Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jarkko Nikula | 1990 | 91.41% | 3 | 33.33% |
William Breathitt Gray | 115 | 5.28% | 4 | 44.44% |
Uwe Kleine-König | 72 | 3.31% | 2 | 22.22% |
Total | 2177 | 9 |
// SPDX-License-Identifier: GPL-2.0 /* * Intel Quadrature Encoder Peripheral driver * * Copyright (C) 2019-2021 Intel Corporation * * Author: Felipe Balbi (Intel) * Author: Jarkko Nikula <jarkko.nikula@linux.intel.com> * Author: Raymond Tan <raymond.tan@intel.com> */ #include <linux/counter.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/pci.h> #include <linux/pm_runtime.h> #define INTEL_QEPCON 0x00 #define INTEL_QEPFLT 0x04 #define INTEL_QEPCOUNT 0x08 #define INTEL_QEPMAX 0x0c #define INTEL_QEPWDT 0x10 #define INTEL_QEPCAPDIV 0x14 #define INTEL_QEPCNTR 0x18 #define INTEL_QEPCAPBUF 0x1c #define INTEL_QEPINT_STAT 0x20 #define INTEL_QEPINT_MASK 0x24 /* QEPCON */ #define INTEL_QEPCON_EN BIT(0) #define INTEL_QEPCON_FLT_EN BIT(1) #define INTEL_QEPCON_EDGE_A BIT(2) #define INTEL_QEPCON_EDGE_B BIT(3) #define INTEL_QEPCON_EDGE_INDX BIT(4) #define INTEL_QEPCON_SWPAB BIT(5) #define INTEL_QEPCON_OP_MODE BIT(6) #define INTEL_QEPCON_PH_ERR BIT(7) #define INTEL_QEPCON_COUNT_RST_MODE BIT(8) #define INTEL_QEPCON_INDX_GATING_MASK GENMASK(10, 9) #define INTEL_QEPCON_INDX_GATING(n) (((n) & 3) << 9) #define INTEL_QEPCON_INDX_PAL_PBL INTEL_QEPCON_INDX_GATING(0) #define INTEL_QEPCON_INDX_PAL_PBH INTEL_QEPCON_INDX_GATING(1) #define INTEL_QEPCON_INDX_PAH_PBL INTEL_QEPCON_INDX_GATING(2) #define INTEL_QEPCON_INDX_PAH_PBH INTEL_QEPCON_INDX_GATING(3) #define INTEL_QEPCON_CAP_MODE BIT(11) #define INTEL_QEPCON_FIFO_THRE_MASK GENMASK(14, 12) #define INTEL_QEPCON_FIFO_THRE(n) ((((n) - 1) & 7) << 12) #define INTEL_QEPCON_FIFO_EMPTY BIT(15) /* QEPFLT */ #define INTEL_QEPFLT_MAX_COUNT(n) ((n) & 0x1fffff) /* QEPINT */ #define INTEL_QEPINT_FIFOCRIT BIT(5) #define INTEL_QEPINT_FIFOENTRY BIT(4) #define INTEL_QEPINT_QEPDIR BIT(3) #define INTEL_QEPINT_QEPRST_UP BIT(2) #define INTEL_QEPINT_QEPRST_DOWN BIT(1) #define INTEL_QEPINT_WDT BIT(0) #define INTEL_QEPINT_MASK_ALL GENMASK(5, 0) #define INTEL_QEP_CLK_PERIOD_NS 10 struct intel_qep { struct mutex lock; struct device *dev; void __iomem *regs; bool enabled; /* Context save registers */ u32 qepcon; u32 qepflt; u32 qepmax; }; static inline u32 intel_qep_readl(struct intel_qep *qep, u32 offset) { return readl(qep->regs + offset); } static inline void intel_qep_writel(struct intel_qep *qep, u32 offset, u32 value) { writel(value, qep->regs + offset); } static void intel_qep_init(struct intel_qep *qep) { u32 reg; reg = intel_qep_readl(qep, INTEL_QEPCON); reg &= ~INTEL_QEPCON_EN; intel_qep_writel(qep, INTEL_QEPCON, reg); qep->enabled = false; /* * Make sure peripheral is disabled by flushing the write with * a dummy read */ reg = intel_qep_readl(qep, INTEL_QEPCON); reg &= ~(INTEL_QEPCON_OP_MODE | INTEL_QEPCON_FLT_EN); reg |= INTEL_QEPCON_EDGE_A | INTEL_QEPCON_EDGE_B | INTEL_QEPCON_EDGE_INDX | INTEL_QEPCON_COUNT_RST_MODE; intel_qep_writel(qep, INTEL_QEPCON, reg); intel_qep_writel(qep, INTEL_QEPINT_MASK, INTEL_QEPINT_MASK_ALL); } static int intel_qep_count_read(struct counter_device *counter, struct counter_count *count, u64 *val) { struct intel_qep *const qep = counter_priv(counter); pm_runtime_get_sync(qep->dev); *val = intel_qep_readl(qep, INTEL_QEPCOUNT); pm_runtime_put(qep->dev); return 0; } static const enum counter_function intel_qep_count_functions[] = { COUNTER_FUNCTION_QUADRATURE_X4, }; static int intel_qep_function_read(struct counter_device *counter, struct counter_count *count, enum counter_function *function) { *function = COUNTER_FUNCTION_QUADRATURE_X4; return 0; } static const enum counter_synapse_action intel_qep_synapse_actions[] = { COUNTER_SYNAPSE_ACTION_BOTH_EDGES, }; static int intel_qep_action_read(struct counter_device *counter, struct counter_count *count, struct counter_synapse *synapse, enum counter_synapse_action *action) { *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES; return 0; } static const struct counter_ops intel_qep_counter_ops = { .count_read = intel_qep_count_read, .function_read = intel_qep_function_read, .action_read = intel_qep_action_read, }; #define INTEL_QEP_SIGNAL(_id, _name) { \ .id = (_id), \ .name = (_name), \ } static struct counter_signal intel_qep_signals[] = { INTEL_QEP_SIGNAL(0, "Phase A"), INTEL_QEP_SIGNAL(1, "Phase B"), INTEL_QEP_SIGNAL(2, "Index"), }; #define INTEL_QEP_SYNAPSE(_signal_id) { \ .actions_list = intel_qep_synapse_actions, \ .num_actions = ARRAY_SIZE(intel_qep_synapse_actions), \ .signal = &intel_qep_signals[(_signal_id)], \ } static struct counter_synapse intel_qep_count_synapses[] = { INTEL_QEP_SYNAPSE(0), INTEL_QEP_SYNAPSE(1), INTEL_QEP_SYNAPSE(2), }; static int intel_qep_ceiling_read(struct counter_device *counter, struct counter_count *count, u64 *ceiling) { struct intel_qep *qep = counter_priv(counter); pm_runtime_get_sync(qep->dev); *ceiling = intel_qep_readl(qep, INTEL_QEPMAX); pm_runtime_put(qep->dev); return 0; } static int intel_qep_ceiling_write(struct counter_device *counter, struct counter_count *count, u64 max) { struct intel_qep *qep = counter_priv(counter); int ret = 0; /* Intel QEP ceiling configuration only supports 32-bit values */ if (max != (u32)max) return -ERANGE; mutex_lock(&qep->lock); if (qep->enabled) { ret = -EBUSY; goto out; } pm_runtime_get_sync(qep->dev); intel_qep_writel(qep, INTEL_QEPMAX, max); pm_runtime_put(qep->dev); out: mutex_unlock(&qep->lock); return ret; } static int intel_qep_enable_read(struct counter_device *counter, struct counter_count *count, u8 *enable) { struct intel_qep *qep = counter_priv(counter); *enable = qep->enabled; return 0; } static int intel_qep_enable_write(struct counter_device *counter, struct counter_count *count, u8 val) { struct intel_qep *qep = counter_priv(counter); u32 reg; bool changed; mutex_lock(&qep->lock); changed = val ^ qep->enabled; if (!changed) goto out; pm_runtime_get_sync(qep->dev); reg = intel_qep_readl(qep, INTEL_QEPCON); if (val) { /* Enable peripheral and keep runtime PM always on */ reg |= INTEL_QEPCON_EN; pm_runtime_get_noresume(qep->dev); } else { /* Let runtime PM be idle and disable peripheral */ pm_runtime_put_noidle(qep->dev); reg &= ~INTEL_QEPCON_EN; } intel_qep_writel(qep, INTEL_QEPCON, reg); pm_runtime_put(qep->dev); qep->enabled = val; out: mutex_unlock(&qep->lock); return 0; } static int intel_qep_spike_filter_ns_read(struct counter_device *counter, struct counter_count *count, u64 *length) { struct intel_qep *qep = counter_priv(counter); u32 reg; pm_runtime_get_sync(qep->dev); reg = intel_qep_readl(qep, INTEL_QEPCON); if (!(reg & INTEL_QEPCON_FLT_EN)) { pm_runtime_put(qep->dev); return 0; } reg = INTEL_QEPFLT_MAX_COUNT(intel_qep_readl(qep, INTEL_QEPFLT)); pm_runtime_put(qep->dev); *length = (reg + 2) * INTEL_QEP_CLK_PERIOD_NS; return 0; } static int intel_qep_spike_filter_ns_write(struct counter_device *counter, struct counter_count *count, u64 length) { struct intel_qep *qep = counter_priv(counter); u32 reg; bool enable; int ret = 0; /* * Spike filter length is (MAX_COUNT + 2) clock periods. * Disable filter when userspace writes 0, enable for valid * nanoseconds values and error out otherwise. */ do_div(length, INTEL_QEP_CLK_PERIOD_NS); if (length == 0) { enable = false; length = 0; } else if (length >= 2) { enable = true; length -= 2; } else { return -EINVAL; } if (length > INTEL_QEPFLT_MAX_COUNT(length)) return -ERANGE; mutex_lock(&qep->lock); if (qep->enabled) { ret = -EBUSY; goto out; } pm_runtime_get_sync(qep->dev); reg = intel_qep_readl(qep, INTEL_QEPCON); if (enable) reg |= INTEL_QEPCON_FLT_EN; else reg &= ~INTEL_QEPCON_FLT_EN; intel_qep_writel(qep, INTEL_QEPFLT, length); intel_qep_writel(qep, INTEL_QEPCON, reg); pm_runtime_put(qep->dev); out: mutex_unlock(&qep->lock); return ret; } static int intel_qep_preset_enable_read(struct counter_device *counter, struct counter_count *count, u8 *preset_enable) { struct intel_qep *qep = counter_priv(counter); u32 reg; pm_runtime_get_sync(qep->dev); reg = intel_qep_readl(qep, INTEL_QEPCON); pm_runtime_put(qep->dev); *preset_enable = !(reg & INTEL_QEPCON_COUNT_RST_MODE); return 0; } static int intel_qep_preset_enable_write(struct counter_device *counter, struct counter_count *count, u8 val) { struct intel_qep *qep = counter_priv(counter); u32 reg; int ret = 0; mutex_lock(&qep->lock); if (qep->enabled) { ret = -EBUSY; goto out; } pm_runtime_get_sync(qep->dev); reg = intel_qep_readl(qep, INTEL_QEPCON); if (val) reg &= ~INTEL_QEPCON_COUNT_RST_MODE; else reg |= INTEL_QEPCON_COUNT_RST_MODE; intel_qep_writel(qep, INTEL_QEPCON, reg); pm_runtime_put(qep->dev); out: mutex_unlock(&qep->lock); return ret; } static struct counter_comp intel_qep_count_ext[] = { COUNTER_COMP_ENABLE(intel_qep_enable_read, intel_qep_enable_write), COUNTER_COMP_CEILING(intel_qep_ceiling_read, intel_qep_ceiling_write), COUNTER_COMP_PRESET_ENABLE(intel_qep_preset_enable_read, intel_qep_preset_enable_write), COUNTER_COMP_COUNT_U64("spike_filter_ns", intel_qep_spike_filter_ns_read, intel_qep_spike_filter_ns_write), }; static struct counter_count intel_qep_counter_count[] = { { .id = 0, .name = "Channel 1 Count", .functions_list = intel_qep_count_functions, .num_functions = ARRAY_SIZE(intel_qep_count_functions), .synapses = intel_qep_count_synapses, .num_synapses = ARRAY_SIZE(intel_qep_count_synapses), .ext = intel_qep_count_ext, .num_ext = ARRAY_SIZE(intel_qep_count_ext), }, }; static int intel_qep_probe(struct pci_dev *pci, const struct pci_device_id *id) { struct counter_device *counter; struct intel_qep *qep; struct device *dev = &pci->dev; void __iomem *regs; int ret; counter = devm_counter_alloc(dev, sizeof(*qep)); if (!counter) return -ENOMEM; qep = counter_priv(counter); ret = pcim_enable_device(pci); if (ret) return ret; pci_set_master(pci); ret = pcim_iomap_regions(pci, BIT(0), pci_name(pci)); if (ret) return ret; regs = pcim_iomap_table(pci)[0]; if (!regs) return -ENOMEM; qep->dev = dev; qep->regs = regs; mutex_init(&qep->lock); intel_qep_init(qep); pci_set_drvdata(pci, qep); counter->name = pci_name(pci); counter->parent = dev; counter->ops = &intel_qep_counter_ops; counter->counts = intel_qep_counter_count; counter->num_counts = ARRAY_SIZE(intel_qep_counter_count); counter->signals = intel_qep_signals; counter->num_signals = ARRAY_SIZE(intel_qep_signals); qep->enabled = false; pm_runtime_put(dev); pm_runtime_allow(dev); ret = devm_counter_add(&pci->dev, counter); if (ret < 0) return dev_err_probe(&pci->dev, ret, "Failed to add counter\n"); return 0; } static void intel_qep_remove(struct pci_dev *pci) { struct intel_qep *qep = pci_get_drvdata(pci); struct device *dev = &pci->dev; pm_runtime_forbid(dev); if (!qep->enabled) pm_runtime_get(dev); intel_qep_writel(qep, INTEL_QEPCON, 0); } static int __maybe_unused intel_qep_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct intel_qep *qep = pci_get_drvdata(pdev); qep->qepcon = intel_qep_readl(qep, INTEL_QEPCON); qep->qepflt = intel_qep_readl(qep, INTEL_QEPFLT); qep->qepmax = intel_qep_readl(qep, INTEL_QEPMAX); return 0; } static int __maybe_unused intel_qep_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct intel_qep *qep = pci_get_drvdata(pdev); /* * Make sure peripheral is disabled when restoring registers and * control register bits that are writable only when the peripheral * is disabled */ intel_qep_writel(qep, INTEL_QEPCON, 0); intel_qep_readl(qep, INTEL_QEPCON); intel_qep_writel(qep, INTEL_QEPFLT, qep->qepflt); intel_qep_writel(qep, INTEL_QEPMAX, qep->qepmax); intel_qep_writel(qep, INTEL_QEPINT_MASK, INTEL_QEPINT_MASK_ALL); /* Restore all other control register bits except enable status */ intel_qep_writel(qep, INTEL_QEPCON, qep->qepcon & ~INTEL_QEPCON_EN); intel_qep_readl(qep, INTEL_QEPCON); /* Restore enable status */ intel_qep_writel(qep, INTEL_QEPCON, qep->qepcon); return 0; } static UNIVERSAL_DEV_PM_OPS(intel_qep_pm_ops, intel_qep_suspend, intel_qep_resume, NULL); static const struct pci_device_id intel_qep_id_table[] = { /* EHL */ { PCI_VDEVICE(INTEL, 0x4bc3), }, { PCI_VDEVICE(INTEL, 0x4b81), }, { PCI_VDEVICE(INTEL, 0x4b82), }, { PCI_VDEVICE(INTEL, 0x4b83), }, { } /* Terminating Entry */ }; MODULE_DEVICE_TABLE(pci, intel_qep_id_table); static struct pci_driver intel_qep_driver = { .name = "intel-qep", .id_table = intel_qep_id_table, .probe = intel_qep_probe, .remove = intel_qep_remove, .driver = { .pm = &intel_qep_pm_ops, } }; module_pci_driver(intel_qep_driver); MODULE_AUTHOR("Felipe Balbi (Intel)"); MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>"); MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Intel Quadrature Encoder Peripheral driver"); MODULE_IMPORT_NS(COUNTER);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1