi0", PARENT_CLK(AHB), 10, 0), CLK_PERIPH(CLK_SPI1, "clk_periph_spi1", PARENT_CLK(AHB), 11, 0), CLK_PERIPH(CLK_I2C0, "clk_periph_i2c0", PARENT_CLK(AHB), 12, 0), CLK_PERIPH(CLK_I2C1, "clk_periph_i2c1", PARENT_CLK(AHB), 13, 0), CLK_PERIPH(CLK_CAN0, "clk_periph_can0", PARENT_CLK(AHB), 14, 0), CLK_PERIPH(CLK_CAN1, "clk_periph_can1", PARENT_CLK(AHB), 15, 0), CLK_PERIPH(CLK_USB, "clk_periph_usb", PARENT_CLK(AHB), 16, 0), CLK_PERIPH(CLK_RTC, "clk_periph_rtc", PARENT_CLK(AHB), 18, CLK_IS_CRITICAL), CLK_PERIPH(CLK_QSPI, "clk_periph_qspi", PARENT_CLK(AHB), 19, 0), CLK_PERIPH(CLK_GPIO0, "clk_periph_gpio0", PARENT_CLK(AHB), 20, 0), CLK_PERIPH(CLK_GPIO1, "clk_periph_gpio1", PARENT_CLK(AHB), 21, 0), CLK_PERIPH(CLK_GPIO2, "clk_periph_gpio2", PARENT_CLK(AHB), 22, 0), CLK_PERIPH(CLK_DDRC, "clk_periph_ddrc", PARENT_CLK(AHB), 23, CLK_IS_CRITICAL), CLK_PERIPH(CLK_FIC0, "clk_periph_fic0", PARENT_CLK(AXI), 24, CLK_IS_CRITICAL), CLK_PERIPH(CLK_FIC1, "clk_periph_fic1", PARENT_CLK(AXI), 25, CLK_IS_CRITICAL), CLK_PERIPH(CLK_FIC2, "clk_periph_fic2", PARENT_CLK(AXI), 26, CLK_IS_CRITICAL), CLK_PERIPH(CLK_FIC3, "clk_periph_fic3", PARENT_CLK(AXI), 27, CLK_IS_CRITICAL), CLK_PERIPH(CLK_ATHENA, "clk_periph_athena", PARENT_CLK(AXI), 28, CLK_IS_CRITICAL), CLK_PERIPH(CLK_CFM, "clk_periph_cfm", PARENT_CLK(AHB), 29, 0), }; static int mpfs_clk_register_periphs(struct device *dev, struct mpfs_periph_hw_clock *periph_hws, int num_clks, struct mpfs_clock_data *data) { unsigned int i, id; int ret; for (i = 0; i < num_clks; i++) { struct mpfs_periph_hw_clock *periph_hw = &periph_hws[i]; periph_hw->periph.reg = data->base + REG_SUBBLK_CLOCK_CR; ret = devm_clk_hw_register(dev, &periph_hw->periph.hw); if (ret) return dev_err_probe(dev, ret, "failed to register clock id: %d\n", periph_hw->id); id = periph_hws[i].id; data->hw_data.hws[id] = &periph_hw->periph.hw; } return 0; } static int mpfs_clk_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mpfs_clock_data *clk_data; unsigned int num_clks; int ret; /* CLK_RESERVED is not part of clock arrays, so add 1 */ num_clks = ARRAY_SIZE(mpfs_msspll_clks) + ARRAY_SIZE(mpfs_msspll_out_clks) + ARRAY_SIZE(mpfs_cfg_clks) + ARRAY_SIZE(mpfs_periph_clks) + 1; clk_data = devm_kzalloc(dev, struct_size(clk_data, hw_data.hws, num_clks), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(clk_data->base)) return PTR_ERR(clk_data->base); clk_data->msspll_base = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(clk_data->msspll_base)) return PTR_ERR(clk_data->msspll_base); clk_data->hw_data.num = num_clks; clk_data->dev = dev; dev_set_drvdata(dev, clk_data); ret = mpfs_clk_register_mssplls(dev, mpfs_msspll_clks, ARRAY_SIZE(mpfs_msspll_clks), clk_data); if (ret) return ret; ret = mpfs_clk_register_msspll_outs(dev, mpfs_msspll_out_clks, ARRAY_SIZE(mpfs_msspll_out_clks), clk_data); if (ret) return ret; ret = mpfs_clk_register_cfgs(dev, mpfs_cfg_clks, ARRAY_SIZE(mpfs_cfg_clks), clk_data); if (ret) return ret; ret = mpfs_clk_register_periphs(dev, mpfs_periph_clks, ARRAY_SIZE(mpfs_periph_clks), clk_data); if (ret) return ret; ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, &clk_data->hw_data); if (ret) return ret; return mpfs_reset_controller_register(dev, clk_data->base + REG_SUBBLK_RESET_CR); } static const struct of_device_id mpfs_clk_of_match_table[] = { { .compatible = "microchip,mpfs-clkcfg", }, {} }; MODULE_DEVICE_TABLE(of, mpfs_clk_of_match_table); static struct platform_driver mpfs_clk_driver = { .probe = mpfs_clk_probe, .driver = { .name = "microchip-mpfs-clkcfg", .of_match_table = mpfs_clk_of_match_table, }, }; static int __init clk_mpfs_init(void) { return platform_driver_register(&mpfs_clk_driver); } core_initcall(clk_mpfs_init); static void __exit clk_mpfs_exit(void) { platform_driver_unregister(&mpfs_clk_driver); } module_exit(clk_mpfs_exit); MODULE_DESCRIPTION("Microchip PolarFire SoC Clock Driver"); MODULE_AUTHOR("Padmarao Begari <padmarao.begari@microchip.com>"); MODULE_AUTHOR("Daire McNamara <daire.mcnamara@microchip.com>"); MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>"); MODULE_IMPORT_NS(MCHP_CLK_MPFS);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1