Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
William Breathitt Gray | 5326 | 92.64% | 34 | 85.00% |
Syed Nayyar Waris | 288 | 5.01% | 3 | 7.50% |
Uwe Kleine-König | 134 | 2.33% | 2 | 5.00% |
Yue haibing | 1 | 0.02% | 1 | 2.50% |
Total | 5749 | 40 |
// SPDX-License-Identifier: GPL-2.0 /* * Counter driver for the ACCES 104-QUAD-8 * Copyright (C) 2016 William Breathitt Gray * * This driver supports the ACCES 104-QUAD-8 and ACCES 104-QUAD-4. */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/counter.h> #include <linux/device.h> #include <linux/err.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/interrupt.h> #include <linux/isa.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/regmap.h> #include <linux/spinlock.h> #include <linux/types.h> #include <asm/unaligned.h> #define QUAD8_EXTENT 32 static unsigned int base[max_num_isa_dev(QUAD8_EXTENT)]; static unsigned int num_quad8; module_param_hw_array(base, uint, ioport, &num_quad8, 0); MODULE_PARM_DESC(base, "ACCES 104-QUAD-8 base addresses"); static unsigned int irq[max_num_isa_dev(QUAD8_EXTENT)]; static unsigned int num_irq; module_param_hw_array(irq, uint, irq, &num_irq, 0); MODULE_PARM_DESC(irq, "ACCES 104-QUAD-8 interrupt line numbers"); #define QUAD8_NUM_COUNTERS 8 #define QUAD8_DATA(_channel) ((_channel) * 2) #define QUAD8_CONTROL(_channel) (QUAD8_DATA(_channel) + 1) #define QUAD8_INTERRUPT_STATUS 0x10 #define QUAD8_CHANNEL_OPERATION 0x11 #define QUAD8_INDEX_INTERRUPT 0x12 #define QUAD8_INDEX_INPUT_LEVELS 0x16 #define QUAD8_CABLE_STATUS 0x17 /** * struct quad8 - device private data structure * @lock: lock to prevent clobbering device states during R/W ops * @cmr: array of Counter Mode Register states * @ior: array of Input / Output Control Register states * @idr: array of Index Control Register states * @fck_prescaler: array of filter clock prescaler configurations * @preset: array of preset values * @cable_fault_enable: differential encoder cable status enable configurations * @map: regmap for the device */ struct quad8 { spinlock_t lock; u8 cmr[QUAD8_NUM_COUNTERS]; u8 ior[QUAD8_NUM_COUNTERS]; u8 idr[QUAD8_NUM_COUNTERS]; unsigned int fck_prescaler[QUAD8_NUM_COUNTERS]; unsigned int preset[QUAD8_NUM_COUNTERS]; unsigned int cable_fault_enable; struct regmap *map; }; static const struct regmap_range quad8_wr_ranges[] = { regmap_reg_range(0x0, 0xF), regmap_reg_range(0x11, 0x12), regmap_reg_range(0x17, 0x17), }; static const struct regmap_range quad8_rd_ranges[] = { regmap_reg_range(0x0, 0x12), regmap_reg_range(0x16, 0x18), }; static const struct regmap_access_table quad8_wr_table = { .yes_ranges = quad8_wr_ranges, .n_yes_ranges = ARRAY_SIZE(quad8_wr_ranges), }; static const struct regmap_access_table quad8_rd_table = { .yes_ranges = quad8_rd_ranges, .n_yes_ranges = ARRAY_SIZE(quad8_rd_ranges), }; static const struct regmap_config quad8_regmap_config = { .reg_bits = 8, .reg_stride = 1, .val_bits = 8, .io_port = true, .wr_table = &quad8_wr_table, .rd_table = &quad8_rd_table, }; /* Error flag */ #define FLAG_E BIT(4) /* Up/Down flag */ #define FLAG_UD BIT(5) /* Counting up */ #define UP 0x1 #define REGISTER_SELECTION GENMASK(6, 5) /* Reset and Load Signal Decoders */ #define SELECT_RLD u8_encode_bits(0x0, REGISTER_SELECTION) /* Counter Mode Register */ #define SELECT_CMR u8_encode_bits(0x1, REGISTER_SELECTION) /* Input / Output Control Register */ #define SELECT_IOR u8_encode_bits(0x2, REGISTER_SELECTION) /* Index Control Register */ #define SELECT_IDR u8_encode_bits(0x3, REGISTER_SELECTION) /* * Reset and Load Signal Decoders */ #define RESETS GENMASK(2, 1) #define LOADS GENMASK(4, 3) /* Reset Byte Pointer (three byte data pointer) */ #define RESET_BP BIT(0) /* Reset Borrow Toggle, Carry toggle, Compare toggle, Sign, and Index flags */ #define RESET_BT_CT_CPT_S_IDX u8_encode_bits(0x2, RESETS) /* Reset Error flag */ #define RESET_E u8_encode_bits(0x3, RESETS) /* Preset Register to Counter */ #define TRANSFER_PR_TO_CNTR u8_encode_bits(0x1, LOADS) /* Transfer Counter to Output Latch */ #define TRANSFER_CNTR_TO_OL u8_encode_bits(0x2, LOADS) /* Transfer Preset Register LSB to FCK Prescaler */ #define TRANSFER_PR0_TO_PSC u8_encode_bits(0x3, LOADS) /* * Counter Mode Registers */ #define COUNT_ENCODING BIT(0) #define COUNT_MODE GENMASK(2, 1) #define QUADRATURE_MODE GENMASK(4, 3) /* Binary count */ #define BINARY u8_encode_bits(0x0, COUNT_ENCODING) /* Normal count */ #define NORMAL_COUNT 0x0 /* Range Limit */ #define RANGE_LIMIT 0x1 /* Non-recycle count */ #define NON_RECYCLE_COUNT 0x2 /* Modulo-N */ #define MODULO_N 0x3 /* Non-quadrature */ #define NON_QUADRATURE 0x0 /* Quadrature X1 */ #define QUADRATURE_X1 0x1 /* Quadrature X2 */ #define QUADRATURE_X2 0x2 /* Quadrature X4 */ #define QUADRATURE_X4 0x3 /* * Input/Output Control Register */ #define AB_GATE BIT(0) #define LOAD_PIN BIT(1) #define FLG_PINS GENMASK(4, 3) /* Disable inputs A and B */ #define DISABLE_AB u8_encode_bits(0x0, AB_GATE) /* Load Counter input */ #define LOAD_CNTR 0x0 /* FLG1 = CARRY(active low); FLG2 = BORROW(active low) */ #define FLG1_CARRY_FLG2_BORROW 0x0 /* FLG1 = COMPARE(active low); FLG2 = BORROW(active low) */ #define FLG1_COMPARE_FLG2_BORROW 0x1 /* FLG1 = Carry(active low)/Borrow(active low); FLG2 = U/D(active low) flag */ #define FLG1_CARRYBORROW_FLG2_UD 0x2 /* FLG1 = INDX (low pulse at INDEX pin active level); FLG2 = E flag */ #define FLG1_INDX_FLG2_E 0x3 /* * INDEX CONTROL REGISTERS */ #define INDEX_MODE BIT(0) #define INDEX_POLARITY BIT(1) /* Disable Index mode */ #define DISABLE_INDEX_MODE 0x0 /* Enable Index mode */ #define ENABLE_INDEX_MODE 0x1 /* Negative Index Polarity */ #define NEGATIVE_INDEX_POLARITY 0x0 /* Positive Index Polarity */ #define POSITIVE_INDEX_POLARITY 0x1 /* * Channel Operation Register */ #define COUNTERS_OPERATION BIT(0) #define INTERRUPT_FUNCTION BIT(2) /* Enable all Counters */ #define ENABLE_COUNTERS u8_encode_bits(0x0, COUNTERS_OPERATION) /* Reset all Counters */ #define RESET_COUNTERS u8_encode_bits(0x1, COUNTERS_OPERATION) /* Disable the interrupt function */ #define DISABLE_INTERRUPT_FUNCTION u8_encode_bits(0x0, INTERRUPT_FUNCTION) /* Enable the interrupt function */ #define ENABLE_INTERRUPT_FUNCTION u8_encode_bits(0x1, INTERRUPT_FUNCTION) /* Any write to the Channel Operation register clears any pending interrupts */ #define CLEAR_PENDING_INTERRUPTS (ENABLE_COUNTERS | ENABLE_INTERRUPT_FUNCTION) /* Each Counter is 24 bits wide */ #define LS7267_CNTR_MAX GENMASK(23, 0) static __always_inline int quad8_control_register_update(struct regmap *const map, u8 *const buf, const size_t channel, const u8 val, const u8 field) { u8p_replace_bits(&buf[channel], val, field); return regmap_write(map, QUAD8_CONTROL(channel), buf[channel]); } static int quad8_signal_read(struct counter_device *counter, struct counter_signal *signal, enum counter_signal_level *level) { const struct quad8 *const priv = counter_priv(counter); int ret; /* Only Index signal levels can be read */ if (signal->id < 16) return -EINVAL; ret = regmap_test_bits(priv->map, QUAD8_INDEX_INPUT_LEVELS, BIT(signal->id - 16)); if (ret < 0) return ret; *level = (ret) ? COUNTER_SIGNAL_LEVEL_HIGH : COUNTER_SIGNAL_LEVEL_LOW; return 0; } static int quad8_count_read(struct counter_device *counter, struct counter_count *count, u64 *val) { struct quad8 *const priv = counter_priv(counter); unsigned long irqflags; u8 value[3]; int ret; spin_lock_irqsave(&priv->lock, irqflags); ret = regmap_write(priv->map, QUAD8_CONTROL(count->id), SELECT_RLD | RESET_BP | TRANSFER_CNTR_TO_OL); if (ret) goto exit_unlock; ret = regmap_noinc_read(priv->map, QUAD8_DATA(count->id), value, sizeof(value)); exit_unlock: spin_unlock_irqrestore(&priv->lock, irqflags); *val = get_unaligned_le24(value); return ret; } static int quad8_preset_register_set(struct quad8 *const priv, const size_t id, const unsigned long preset) { u8 value[3]; int ret; put_unaligned_le24(preset, value); ret = regmap_write(priv->map, QUAD8_CONTROL(id), SELECT_RLD | RESET_BP); if (ret) return ret; return regmap_noinc_write(priv->map, QUAD8_DATA(id), value, sizeof(value)); } static int quad8_flag_register_reset(struct quad8 *const priv, const size_t id) { int ret; ret = regmap_write(priv->map, QUAD8_CONTROL(id), SELECT_RLD | RESET_BT_CT_CPT_S_IDX); if (ret) return ret; return regmap_write(priv->map, QUAD8_CONTROL(id), SELECT_RLD | RESET_E); } static int quad8_count_write(struct counter_device *counter, struct counter_count *count, u64 val) { struct quad8 *const priv = counter_priv(counter); unsigned long irqflags; int ret; if (val > LS7267_CNTR_MAX) return -ERANGE; spin_lock_irqsave(&priv->lock, irqflags); /* Counter can only be set via Preset Register */ ret = quad8_preset_register_set(priv, count->id, val); if (ret) goto exit_unlock; ret = regmap_write(priv->map, QUAD8_CONTROL(count->id), SELECT_RLD | TRANSFER_PR_TO_CNTR); if (ret) goto exit_unlock; ret = quad8_flag_register_reset(priv, count->id); if (ret) goto exit_unlock; /* Set Preset Register back to original value */ ret = quad8_preset_register_set(priv, count->id, priv->preset[count->id]); exit_unlock: spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } static const enum counter_function quad8_count_functions_list[] = { COUNTER_FUNCTION_PULSE_DIRECTION, COUNTER_FUNCTION_QUADRATURE_X1_A, COUNTER_FUNCTION_QUADRATURE_X2_A, COUNTER_FUNCTION_QUADRATURE_X4, }; static int quad8_function_get(const struct quad8 *const priv, const size_t id, enum counter_function *const function) { switch (u8_get_bits(priv->cmr[id], QUADRATURE_MODE)) { case NON_QUADRATURE: *function = COUNTER_FUNCTION_PULSE_DIRECTION; return 0; case QUADRATURE_X1: *function = COUNTER_FUNCTION_QUADRATURE_X1_A; return 0; case QUADRATURE_X2: *function = COUNTER_FUNCTION_QUADRATURE_X2_A; return 0; case QUADRATURE_X4: *function = COUNTER_FUNCTION_QUADRATURE_X4; return 0; default: /* should never reach this path */ return -EINVAL; } } static int quad8_function_read(struct counter_device *counter, struct counter_count *count, enum counter_function *function) { struct quad8 *const priv = counter_priv(counter); unsigned long irqflags; int retval; spin_lock_irqsave(&priv->lock, irqflags); retval = quad8_function_get(priv, count->id, function); spin_unlock_irqrestore(&priv->lock, irqflags); return retval; } static int quad8_function_write(struct counter_device *counter, struct counter_count *count, enum counter_function function) { struct quad8 *const priv = counter_priv(counter); const int id = count->id; unsigned long irqflags; unsigned int mode_cfg; bool synchronous_mode; int ret; switch (function) { case COUNTER_FUNCTION_PULSE_DIRECTION: mode_cfg = NON_QUADRATURE; break; case COUNTER_FUNCTION_QUADRATURE_X1_A: mode_cfg = QUADRATURE_X1; break; case COUNTER_FUNCTION_QUADRATURE_X2_A: mode_cfg = QUADRATURE_X2; break; case COUNTER_FUNCTION_QUADRATURE_X4: mode_cfg = QUADRATURE_X4; break; default: /* should never reach this path */ return -EINVAL; } spin_lock_irqsave(&priv->lock, irqflags); /* Synchronous function not supported in non-quadrature mode */ synchronous_mode = u8_get_bits(priv->idr[id], INDEX_MODE) == ENABLE_INDEX_MODE; if (synchronous_mode && mode_cfg == NON_QUADRATURE) { ret = quad8_control_register_update(priv->map, priv->idr, id, DISABLE_INDEX_MODE, INDEX_MODE); if (ret) goto exit_unlock; } ret = quad8_control_register_update(priv->map, priv->cmr, id, mode_cfg, QUADRATURE_MODE); exit_unlock: spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } static int quad8_direction_read(struct counter_device *counter, struct counter_count *count, enum counter_count_direction *direction) { const struct quad8 *const priv = counter_priv(counter); unsigned int flag; int ret; ret = regmap_read(priv->map, QUAD8_CONTROL(count->id), &flag); if (ret) return ret; *direction = (u8_get_bits(flag, FLAG_UD) == UP) ? COUNTER_COUNT_DIRECTION_FORWARD : COUNTER_COUNT_DIRECTION_BACKWARD; return 0; } static const enum counter_synapse_action quad8_index_actions_list[] = { COUNTER_SYNAPSE_ACTION_NONE, COUNTER_SYNAPSE_ACTION_RISING_EDGE, }; static const enum counter_synapse_action quad8_synapse_actions_list[] = { COUNTER_SYNAPSE_ACTION_NONE, COUNTER_SYNAPSE_ACTION_RISING_EDGE, COUNTER_SYNAPSE_ACTION_FALLING_EDGE, COUNTER_SYNAPSE_ACTION_BOTH_EDGES, }; static int quad8_action_read(struct counter_device *counter, struct counter_count *count, struct counter_synapse *synapse, enum counter_synapse_action *action) { struct quad8 *const priv = counter_priv(counter); unsigned long irqflags; int err; enum counter_function function; const size_t signal_a_id = count->synapses[0].signal->id; enum counter_count_direction direction; /* Default action mode */ *action = COUNTER_SYNAPSE_ACTION_NONE; /* Handle Index signals */ if (synapse->signal->id >= 16) { if (u8_get_bits(priv->ior[count->id], LOAD_PIN) == LOAD_CNTR) *action = COUNTER_SYNAPSE_ACTION_RISING_EDGE; return 0; } spin_lock_irqsave(&priv->lock, irqflags); /* Get Count function and direction atomically */ err = quad8_function_get(priv, count->id, &function); if (err) { spin_unlock_irqrestore(&priv->lock, irqflags); return err; } err = quad8_direction_read(counter, count, &direction); if (err) { spin_unlock_irqrestore(&priv->lock, irqflags); return err; } spin_unlock_irqrestore(&priv->lock, irqflags); /* Determine action mode based on current count function mode */ switch (function) { case COUNTER_FUNCTION_PULSE_DIRECTION: if (synapse->signal->id == signal_a_id) *action = COUNTER_SYNAPSE_ACTION_RISING_EDGE; return 0; case COUNTER_FUNCTION_QUADRATURE_X1_A: if (synapse->signal->id == signal_a_id) { if (direction == COUNTER_COUNT_DIRECTION_FORWARD) *action = COUNTER_SYNAPSE_ACTION_RISING_EDGE; else *action = COUNTER_SYNAPSE_ACTION_FALLING_EDGE; } return 0; case COUNTER_FUNCTION_QUADRATURE_X2_A: if (synapse->signal->id == signal_a_id) *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES; return 0; case COUNTER_FUNCTION_QUADRATURE_X4: *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES; return 0; default: /* should never reach this path */ return -EINVAL; } } static int quad8_events_configure(struct counter_device *counter) { struct quad8 *const priv = counter_priv(counter); unsigned long irq_enabled = 0; unsigned long irqflags; struct counter_event_node *event_node; u8 flg_pins; int ret; spin_lock_irqsave(&priv->lock, irqflags); list_for_each_entry(event_node, &counter->events_list, l) { switch (event_node->event) { case COUNTER_EVENT_OVERFLOW: flg_pins = FLG1_CARRY_FLG2_BORROW; break; case COUNTER_EVENT_THRESHOLD: flg_pins = FLG1_COMPARE_FLG2_BORROW; break; case COUNTER_EVENT_OVERFLOW_UNDERFLOW: flg_pins = FLG1_CARRYBORROW_FLG2_UD; break; case COUNTER_EVENT_INDEX: flg_pins = FLG1_INDX_FLG2_E; break; default: /* should never reach this path */ ret = -EINVAL; goto exit_unlock; } /* Enable IRQ line */ irq_enabled |= BIT(event_node->channel); /* Skip configuration if it is the same as previously set */ if (flg_pins == u8_get_bits(priv->ior[event_node->channel], FLG_PINS)) continue; /* Save new IRQ function configuration */ ret = quad8_control_register_update(priv->map, priv->ior, event_node->channel, flg_pins, FLG_PINS); if (ret) goto exit_unlock; } ret = regmap_write(priv->map, QUAD8_INDEX_INTERRUPT, irq_enabled); exit_unlock: spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } static int quad8_watch_validate(struct counter_device *counter, const struct counter_watch *watch) { struct counter_event_node *event_node; if (watch->channel > QUAD8_NUM_COUNTERS - 1) return -EINVAL; switch (watch->event) { case COUNTER_EVENT_OVERFLOW: case COUNTER_EVENT_THRESHOLD: case COUNTER_EVENT_OVERFLOW_UNDERFLOW: case COUNTER_EVENT_INDEX: list_for_each_entry(event_node, &counter->next_events_list, l) if (watch->channel == event_node->channel && watch->event != event_node->event) return -EINVAL; return 0; default: return -EINVAL; } } static const struct counter_ops quad8_ops = { .signal_read = quad8_signal_read, .count_read = quad8_count_read, .count_write = quad8_count_write, .function_read = quad8_function_read, .function_write = quad8_function_write, .action_read = quad8_action_read, .events_configure = quad8_events_configure, .watch_validate = quad8_watch_validate, }; static const char *const quad8_index_polarity_modes[] = { "negative", "positive" }; static int quad8_index_polarity_get(struct counter_device *counter, struct counter_signal *signal, u32 *index_polarity) { const struct quad8 *const priv = counter_priv(counter); const size_t channel_id = signal->id - 16; *index_polarity = u8_get_bits(priv->idr[channel_id], INDEX_POLARITY); return 0; } static int quad8_index_polarity_set(struct counter_device *counter, struct counter_signal *signal, u32 index_polarity) { struct quad8 *const priv = counter_priv(counter); const size_t channel_id = signal->id - 16; unsigned long irqflags; int ret; spin_lock_irqsave(&priv->lock, irqflags); ret = quad8_control_register_update(priv->map, priv->idr, channel_id, index_polarity, INDEX_POLARITY); spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } static int quad8_polarity_read(struct counter_device *counter, struct counter_signal *signal, enum counter_signal_polarity *polarity) { int err; u32 index_polarity; err = quad8_index_polarity_get(counter, signal, &index_polarity); if (err) return err; *polarity = (index_polarity == POSITIVE_INDEX_POLARITY) ? COUNTER_SIGNAL_POLARITY_POSITIVE : COUNTER_SIGNAL_POLARITY_NEGATIVE; return 0; } static int quad8_polarity_write(struct counter_device *counter, struct counter_signal *signal, enum counter_signal_polarity polarity) { const u32 pol = (polarity == COUNTER_SIGNAL_POLARITY_POSITIVE) ? POSITIVE_INDEX_POLARITY : NEGATIVE_INDEX_POLARITY; return quad8_index_polarity_set(counter, signal, pol); } static const char *const quad8_synchronous_modes[] = { "non-synchronous", "synchronous" }; static int quad8_synchronous_mode_get(struct counter_device *counter, struct counter_signal *signal, u32 *synchronous_mode) { const struct quad8 *const priv = counter_priv(counter); const size_t channel_id = signal->id - 16; *synchronous_mode = u8_get_bits(priv->idr[channel_id], INDEX_MODE); return 0; } static int quad8_synchronous_mode_set(struct counter_device *counter, struct counter_signal *signal, u32 synchronous_mode) { struct quad8 *const priv = counter_priv(counter); const size_t channel_id = signal->id - 16; u8 quadrature_mode; unsigned long irqflags; int ret; spin_lock_irqsave(&priv->lock, irqflags); /* Index function must be non-synchronous in non-quadrature mode */ quadrature_mode = u8_get_bits(priv->idr[channel_id], QUADRATURE_MODE); if (synchronous_mode && quadrature_mode == NON_QUADRATURE) { ret = -EINVAL; goto exit_unlock; } ret = quad8_control_register_update(priv->map, priv->idr, channel_id, synchronous_mode, INDEX_MODE); exit_unlock: spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } static int quad8_count_floor_read(struct counter_device *counter, struct counter_count *count, u64 *floor) { /* Only a floor of 0 is supported */ *floor = 0; return 0; } static int quad8_count_mode_read(struct counter_device *counter, struct counter_count *count, enum counter_count_mode *cnt_mode) { const struct quad8 *const priv = counter_priv(counter); switch (u8_get_bits(priv->cmr[count->id], COUNT_MODE)) { case NORMAL_COUNT: *cnt_mode = COUNTER_COUNT_MODE_NORMAL; break; case RANGE_LIMIT: *cnt_mode = COUNTER_COUNT_MODE_RANGE_LIMIT; break; case NON_RECYCLE_COUNT: *cnt_mode = COUNTER_COUNT_MODE_NON_RECYCLE; break; case MODULO_N: *cnt_mode = COUNTER_COUNT_MODE_MODULO_N; break; } return 0; } static int quad8_count_mode_write(struct counter_device *counter, struct counter_count *count, enum counter_count_mode cnt_mode) { struct quad8 *const priv = counter_priv(counter); unsigned int count_mode; unsigned long irqflags; int ret; switch (cnt_mode) { case COUNTER_COUNT_MODE_NORMAL: count_mode = NORMAL_COUNT; break; case COUNTER_COUNT_MODE_RANGE_LIMIT: count_mode = RANGE_LIMIT; break; case COUNTER_COUNT_MODE_NON_RECYCLE: count_mode = NON_RECYCLE_COUNT; break; case COUNTER_COUNT_MODE_MODULO_N: count_mode = MODULO_N; break; default: /* should never reach this path */ return -EINVAL; } spin_lock_irqsave(&priv->lock, irqflags); ret = quad8_control_register_update(priv->map, priv->cmr, count->id, count_mode, COUNT_MODE); spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } static int quad8_count_enable_read(struct counter_device *counter, struct counter_count *count, u8 *enable) { const struct quad8 *const priv = counter_priv(counter); *enable = u8_get_bits(priv->ior[count->id], AB_GATE); return 0; } static int quad8_count_enable_write(struct counter_device *counter, struct counter_count *count, u8 enable) { struct quad8 *const priv = counter_priv(counter); unsigned long irqflags; int ret; spin_lock_irqsave(&priv->lock, irqflags); ret = quad8_control_register_update(priv->map, priv->ior, count->id, enable, AB_GATE); spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } static const char *const quad8_noise_error_states[] = { "No excessive noise is present at the count inputs", "Excessive noise is present at the count inputs" }; static int quad8_error_noise_get(struct counter_device *counter, struct counter_count *count, u32 *noise_error) { const struct quad8 *const priv = counter_priv(counter); unsigned int flag; int ret; ret = regmap_read(priv->map, QUAD8_CONTROL(count->id), &flag); if (ret) return ret; *noise_error = u8_get_bits(flag, FLAG_E); return 0; } static int quad8_count_preset_read(struct counter_device *counter, struct counter_count *count, u64 *preset) { const struct quad8 *const priv = counter_priv(counter); *preset = priv->preset[count->id]; return 0; } static int quad8_count_preset_write(struct counter_device *counter, struct counter_count *count, u64 preset) { struct quad8 *const priv = counter_priv(counter); unsigned long irqflags; int ret; if (preset > LS7267_CNTR_MAX) return -ERANGE; spin_lock_irqsave(&priv->lock, irqflags); priv->preset[count->id] = preset; ret = quad8_preset_register_set(priv, count->id, preset); spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } static int quad8_count_ceiling_read(struct counter_device *counter, struct counter_count *count, u64 *ceiling) { struct quad8 *const priv = counter_priv(counter); unsigned long irqflags; spin_lock_irqsave(&priv->lock, irqflags); /* Range Limit and Modulo-N count modes use preset value as ceiling */ switch (u8_get_bits(priv->cmr[count->id], COUNT_MODE)) { case RANGE_LIMIT: case MODULO_N: *ceiling = priv->preset[count->id]; break; default: *ceiling = LS7267_CNTR_MAX; break; } spin_unlock_irqrestore(&priv->lock, irqflags); return 0; } static int quad8_count_ceiling_write(struct counter_device *counter, struct counter_count *count, u64 ceiling) { struct quad8 *const priv = counter_priv(counter); unsigned long irqflags; int ret; if (ceiling > LS7267_CNTR_MAX) return -ERANGE; spin_lock_irqsave(&priv->lock, irqflags); /* Range Limit and Modulo-N count modes use preset value as ceiling */ switch (u8_get_bits(priv->cmr[count->id], COUNT_MODE)) { case RANGE_LIMIT: case MODULO_N: priv->preset[count->id] = ceiling; ret = quad8_preset_register_set(priv, count->id, ceiling); break; default: ret = -EINVAL; break; } spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } static int quad8_count_preset_enable_read(struct counter_device *counter, struct counter_count *count, u8 *preset_enable) { const struct quad8 *const priv = counter_priv(counter); /* Preset enable is active low in Input/Output Control register */ *preset_enable = !u8_get_bits(priv->ior[count->id], LOAD_PIN); return 0; } static int quad8_count_preset_enable_write(struct counter_device *counter, struct counter_count *count, u8 preset_enable) { struct quad8 *const priv = counter_priv(counter); unsigned long irqflags; int ret; spin_lock_irqsave(&priv->lock, irqflags); /* Preset enable is active low in Input/Output Control register */ ret = quad8_control_register_update(priv->map, priv->ior, count->id, !preset_enable, LOAD_PIN); spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } static int quad8_signal_cable_fault_read(struct counter_device *counter, struct counter_signal *signal, u8 *cable_fault) { struct quad8 *const priv = counter_priv(counter); const size_t channel_id = signal->id / 2; unsigned long irqflags; bool disabled; int ret; spin_lock_irqsave(&priv->lock, irqflags); disabled = !(priv->cable_fault_enable & BIT(channel_id)); if (disabled) { spin_unlock_irqrestore(&priv->lock, irqflags); return -EINVAL; } ret = regmap_test_bits(priv->map, QUAD8_CABLE_STATUS, BIT(channel_id)); if (ret < 0) { spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } spin_unlock_irqrestore(&priv->lock, irqflags); /* Logic 0 = cable fault */ *cable_fault = !ret; return 0; } static int quad8_signal_cable_fault_enable_read(struct counter_device *counter, struct counter_signal *signal, u8 *enable) { const struct quad8 *const priv = counter_priv(counter); const size_t channel_id = signal->id / 2; *enable = !!(priv->cable_fault_enable & BIT(channel_id)); return 0; } static int quad8_signal_cable_fault_enable_write(struct counter_device *counter, struct counter_signal *signal, u8 enable) { struct quad8 *const priv = counter_priv(counter); const size_t channel_id = signal->id / 2; unsigned long irqflags; unsigned int cable_fault_enable; int ret; spin_lock_irqsave(&priv->lock, irqflags); if (enable) priv->cable_fault_enable |= BIT(channel_id); else priv->cable_fault_enable &= ~BIT(channel_id); /* Enable is active low in Differential Encoder Cable Status register */ cable_fault_enable = ~priv->cable_fault_enable; ret = regmap_write(priv->map, QUAD8_CABLE_STATUS, cable_fault_enable); spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } static int quad8_signal_fck_prescaler_read(struct counter_device *counter, struct counter_signal *signal, u8 *prescaler) { const struct quad8 *const priv = counter_priv(counter); *prescaler = priv->fck_prescaler[signal->id / 2]; return 0; } static int quad8_filter_clock_prescaler_set(struct quad8 *const priv, const size_t id, const u8 prescaler) { int ret; ret = regmap_write(priv->map, QUAD8_CONTROL(id), SELECT_RLD | RESET_BP); if (ret) return ret; ret = regmap_write(priv->map, QUAD8_DATA(id), prescaler); if (ret) return ret; return regmap_write(priv->map, QUAD8_CONTROL(id), SELECT_RLD | TRANSFER_PR0_TO_PSC); } static int quad8_signal_fck_prescaler_write(struct counter_device *counter, struct counter_signal *signal, u8 prescaler) { struct quad8 *const priv = counter_priv(counter); const size_t channel_id = signal->id / 2; unsigned long irqflags; int ret; spin_lock_irqsave(&priv->lock, irqflags); priv->fck_prescaler[channel_id] = prescaler; ret = quad8_filter_clock_prescaler_set(priv, channel_id, prescaler); spin_unlock_irqrestore(&priv->lock, irqflags); return ret; } static struct counter_comp quad8_signal_ext[] = { COUNTER_COMP_SIGNAL_BOOL("cable_fault", quad8_signal_cable_fault_read, NULL), COUNTER_COMP_SIGNAL_BOOL("cable_fault_enable", quad8_signal_cable_fault_enable_read, quad8_signal_cable_fault_enable_write), COUNTER_COMP_SIGNAL_U8("filter_clock_prescaler", quad8_signal_fck_prescaler_read, quad8_signal_fck_prescaler_write) }; static const enum counter_signal_polarity quad8_polarities[] = { COUNTER_SIGNAL_POLARITY_POSITIVE, COUNTER_SIGNAL_POLARITY_NEGATIVE, }; static DEFINE_COUNTER_AVAILABLE(quad8_polarity_available, quad8_polarities); static DEFINE_COUNTER_ENUM(quad8_index_pol_enum, quad8_index_polarity_modes); static DEFINE_COUNTER_ENUM(quad8_synch_mode_enum, quad8_synchronous_modes); static struct counter_comp quad8_index_ext[] = { COUNTER_COMP_SIGNAL_ENUM("index_polarity", quad8_index_polarity_get, quad8_index_polarity_set, quad8_index_pol_enum), COUNTER_COMP_POLARITY(quad8_polarity_read, quad8_polarity_write, quad8_polarity_available), COUNTER_COMP_SIGNAL_ENUM("synchronous_mode", quad8_synchronous_mode_get, quad8_synchronous_mode_set, quad8_synch_mode_enum), }; #define QUAD8_QUAD_SIGNAL(_id, _name) { \ .id = (_id), \ .name = (_name), \ .ext = quad8_signal_ext, \ .num_ext = ARRAY_SIZE(quad8_signal_ext) \ } #define QUAD8_INDEX_SIGNAL(_id, _name) { \ .id = (_id), \ .name = (_name), \ .ext = quad8_index_ext, \ .num_ext = ARRAY_SIZE(quad8_index_ext) \ } static struct counter_signal quad8_signals[] = { QUAD8_QUAD_SIGNAL(0, "Channel 1 Quadrature A"), QUAD8_QUAD_SIGNAL(1, "Channel 1 Quadrature B"), QUAD8_QUAD_SIGNAL(2, "Channel 2 Quadrature A"), QUAD8_QUAD_SIGNAL(3, "Channel 2 Quadrature B"), QUAD8_QUAD_SIGNAL(4, "Channel 3 Quadrature A"), QUAD8_QUAD_SIGNAL(5, "Channel 3 Quadrature B"), QUAD8_QUAD_SIGNAL(6, "Channel 4 Quadrature A"), QUAD8_QUAD_SIGNAL(7, "Channel 4 Quadrature B"), QUAD8_QUAD_SIGNAL(8, "Channel 5 Quadrature A"), QUAD8_QUAD_SIGNAL(9, "Channel 5 Quadrature B"), QUAD8_QUAD_SIGNAL(10, "Channel 6 Quadrature A"), QUAD8_QUAD_SIGNAL(11, "Channel 6 Quadrature B"), QUAD8_QUAD_SIGNAL(12, "Channel 7 Quadrature A"), QUAD8_QUAD_SIGNAL(13, "Channel 7 Quadrature B"), QUAD8_QUAD_SIGNAL(14, "Channel 8 Quadrature A"), QUAD8_QUAD_SIGNAL(15, "Channel 8 Quadrature B"), QUAD8_INDEX_SIGNAL(16, "Channel 1 Index"), QUAD8_INDEX_SIGNAL(17, "Channel 2 Index"), QUAD8_INDEX_SIGNAL(18, "Channel 3 Index"), QUAD8_INDEX_SIGNAL(19, "Channel 4 Index"), QUAD8_INDEX_SIGNAL(20, "Channel 5 Index"), QUAD8_INDEX_SIGNAL(21, "Channel 6 Index"), QUAD8_INDEX_SIGNAL(22, "Channel 7 Index"), QUAD8_INDEX_SIGNAL(23, "Channel 8 Index") }; #define QUAD8_COUNT_SYNAPSES(_id) { \ { \ .actions_list = quad8_synapse_actions_list, \ .num_actions = ARRAY_SIZE(quad8_synapse_actions_list), \ .signal = quad8_signals + 2 * (_id) \ }, \ { \ .actions_list = quad8_synapse_actions_list, \ .num_actions = ARRAY_SIZE(quad8_synapse_actions_list), \ .signal = quad8_signals + 2 * (_id) + 1 \ }, \ { \ .actions_list = quad8_index_actions_list, \ .num_actions = ARRAY_SIZE(quad8_index_actions_list), \ .signal = quad8_signals + 2 * (_id) + 16 \ } \ } static struct counter_synapse quad8_count_synapses[][3] = { QUAD8_COUNT_SYNAPSES(0), QUAD8_COUNT_SYNAPSES(1), QUAD8_COUNT_SYNAPSES(2), QUAD8_COUNT_SYNAPSES(3), QUAD8_COUNT_SYNAPSES(4), QUAD8_COUNT_SYNAPSES(5), QUAD8_COUNT_SYNAPSES(6), QUAD8_COUNT_SYNAPSES(7) }; static const enum counter_count_mode quad8_cnt_modes[] = { COUNTER_COUNT_MODE_NORMAL, COUNTER_COUNT_MODE_RANGE_LIMIT, COUNTER_COUNT_MODE_NON_RECYCLE, COUNTER_COUNT_MODE_MODULO_N, }; static DEFINE_COUNTER_AVAILABLE(quad8_count_mode_available, quad8_cnt_modes); static DEFINE_COUNTER_ENUM(quad8_error_noise_enum, quad8_noise_error_states); static struct counter_comp quad8_count_ext[] = { COUNTER_COMP_CEILING(quad8_count_ceiling_read, quad8_count_ceiling_write), COUNTER_COMP_FLOOR(quad8_count_floor_read, NULL), COUNTER_COMP_COUNT_MODE(quad8_count_mode_read, quad8_count_mode_write, quad8_count_mode_available), COUNTER_COMP_DIRECTION(quad8_direction_read), COUNTER_COMP_ENABLE(quad8_count_enable_read, quad8_count_enable_write), COUNTER_COMP_COUNT_ENUM("error_noise", quad8_error_noise_get, NULL, quad8_error_noise_enum), COUNTER_COMP_PRESET(quad8_count_preset_read, quad8_count_preset_write), COUNTER_COMP_PRESET_ENABLE(quad8_count_preset_enable_read, quad8_count_preset_enable_write), }; #define QUAD8_COUNT(_id, _cntname) { \ .id = (_id), \ .name = (_cntname), \ .functions_list = quad8_count_functions_list, \ .num_functions = ARRAY_SIZE(quad8_count_functions_list), \ .synapses = quad8_count_synapses[(_id)], \ .num_synapses = 2, \ .ext = quad8_count_ext, \ .num_ext = ARRAY_SIZE(quad8_count_ext) \ } static struct counter_count quad8_counts[] = { QUAD8_COUNT(0, "Channel 1 Count"), QUAD8_COUNT(1, "Channel 2 Count"), QUAD8_COUNT(2, "Channel 3 Count"), QUAD8_COUNT(3, "Channel 4 Count"), QUAD8_COUNT(4, "Channel 5 Count"), QUAD8_COUNT(5, "Channel 6 Count"), QUAD8_COUNT(6, "Channel 7 Count"), QUAD8_COUNT(7, "Channel 8 Count") }; static irqreturn_t quad8_irq_handler(int irq, void *private) { struct counter_device *counter = private; struct quad8 *const priv = counter_priv(counter); unsigned int status; unsigned long irq_status; unsigned long channel; unsigned int flg_pins; u8 event; int ret; ret = regmap_read(priv->map, QUAD8_INTERRUPT_STATUS, &status); if (ret) return ret; if (!status) return IRQ_NONE; irq_status = status; for_each_set_bit(channel, &irq_status, QUAD8_NUM_COUNTERS) { flg_pins = u8_get_bits(priv->ior[channel], FLG_PINS); switch (flg_pins) { case FLG1_CARRY_FLG2_BORROW: event = COUNTER_EVENT_OVERFLOW; break; case FLG1_COMPARE_FLG2_BORROW: event = COUNTER_EVENT_THRESHOLD; break; case FLG1_CARRYBORROW_FLG2_UD: event = COUNTER_EVENT_OVERFLOW_UNDERFLOW; break; case FLG1_INDX_FLG2_E: event = COUNTER_EVENT_INDEX; break; default: /* should never reach this path */ WARN_ONCE(true, "invalid interrupt trigger function %u configured for channel %lu\n", flg_pins, channel); continue; } counter_push_event(counter, event, channel); } ret = regmap_write(priv->map, QUAD8_CHANNEL_OPERATION, CLEAR_PENDING_INTERRUPTS); if (ret) return ret; return IRQ_HANDLED; } static int quad8_init_counter(struct quad8 *const priv, const size_t channel) { int ret; ret = quad8_filter_clock_prescaler_set(priv, channel, 0); if (ret) return ret; ret = quad8_preset_register_set(priv, channel, 0); if (ret) return ret; ret = quad8_flag_register_reset(priv, channel); if (ret) return ret; /* Binary encoding; Normal count; non-quadrature mode */ priv->cmr[channel] = SELECT_CMR | BINARY | u8_encode_bits(NORMAL_COUNT, COUNT_MODE) | u8_encode_bits(NON_QUADRATURE, QUADRATURE_MODE); ret = regmap_write(priv->map, QUAD8_CONTROL(channel), priv->cmr[channel]); if (ret) return ret; /* Disable A and B inputs; preset on index; FLG1 as Carry */ priv->ior[channel] = SELECT_IOR | DISABLE_AB | u8_encode_bits(LOAD_CNTR, LOAD_PIN) | u8_encode_bits(FLG1_CARRY_FLG2_BORROW, FLG_PINS); ret = regmap_write(priv->map, QUAD8_CONTROL(channel), priv->ior[channel]); if (ret) return ret; /* Disable index function; negative index polarity */ priv->idr[channel] = SELECT_IDR | u8_encode_bits(DISABLE_INDEX_MODE, INDEX_MODE) | u8_encode_bits(NEGATIVE_INDEX_POLARITY, INDEX_POLARITY); return regmap_write(priv->map, QUAD8_CONTROL(channel), priv->idr[channel]); } static int quad8_probe(struct device *dev, unsigned int id) { struct counter_device *counter; struct quad8 *priv; void __iomem *regs; unsigned long i; int ret; if (!devm_request_region(dev, base[id], QUAD8_EXTENT, dev_name(dev))) { dev_err(dev, "Unable to lock port addresses (0x%X-0x%X)\n", base[id], base[id] + QUAD8_EXTENT); return -EBUSY; } counter = devm_counter_alloc(dev, sizeof(*priv)); if (!counter) return -ENOMEM; priv = counter_priv(counter); regs = devm_ioport_map(dev, base[id], QUAD8_EXTENT); if (!regs) return -ENOMEM; priv->map = devm_regmap_init_mmio(dev, regs, &quad8_regmap_config); if (IS_ERR(priv->map)) return dev_err_probe(dev, PTR_ERR(priv->map), "Unable to initialize register map\n"); /* Initialize Counter device and driver data */ counter->name = dev_name(dev); counter->parent = dev; counter->ops = &quad8_ops; counter->counts = quad8_counts; counter->num_counts = ARRAY_SIZE(quad8_counts); counter->signals = quad8_signals; counter->num_signals = ARRAY_SIZE(quad8_signals); spin_lock_init(&priv->lock); /* Reset Index/Interrupt Register */ ret = regmap_write(priv->map, QUAD8_INDEX_INTERRUPT, 0x00); if (ret) return ret; /* Reset all counters and disable interrupt function */ ret = regmap_write(priv->map, QUAD8_CHANNEL_OPERATION, RESET_COUNTERS | DISABLE_INTERRUPT_FUNCTION); if (ret) return ret; /* Set initial configuration for all counters */ for (i = 0; i < QUAD8_NUM_COUNTERS; i++) { ret = quad8_init_counter(priv, i); if (ret) return ret; } /* Disable Differential Encoder Cable Status for all channels */ ret = regmap_write(priv->map, QUAD8_CABLE_STATUS, GENMASK(7, 0)); if (ret) return ret; /* Enable all counters and enable interrupt function */ ret = regmap_write(priv->map, QUAD8_CHANNEL_OPERATION, ENABLE_COUNTERS | ENABLE_INTERRUPT_FUNCTION); if (ret) return ret; ret = devm_request_irq(&counter->dev, irq[id], quad8_irq_handler, IRQF_SHARED, counter->name, counter); if (ret) return ret; ret = devm_counter_add(dev, counter); if (ret < 0) return dev_err_probe(dev, ret, "Failed to add counter\n"); return 0; } static struct isa_driver quad8_driver = { .probe = quad8_probe, .driver = { .name = "104-quad-8" } }; module_isa_driver_with_irq(quad8_driver, num_quad8, num_irq); MODULE_AUTHOR("William Breathitt Gray <vilhelm.gray@gmail.com>"); MODULE_DESCRIPTION("ACCES 104-QUAD-8 driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(COUNTER);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1