Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Georgi Djakov | 1905 | 71.67% | 2 | 18.18% |
Srinivas Kandagatla | 316 | 11.89% | 1 | 9.09% |
Linus Walleij | 205 | 7.71% | 1 | 9.09% |
Ansuel Smith | 139 | 5.23% | 2 | 18.18% |
Dmitry Eremin-Solenikov | 89 | 3.35% | 3 | 27.27% |
Lars-Peter Clausen | 2 | 0.08% | 1 | 9.09% |
Thomas Gleixner | 2 | 0.08% | 1 | 9.09% |
Total | 2658 | 11 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016, Linaro Limited * Copyright (c) 2014, The Linux Foundation. All rights reserved. */ #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/export.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/mfd/qcom_rpm.h> #include <linux/of.h> #include <linux/platform_device.h> #include <dt-bindings/mfd/qcom-rpm.h> #include <dt-bindings/clock/qcom,rpmcc.h> #define QCOM_RPM_MISC_CLK_TYPE 0x306b6c63 #define QCOM_RPM_SCALING_ENABLE_ID 0x2 #define QCOM_RPM_XO_MODE_ON 0x2 static const struct clk_parent_data gcc_pxo[] = { { .fw_name = "pxo", .name = "pxo_board" }, }; static const struct clk_parent_data gcc_cxo[] = { { .fw_name = "cxo", .name = "cxo_board" }, }; #define DEFINE_CLK_RPM(_name, r_id) \ static struct clk_rpm clk_rpm_##_name##_a_clk; \ static struct clk_rpm clk_rpm_##_name##_clk = { \ .rpm_clk_id = (r_id), \ .peer = &clk_rpm_##_name##_a_clk, \ .rate = INT_MAX, \ .hw.init = &(struct clk_init_data){ \ .ops = &clk_rpm_ops, \ .name = #_name "_clk", \ .parent_data = gcc_pxo, \ .num_parents = ARRAY_SIZE(gcc_pxo), \ }, \ }; \ static struct clk_rpm clk_rpm_##_name##_a_clk = { \ .rpm_clk_id = (r_id), \ .peer = &clk_rpm_##_name##_clk, \ .active_only = true, \ .rate = INT_MAX, \ .hw.init = &(struct clk_init_data){ \ .ops = &clk_rpm_ops, \ .name = #_name "_a_clk", \ .parent_data = gcc_pxo, \ .num_parents = ARRAY_SIZE(gcc_pxo), \ }, \ } #define DEFINE_CLK_RPM_XO_BUFFER(_name, offset) \ static struct clk_rpm clk_rpm_##_name##_clk = { \ .rpm_clk_id = QCOM_RPM_CXO_BUFFERS, \ .xo_offset = (offset), \ .hw.init = &(struct clk_init_data){ \ .ops = &clk_rpm_xo_ops, \ .name = #_name "_clk", \ .parent_data = gcc_cxo, \ .num_parents = ARRAY_SIZE(gcc_cxo), \ }, \ } #define DEFINE_CLK_RPM_FIXED(_name, r_id, r) \ static struct clk_rpm clk_rpm_##_name##_clk = { \ .rpm_clk_id = (r_id), \ .rate = (r), \ .hw.init = &(struct clk_init_data){ \ .ops = &clk_rpm_fixed_ops, \ .name = #_name "_clk", \ .parent_data = gcc_pxo, \ .num_parents = ARRAY_SIZE(gcc_pxo), \ }, \ } #define to_clk_rpm(_hw) container_of(_hw, struct clk_rpm, hw) struct rpm_cc; struct clk_rpm { const int rpm_clk_id; const int xo_offset; const bool active_only; unsigned long rate; bool enabled; bool branch; struct clk_rpm *peer; struct clk_hw hw; struct qcom_rpm *rpm; struct rpm_cc *rpm_cc; }; struct rpm_cc { struct clk_rpm **clks; size_t num_clks; u32 xo_buffer_value; struct mutex xo_lock; }; struct rpm_clk_desc { struct clk_rpm **clks; size_t num_clks; }; static DEFINE_MUTEX(rpm_clk_lock); static int clk_rpm_handoff(struct clk_rpm *r) { int ret; u32 value = INT_MAX; /* * The vendor tree simply reads the status for this * RPM clock. */ if (r->rpm_clk_id == QCOM_RPM_PLL_4 || r->rpm_clk_id == QCOM_RPM_CXO_BUFFERS) return 0; ret = qcom_rpm_write(r->rpm, QCOM_RPM_ACTIVE_STATE, r->rpm_clk_id, &value, 1); if (ret) return ret; ret = qcom_rpm_write(r->rpm, QCOM_RPM_SLEEP_STATE, r->rpm_clk_id, &value, 1); if (ret) return ret; return 0; } static int clk_rpm_set_rate_active(struct clk_rpm *r, unsigned long rate) { u32 value = DIV_ROUND_UP(rate, 1000); /* to kHz */ return qcom_rpm_write(r->rpm, QCOM_RPM_ACTIVE_STATE, r->rpm_clk_id, &value, 1); } static int clk_rpm_set_rate_sleep(struct clk_rpm *r, unsigned long rate) { u32 value = DIV_ROUND_UP(rate, 1000); /* to kHz */ return qcom_rpm_write(r->rpm, QCOM_RPM_SLEEP_STATE, r->rpm_clk_id, &value, 1); } static void to_active_sleep(struct clk_rpm *r, unsigned long rate, unsigned long *active, unsigned long *sleep) { *active = rate; /* * Active-only clocks don't care what the rate is during sleep. So, * they vote for zero. */ if (r->active_only) *sleep = 0; else *sleep = *active; } static int clk_rpm_prepare(struct clk_hw *hw) { struct clk_rpm *r = to_clk_rpm(hw); struct clk_rpm *peer = r->peer; unsigned long this_rate = 0, this_sleep_rate = 0; unsigned long peer_rate = 0, peer_sleep_rate = 0; unsigned long active_rate, sleep_rate; int ret = 0; mutex_lock(&rpm_clk_lock); /* Don't send requests to the RPM if the rate has not been set. */ if (!r->rate) goto out; to_active_sleep(r, r->rate, &this_rate, &this_sleep_rate); /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) to_active_sleep(peer, peer->rate, &peer_rate, &peer_sleep_rate); active_rate = max(this_rate, peer_rate); if (r->branch) active_rate = !!active_rate; ret = clk_rpm_set_rate_active(r, active_rate); if (ret) goto out; sleep_rate = max(this_sleep_rate, peer_sleep_rate); if (r->branch) sleep_rate = !!sleep_rate; ret = clk_rpm_set_rate_sleep(r, sleep_rate); if (ret) /* Undo the active set vote and restore it */ ret = clk_rpm_set_rate_active(r, peer_rate); out: if (!ret) r->enabled = true; mutex_unlock(&rpm_clk_lock); return ret; } static void clk_rpm_unprepare(struct clk_hw *hw) { struct clk_rpm *r = to_clk_rpm(hw); struct clk_rpm *peer = r->peer; unsigned long peer_rate = 0, peer_sleep_rate = 0; unsigned long active_rate, sleep_rate; int ret; mutex_lock(&rpm_clk_lock); if (!r->rate) goto out; /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) to_active_sleep(peer, peer->rate, &peer_rate, &peer_sleep_rate); active_rate = r->branch ? !!peer_rate : peer_rate; ret = clk_rpm_set_rate_active(r, active_rate); if (ret) goto out; sleep_rate = r->branch ? !!peer_sleep_rate : peer_sleep_rate; ret = clk_rpm_set_rate_sleep(r, sleep_rate); if (ret) goto out; r->enabled = false; out: mutex_unlock(&rpm_clk_lock); } static int clk_rpm_xo_prepare(struct clk_hw *hw) { struct clk_rpm *r = to_clk_rpm(hw); struct rpm_cc *rcc = r->rpm_cc; int ret, clk_id = r->rpm_clk_id; u32 value; mutex_lock(&rcc->xo_lock); value = rcc->xo_buffer_value | (QCOM_RPM_XO_MODE_ON << r->xo_offset); ret = qcom_rpm_write(r->rpm, QCOM_RPM_ACTIVE_STATE, clk_id, &value, 1); if (!ret) { r->enabled = true; rcc->xo_buffer_value = value; } mutex_unlock(&rcc->xo_lock); return ret; } static void clk_rpm_xo_unprepare(struct clk_hw *hw) { struct clk_rpm *r = to_clk_rpm(hw); struct rpm_cc *rcc = r->rpm_cc; int ret, clk_id = r->rpm_clk_id; u32 value; mutex_lock(&rcc->xo_lock); value = rcc->xo_buffer_value & ~(QCOM_RPM_XO_MODE_ON << r->xo_offset); ret = qcom_rpm_write(r->rpm, QCOM_RPM_ACTIVE_STATE, clk_id, &value, 1); if (!ret) { r->enabled = false; rcc->xo_buffer_value = value; } mutex_unlock(&rcc->xo_lock); } static int clk_rpm_fixed_prepare(struct clk_hw *hw) { struct clk_rpm *r = to_clk_rpm(hw); u32 value = 1; int ret; ret = qcom_rpm_write(r->rpm, QCOM_RPM_ACTIVE_STATE, r->rpm_clk_id, &value, 1); if (!ret) r->enabled = true; return ret; } static void clk_rpm_fixed_unprepare(struct clk_hw *hw) { struct clk_rpm *r = to_clk_rpm(hw); u32 value = 0; int ret; ret = qcom_rpm_write(r->rpm, QCOM_RPM_ACTIVE_STATE, r->rpm_clk_id, &value, 1); if (!ret) r->enabled = false; } static int clk_rpm_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_rpm *r = to_clk_rpm(hw); struct clk_rpm *peer = r->peer; unsigned long active_rate, sleep_rate; unsigned long this_rate = 0, this_sleep_rate = 0; unsigned long peer_rate = 0, peer_sleep_rate = 0; int ret = 0; mutex_lock(&rpm_clk_lock); if (!r->enabled) goto out; to_active_sleep(r, rate, &this_rate, &this_sleep_rate); /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) to_active_sleep(peer, peer->rate, &peer_rate, &peer_sleep_rate); active_rate = max(this_rate, peer_rate); ret = clk_rpm_set_rate_active(r, active_rate); if (ret) goto out; sleep_rate = max(this_sleep_rate, peer_sleep_rate); ret = clk_rpm_set_rate_sleep(r, sleep_rate); if (ret) goto out; r->rate = rate; out: mutex_unlock(&rpm_clk_lock); return ret; } static long clk_rpm_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { /* * RPM handles rate rounding and we don't have a way to * know what the rate will be, so just return whatever * rate is requested. */ return rate; } static unsigned long clk_rpm_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_rpm *r = to_clk_rpm(hw); /* * RPM handles rate rounding and we don't have a way to * know what the rate will be, so just return whatever * rate was set. */ return r->rate; } static const struct clk_ops clk_rpm_xo_ops = { .prepare = clk_rpm_xo_prepare, .unprepare = clk_rpm_xo_unprepare, }; static const struct clk_ops clk_rpm_fixed_ops = { .prepare = clk_rpm_fixed_prepare, .unprepare = clk_rpm_fixed_unprepare, .round_rate = clk_rpm_round_rate, .recalc_rate = clk_rpm_recalc_rate, }; static const struct clk_ops clk_rpm_ops = { .prepare = clk_rpm_prepare, .unprepare = clk_rpm_unprepare, .set_rate = clk_rpm_set_rate, .round_rate = clk_rpm_round_rate, .recalc_rate = clk_rpm_recalc_rate, }; DEFINE_CLK_RPM(afab, QCOM_RPM_APPS_FABRIC_CLK); DEFINE_CLK_RPM(sfab, QCOM_RPM_SYS_FABRIC_CLK); DEFINE_CLK_RPM(mmfab, QCOM_RPM_MM_FABRIC_CLK); DEFINE_CLK_RPM(daytona, QCOM_RPM_DAYTONA_FABRIC_CLK); DEFINE_CLK_RPM(sfpb, QCOM_RPM_SFPB_CLK); DEFINE_CLK_RPM(cfpb, QCOM_RPM_CFPB_CLK); DEFINE_CLK_RPM(mmfpb, QCOM_RPM_MMFPB_CLK); DEFINE_CLK_RPM(smi, QCOM_RPM_SMI_CLK); DEFINE_CLK_RPM(ebi1, QCOM_RPM_EBI1_CLK); DEFINE_CLK_RPM(qdss, QCOM_RPM_QDSS_CLK); DEFINE_CLK_RPM(nss_fabric_0, QCOM_RPM_NSS_FABRIC_0_CLK); DEFINE_CLK_RPM(nss_fabric_1, QCOM_RPM_NSS_FABRIC_1_CLK); DEFINE_CLK_RPM_FIXED(pll4, QCOM_RPM_PLL_4, 540672000); DEFINE_CLK_RPM_XO_BUFFER(xo_d0, 0); DEFINE_CLK_RPM_XO_BUFFER(xo_d1, 8); DEFINE_CLK_RPM_XO_BUFFER(xo_a0, 16); DEFINE_CLK_RPM_XO_BUFFER(xo_a1, 24); DEFINE_CLK_RPM_XO_BUFFER(xo_a2, 28); static struct clk_rpm *msm8660_clks[] = { [RPM_APPS_FABRIC_CLK] = &clk_rpm_afab_clk, [RPM_APPS_FABRIC_A_CLK] = &clk_rpm_afab_a_clk, [RPM_SYS_FABRIC_CLK] = &clk_rpm_sfab_clk, [RPM_SYS_FABRIC_A_CLK] = &clk_rpm_sfab_a_clk, [RPM_MM_FABRIC_CLK] = &clk_rpm_mmfab_clk, [RPM_MM_FABRIC_A_CLK] = &clk_rpm_mmfab_a_clk, [RPM_DAYTONA_FABRIC_CLK] = &clk_rpm_daytona_clk, [RPM_DAYTONA_FABRIC_A_CLK] = &clk_rpm_daytona_a_clk, [RPM_SFPB_CLK] = &clk_rpm_sfpb_clk, [RPM_SFPB_A_CLK] = &clk_rpm_sfpb_a_clk, [RPM_CFPB_CLK] = &clk_rpm_cfpb_clk, [RPM_CFPB_A_CLK] = &clk_rpm_cfpb_a_clk, [RPM_MMFPB_CLK] = &clk_rpm_mmfpb_clk, [RPM_MMFPB_A_CLK] = &clk_rpm_mmfpb_a_clk, [RPM_SMI_CLK] = &clk_rpm_smi_clk, [RPM_SMI_A_CLK] = &clk_rpm_smi_a_clk, [RPM_EBI1_CLK] = &clk_rpm_ebi1_clk, [RPM_EBI1_A_CLK] = &clk_rpm_ebi1_a_clk, [RPM_PLL4_CLK] = &clk_rpm_pll4_clk, }; static const struct rpm_clk_desc rpm_clk_msm8660 = { .clks = msm8660_clks, .num_clks = ARRAY_SIZE(msm8660_clks), }; static struct clk_rpm *apq8064_clks[] = { [RPM_APPS_FABRIC_CLK] = &clk_rpm_afab_clk, [RPM_APPS_FABRIC_A_CLK] = &clk_rpm_afab_a_clk, [RPM_CFPB_CLK] = &clk_rpm_cfpb_clk, [RPM_CFPB_A_CLK] = &clk_rpm_cfpb_a_clk, [RPM_DAYTONA_FABRIC_CLK] = &clk_rpm_daytona_clk, [RPM_DAYTONA_FABRIC_A_CLK] = &clk_rpm_daytona_a_clk, [RPM_EBI1_CLK] = &clk_rpm_ebi1_clk, [RPM_EBI1_A_CLK] = &clk_rpm_ebi1_a_clk, [RPM_MM_FABRIC_CLK] = &clk_rpm_mmfab_clk, [RPM_MM_FABRIC_A_CLK] = &clk_rpm_mmfab_a_clk, [RPM_MMFPB_CLK] = &clk_rpm_mmfpb_clk, [RPM_MMFPB_A_CLK] = &clk_rpm_mmfpb_a_clk, [RPM_SYS_FABRIC_CLK] = &clk_rpm_sfab_clk, [RPM_SYS_FABRIC_A_CLK] = &clk_rpm_sfab_a_clk, [RPM_SFPB_CLK] = &clk_rpm_sfpb_clk, [RPM_SFPB_A_CLK] = &clk_rpm_sfpb_a_clk, [RPM_QDSS_CLK] = &clk_rpm_qdss_clk, [RPM_QDSS_A_CLK] = &clk_rpm_qdss_a_clk, [RPM_XO_D0] = &clk_rpm_xo_d0_clk, [RPM_XO_D1] = &clk_rpm_xo_d1_clk, [RPM_XO_A0] = &clk_rpm_xo_a0_clk, [RPM_XO_A1] = &clk_rpm_xo_a1_clk, [RPM_XO_A2] = &clk_rpm_xo_a2_clk, }; static const struct rpm_clk_desc rpm_clk_apq8064 = { .clks = apq8064_clks, .num_clks = ARRAY_SIZE(apq8064_clks), }; static struct clk_rpm *ipq806x_clks[] = { [RPM_APPS_FABRIC_CLK] = &clk_rpm_afab_clk, [RPM_APPS_FABRIC_A_CLK] = &clk_rpm_afab_a_clk, [RPM_CFPB_CLK] = &clk_rpm_cfpb_clk, [RPM_CFPB_A_CLK] = &clk_rpm_cfpb_a_clk, [RPM_DAYTONA_FABRIC_CLK] = &clk_rpm_daytona_clk, [RPM_DAYTONA_FABRIC_A_CLK] = &clk_rpm_daytona_a_clk, [RPM_EBI1_CLK] = &clk_rpm_ebi1_clk, [RPM_EBI1_A_CLK] = &clk_rpm_ebi1_a_clk, [RPM_SYS_FABRIC_CLK] = &clk_rpm_sfab_clk, [RPM_SYS_FABRIC_A_CLK] = &clk_rpm_sfab_a_clk, [RPM_SFPB_CLK] = &clk_rpm_sfpb_clk, [RPM_SFPB_A_CLK] = &clk_rpm_sfpb_a_clk, [RPM_NSS_FABRIC_0_CLK] = &clk_rpm_nss_fabric_0_clk, [RPM_NSS_FABRIC_0_A_CLK] = &clk_rpm_nss_fabric_0_a_clk, [RPM_NSS_FABRIC_1_CLK] = &clk_rpm_nss_fabric_1_clk, [RPM_NSS_FABRIC_1_A_CLK] = &clk_rpm_nss_fabric_1_a_clk, }; static const struct rpm_clk_desc rpm_clk_ipq806x = { .clks = ipq806x_clks, .num_clks = ARRAY_SIZE(ipq806x_clks), }; static const struct of_device_id rpm_clk_match_table[] = { { .compatible = "qcom,rpmcc-msm8660", .data = &rpm_clk_msm8660 }, { .compatible = "qcom,rpmcc-apq8060", .data = &rpm_clk_msm8660 }, { .compatible = "qcom,rpmcc-apq8064", .data = &rpm_clk_apq8064 }, { .compatible = "qcom,rpmcc-ipq806x", .data = &rpm_clk_ipq806x }, { } }; MODULE_DEVICE_TABLE(of, rpm_clk_match_table); static struct clk_hw *qcom_rpm_clk_hw_get(struct of_phandle_args *clkspec, void *data) { struct rpm_cc *rcc = data; unsigned int idx = clkspec->args[0]; if (idx >= rcc->num_clks) { pr_err("%s: invalid index %u\n", __func__, idx); return ERR_PTR(-EINVAL); } return rcc->clks[idx] ? &rcc->clks[idx]->hw : ERR_PTR(-ENOENT); } static int rpm_clk_probe(struct platform_device *pdev) { struct rpm_cc *rcc; int ret; size_t num_clks, i; struct qcom_rpm *rpm; struct clk_rpm **rpm_clks; const struct rpm_clk_desc *desc; rpm = dev_get_drvdata(pdev->dev.parent); if (!rpm) { dev_err(&pdev->dev, "Unable to retrieve handle to RPM\n"); return -ENODEV; } desc = of_device_get_match_data(&pdev->dev); if (!desc) return -EINVAL; rpm_clks = desc->clks; num_clks = desc->num_clks; rcc = devm_kzalloc(&pdev->dev, sizeof(*rcc), GFP_KERNEL); if (!rcc) return -ENOMEM; rcc->clks = rpm_clks; rcc->num_clks = num_clks; mutex_init(&rcc->xo_lock); for (i = 0; i < num_clks; i++) { if (!rpm_clks[i]) continue; rpm_clks[i]->rpm = rpm; rpm_clks[i]->rpm_cc = rcc; ret = clk_rpm_handoff(rpm_clks[i]); if (ret) goto err; } for (i = 0; i < num_clks; i++) { if (!rpm_clks[i]) continue; ret = devm_clk_hw_register(&pdev->dev, &rpm_clks[i]->hw); if (ret) goto err; } ret = devm_of_clk_add_hw_provider(&pdev->dev, qcom_rpm_clk_hw_get, rcc); if (ret) goto err; return 0; err: dev_err(&pdev->dev, "Error registering RPM Clock driver (%d)\n", ret); return ret; } static struct platform_driver rpm_clk_driver = { .driver = { .name = "qcom-clk-rpm", .of_match_table = rpm_clk_match_table, }, .probe = rpm_clk_probe, }; static int __init rpm_clk_init(void) { return platform_driver_register(&rpm_clk_driver); } core_initcall(rpm_clk_init); static void __exit rpm_clk_exit(void) { platform_driver_unregister(&rpm_clk_driver); } module_exit(rpm_clk_exit); MODULE_DESCRIPTION("Qualcomm RPM Clock Controller Driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:qcom-clk-rpm");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1