Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pierre Gondois | 852 | 24.27% | 6 | 11.32% |
Viresh Kumar | 808 | 23.02% | 8 | 15.09% |
Ashwin Chaugule | 503 | 14.33% | 4 | 7.55% |
Ionela Voinescu | 408 | 11.62% | 6 | 11.32% |
Xiongfeng Wang | 327 | 9.32% | 2 | 3.77% |
George Cherian | 213 | 6.07% | 2 | 3.77% |
Prashanth Prakash | 154 | 4.39% | 4 | 7.55% |
Jeremy Linton | 78 | 2.22% | 1 | 1.89% |
Vincent Guittot | 42 | 1.20% | 1 | 1.89% |
Aleksandr Mishin | 30 | 0.85% | 1 | 1.89% |
Hoan Tran | 22 | 0.63% | 1 | 1.89% |
Liao Chang | 18 | 0.51% | 2 | 3.77% |
Al Stone | 11 | 0.31% | 1 | 1.89% |
Chunyu Hu | 9 | 0.26% | 1 | 1.89% |
Hanjun Guo | 8 | 0.23% | 2 | 3.77% |
AKASHI Takahiro | 5 | 0.14% | 1 | 1.89% |
Peter Zijlstra | 5 | 0.14% | 2 | 3.77% |
Tom Saeger | 5 | 0.14% | 1 | 1.89% |
Srinivas Pandruvada | 3 | 0.09% | 1 | 1.89% |
Dietmar Eggemann | 3 | 0.09% | 1 | 1.89% |
Thomas Gleixner | 2 | 0.06% | 1 | 1.89% |
Rafael J. Wysocki | 1 | 0.03% | 1 | 1.89% |
Yang Shunyong | 1 | 0.03% | 1 | 1.89% |
Nathan Chancellor | 1 | 0.03% | 1 | 1.89% |
Ingo Molnar | 1 | 0.03% | 1 | 1.89% |
Total | 3510 | 53 |
// SPDX-License-Identifier: GPL-2.0-only /* * CPPC (Collaborative Processor Performance Control) driver for * interfacing with the CPUfreq layer and governors. See * cppc_acpi.c for CPPC specific methods. * * (C) Copyright 2014, 2015 Linaro Ltd. * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> */ #define pr_fmt(fmt) "CPPC Cpufreq:" fmt #include <linux/arch_topology.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/irq_work.h> #include <linux/kthread.h> #include <linux/time.h> #include <linux/vmalloc.h> #include <uapi/linux/sched/types.h> #include <asm/unaligned.h> #include <acpi/cppc_acpi.h> /* * This list contains information parsed from per CPU ACPI _CPC and _PSD * structures: e.g. the highest and lowest supported performance, capabilities, * desired performance, level requested etc. Depending on the share_type, not * all CPUs will have an entry in the list. */ static LIST_HEAD(cpu_data_list); static bool boost_supported; struct cppc_workaround_oem_info { char oem_id[ACPI_OEM_ID_SIZE + 1]; char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; u32 oem_revision; }; static struct cppc_workaround_oem_info wa_info[] = { { .oem_id = "HISI ", .oem_table_id = "HIP07 ", .oem_revision = 0, }, { .oem_id = "HISI ", .oem_table_id = "HIP08 ", .oem_revision = 0, } }; static struct cpufreq_driver cppc_cpufreq_driver; static enum { FIE_UNSET = -1, FIE_ENABLED, FIE_DISABLED } fie_disabled = FIE_UNSET; #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE module_param(fie_disabled, int, 0444); MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)"); /* Frequency invariance support */ struct cppc_freq_invariance { int cpu; struct irq_work irq_work; struct kthread_work work; struct cppc_perf_fb_ctrs prev_perf_fb_ctrs; struct cppc_cpudata *cpu_data; }; static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv); static struct kthread_worker *kworker_fie; static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu); static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, struct cppc_perf_fb_ctrs *fb_ctrs_t0, struct cppc_perf_fb_ctrs *fb_ctrs_t1); /** * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance * @work: The work item. * * The CPPC driver register itself with the topology core to provide its own * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which * gets called by the scheduler on every tick. * * Note that the arch specific counters have higher priority than CPPC counters, * if available, though the CPPC driver doesn't need to have any special * handling for that. * * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we * reach here from hard-irq context), which then schedules a normal work item * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable * based on the counter updates since the last tick. */ static void cppc_scale_freq_workfn(struct kthread_work *work) { struct cppc_freq_invariance *cppc_fi; struct cppc_perf_fb_ctrs fb_ctrs = {0}; struct cppc_cpudata *cpu_data; unsigned long local_freq_scale; u64 perf; cppc_fi = container_of(work, struct cppc_freq_invariance, work); cpu_data = cppc_fi->cpu_data; if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) { pr_warn("%s: failed to read perf counters\n", __func__); return; } perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs, &fb_ctrs); cppc_fi->prev_perf_fb_ctrs = fb_ctrs; perf <<= SCHED_CAPACITY_SHIFT; local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf); /* This can happen due to counter's overflow */ if (unlikely(local_freq_scale > 1024)) local_freq_scale = 1024; per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale; } static void cppc_irq_work(struct irq_work *irq_work) { struct cppc_freq_invariance *cppc_fi; cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work); kthread_queue_work(kworker_fie, &cppc_fi->work); } static void cppc_scale_freq_tick(void) { struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id()); /* * cppc_get_perf_ctrs() can potentially sleep, call that from the right * context. */ irq_work_queue(&cppc_fi->irq_work); } static struct scale_freq_data cppc_sftd = { .source = SCALE_FREQ_SOURCE_CPPC, .set_freq_scale = cppc_scale_freq_tick, }; static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) { struct cppc_freq_invariance *cppc_fi; int cpu, ret; if (fie_disabled) return; for_each_cpu(cpu, policy->cpus) { cppc_fi = &per_cpu(cppc_freq_inv, cpu); cppc_fi->cpu = cpu; cppc_fi->cpu_data = policy->driver_data; kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn); init_irq_work(&cppc_fi->irq_work, cppc_irq_work); ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs); if (ret) { pr_warn("%s: failed to read perf counters for cpu:%d: %d\n", __func__, cpu, ret); /* * Don't abort if the CPU was offline while the driver * was getting registered. */ if (cpu_online(cpu)) return; } } /* Register for freq-invariance */ topology_set_scale_freq_source(&cppc_sftd, policy->cpus); } /* * We free all the resources on policy's removal and not on CPU removal as the * irq-work are per-cpu and the hotplug core takes care of flushing the pending * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work * fires on another CPU after the concerned CPU is removed, it won't harm. * * We just need to make sure to remove them all on policy->exit(). */ static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) { struct cppc_freq_invariance *cppc_fi; int cpu; if (fie_disabled) return; /* policy->cpus will be empty here, use related_cpus instead */ topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus); for_each_cpu(cpu, policy->related_cpus) { cppc_fi = &per_cpu(cppc_freq_inv, cpu); irq_work_sync(&cppc_fi->irq_work); kthread_cancel_work_sync(&cppc_fi->work); } } static void __init cppc_freq_invariance_init(void) { struct sched_attr attr = { .size = sizeof(struct sched_attr), .sched_policy = SCHED_DEADLINE, .sched_nice = 0, .sched_priority = 0, /* * Fake (unused) bandwidth; workaround to "fix" * priority inheritance. */ .sched_runtime = 1000000, .sched_deadline = 10000000, .sched_period = 10000000, }; int ret; if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) { fie_disabled = FIE_ENABLED; if (cppc_perf_ctrs_in_pcc()) { pr_info("FIE not enabled on systems with registers in PCC\n"); fie_disabled = FIE_DISABLED; } } if (fie_disabled) return; kworker_fie = kthread_create_worker(0, "cppc_fie"); if (IS_ERR(kworker_fie)) { pr_warn("%s: failed to create kworker_fie: %ld\n", __func__, PTR_ERR(kworker_fie)); fie_disabled = FIE_DISABLED; return; } ret = sched_setattr_nocheck(kworker_fie->task, &attr); if (ret) { pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__, ret); kthread_destroy_worker(kworker_fie); fie_disabled = FIE_DISABLED; } } static void cppc_freq_invariance_exit(void) { if (fie_disabled) return; kthread_destroy_worker(kworker_fie); } #else static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) { } static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) { } static inline void cppc_freq_invariance_init(void) { } static inline void cppc_freq_invariance_exit(void) { } #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */ static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct cppc_cpudata *cpu_data = policy->driver_data; unsigned int cpu = policy->cpu; struct cpufreq_freqs freqs; u32 desired_perf; int ret = 0; desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq); /* Return if it is exactly the same perf */ if (desired_perf == cpu_data->perf_ctrls.desired_perf) return ret; cpu_data->perf_ctrls.desired_perf = desired_perf; freqs.old = policy->cur; freqs.new = target_freq; cpufreq_freq_transition_begin(policy, &freqs); ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); cpufreq_freq_transition_end(policy, &freqs, ret != 0); if (ret) pr_debug("Failed to set target on CPU:%d. ret:%d\n", cpu, ret); return ret; } static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy, unsigned int target_freq) { struct cppc_cpudata *cpu_data = policy->driver_data; unsigned int cpu = policy->cpu; u32 desired_perf; int ret; desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq); cpu_data->perf_ctrls.desired_perf = desired_perf; ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); if (ret) { pr_debug("Failed to set target on CPU:%d. ret:%d\n", cpu, ret); return 0; } return target_freq; } static int cppc_verify_policy(struct cpufreq_policy_data *policy) { cpufreq_verify_within_cpu_limits(policy); return 0; } /* * The PCC subspace describes the rate at which platform can accept commands * on the shared PCC channel (including READs which do not count towards freq * transition requests), so ideally we need to use the PCC values as a fallback * if we don't have a platform specific transition_delay_us */ #ifdef CONFIG_ARM64 #include <asm/cputype.h> static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) { unsigned long implementor = read_cpuid_implementor(); unsigned long part_num = read_cpuid_part_number(); switch (implementor) { case ARM_CPU_IMP_QCOM: switch (part_num) { case QCOM_CPU_PART_FALKOR_V1: case QCOM_CPU_PART_FALKOR: return 10000; } } return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; } #else static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) { return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; } #endif #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL) static DEFINE_PER_CPU(unsigned int, efficiency_class); static void cppc_cpufreq_register_em(struct cpufreq_policy *policy); /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */ #define CPPC_EM_CAP_STEP (20) /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */ #define CPPC_EM_COST_STEP (1) /* Add a cost gap correspnding to the energy of 4 CPUs. */ #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \ / CPPC_EM_CAP_STEP) static unsigned int get_perf_level_count(struct cpufreq_policy *policy) { struct cppc_perf_caps *perf_caps; unsigned int min_cap, max_cap; struct cppc_cpudata *cpu_data; int cpu = policy->cpu; cpu_data = policy->driver_data; perf_caps = &cpu_data->perf_caps; max_cap = arch_scale_cpu_capacity(cpu); min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, perf_caps->highest_perf); if ((min_cap == 0) || (max_cap < min_cap)) return 0; return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP; } /* * The cost is defined as: * cost = power * max_frequency / frequency */ static inline unsigned long compute_cost(int cpu, int step) { return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) + step * CPPC_EM_COST_STEP; } static int cppc_get_cpu_power(struct device *cpu_dev, unsigned long *power, unsigned long *KHz) { unsigned long perf_step, perf_prev, perf, perf_check; unsigned int min_step, max_step, step, step_check; unsigned long prev_freq = *KHz; unsigned int min_cap, max_cap; struct cpufreq_policy *policy; struct cppc_perf_caps *perf_caps; struct cppc_cpudata *cpu_data; policy = cpufreq_cpu_get_raw(cpu_dev->id); cpu_data = policy->driver_data; perf_caps = &cpu_data->perf_caps; max_cap = arch_scale_cpu_capacity(cpu_dev->id); min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, perf_caps->highest_perf); perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf, max_cap); min_step = min_cap / CPPC_EM_CAP_STEP; max_step = max_cap / CPPC_EM_CAP_STEP; perf_prev = cppc_khz_to_perf(perf_caps, *KHz); step = perf_prev / perf_step; if (step > max_step) return -EINVAL; if (min_step == max_step) { step = max_step; perf = perf_caps->highest_perf; } else if (step < min_step) { step = min_step; perf = perf_caps->lowest_perf; } else { step++; if (step == max_step) perf = perf_caps->highest_perf; else perf = step * perf_step; } *KHz = cppc_perf_to_khz(perf_caps, perf); perf_check = cppc_khz_to_perf(perf_caps, *KHz); step_check = perf_check / perf_step; /* * To avoid bad integer approximation, check that new frequency value * increased and that the new frequency will be converted to the * desired step value. */ while ((*KHz == prev_freq) || (step_check != step)) { perf++; *KHz = cppc_perf_to_khz(perf_caps, perf); perf_check = cppc_khz_to_perf(perf_caps, *KHz); step_check = perf_check / perf_step; } /* * With an artificial EM, only the cost value is used. Still the power * is populated such as 0 < power < EM_MAX_POWER. This allows to add * more sense to the artificial performance states. */ *power = compute_cost(cpu_dev->id, step); return 0; } static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz, unsigned long *cost) { unsigned long perf_step, perf_prev; struct cppc_perf_caps *perf_caps; struct cpufreq_policy *policy; struct cppc_cpudata *cpu_data; unsigned int max_cap; int step; policy = cpufreq_cpu_get_raw(cpu_dev->id); cpu_data = policy->driver_data; perf_caps = &cpu_data->perf_caps; max_cap = arch_scale_cpu_capacity(cpu_dev->id); perf_prev = cppc_khz_to_perf(perf_caps, KHz); perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap; step = perf_prev / perf_step; *cost = compute_cost(cpu_dev->id, step); return 0; } static int populate_efficiency_class(void) { struct acpi_madt_generic_interrupt *gicc; DECLARE_BITMAP(used_classes, 256) = {}; int class, cpu, index; for_each_possible_cpu(cpu) { gicc = acpi_cpu_get_madt_gicc(cpu); class = gicc->efficiency_class; bitmap_set(used_classes, class, 1); } if (bitmap_weight(used_classes, 256) <= 1) { pr_debug("Efficiency classes are all equal (=%d). " "No EM registered", class); return -EINVAL; } /* * Squeeze efficiency class values on [0:#efficiency_class-1]. * Values are per spec in [0:255]. */ index = 0; for_each_set_bit(class, used_classes, 256) { for_each_possible_cpu(cpu) { gicc = acpi_cpu_get_madt_gicc(cpu); if (gicc->efficiency_class == class) per_cpu(efficiency_class, cpu) = index; } index++; } cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em; return 0; } static void cppc_cpufreq_register_em(struct cpufreq_policy *policy) { struct cppc_cpudata *cpu_data; struct em_data_callback em_cb = EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost); cpu_data = policy->driver_data; em_dev_register_perf_domain(get_cpu_device(policy->cpu), get_perf_level_count(policy), &em_cb, cpu_data->shared_cpu_map, 0); } #else static int populate_efficiency_class(void) { return 0; } #endif static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu) { struct cppc_cpudata *cpu_data; int ret; cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); if (!cpu_data) goto out; if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL)) goto free_cpu; ret = acpi_get_psd_map(cpu, cpu_data); if (ret) { pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret); goto free_mask; } ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps); if (ret) { pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret); goto free_mask; } list_add(&cpu_data->node, &cpu_data_list); return cpu_data; free_mask: free_cpumask_var(cpu_data->shared_cpu_map); free_cpu: kfree(cpu_data); out: return NULL; } static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy) { struct cppc_cpudata *cpu_data = policy->driver_data; list_del(&cpu_data->node); free_cpumask_var(cpu_data->shared_cpu_map); kfree(cpu_data); policy->driver_data = NULL; } static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) { unsigned int cpu = policy->cpu; struct cppc_cpudata *cpu_data; struct cppc_perf_caps *caps; int ret; cpu_data = cppc_cpufreq_get_cpu_data(cpu); if (!cpu_data) { pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu); return -ENODEV; } caps = &cpu_data->perf_caps; policy->driver_data = cpu_data; /* * Set min to lowest nonlinear perf to avoid any efficiency penalty (see * Section 8.4.7.1.1.5 of ACPI 6.1 spec) */ policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf); policy->max = cppc_perf_to_khz(caps, caps->nominal_perf); /* * Set cpuinfo.min_freq to Lowest to make the full range of performance * available if userspace wants to use any perf between lowest & lowest * nonlinear perf */ policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf); policy->cpuinfo.max_freq = cppc_perf_to_khz(caps, caps->nominal_perf); policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu); policy->shared_type = cpu_data->shared_type; switch (policy->shared_type) { case CPUFREQ_SHARED_TYPE_HW: case CPUFREQ_SHARED_TYPE_NONE: /* Nothing to be done - we'll have a policy for each CPU */ break; case CPUFREQ_SHARED_TYPE_ANY: /* * All CPUs in the domain will share a policy and all cpufreq * operations will use a single cppc_cpudata structure stored * in policy->driver_data. */ cpumask_copy(policy->cpus, cpu_data->shared_cpu_map); break; default: pr_debug("Unsupported CPU co-ord type: %d\n", policy->shared_type); ret = -EFAULT; goto out; } policy->fast_switch_possible = cppc_allow_fast_switch(); policy->dvfs_possible_from_any_cpu = true; /* * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost * is supported. */ if (caps->highest_perf > caps->nominal_perf) boost_supported = true; /* Set policy->cur to max now. The governors will adjust later. */ policy->cur = cppc_perf_to_khz(caps, caps->highest_perf); cpu_data->perf_ctrls.desired_perf = caps->highest_perf; ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); if (ret) { pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", caps->highest_perf, cpu, ret); goto out; } cppc_cpufreq_cpu_fie_init(policy); return 0; out: cppc_cpufreq_put_cpu_data(policy); return ret; } static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy) { struct cppc_cpudata *cpu_data = policy->driver_data; struct cppc_perf_caps *caps = &cpu_data->perf_caps; unsigned int cpu = policy->cpu; int ret; cppc_cpufreq_cpu_fie_exit(policy); cpu_data->perf_ctrls.desired_perf = caps->lowest_perf; ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); if (ret) pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", caps->lowest_perf, cpu, ret); cppc_cpufreq_put_cpu_data(policy); return 0; } static inline u64 get_delta(u64 t1, u64 t0) { if (t1 > t0 || t0 > ~(u32)0) return t1 - t0; return (u32)t1 - (u32)t0; } static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, struct cppc_perf_fb_ctrs *fb_ctrs_t0, struct cppc_perf_fb_ctrs *fb_ctrs_t1) { u64 delta_reference, delta_delivered; u64 reference_perf; reference_perf = fb_ctrs_t0->reference_perf; delta_reference = get_delta(fb_ctrs_t1->reference, fb_ctrs_t0->reference); delta_delivered = get_delta(fb_ctrs_t1->delivered, fb_ctrs_t0->delivered); /* Check to avoid divide-by zero and invalid delivered_perf */ if (!delta_reference || !delta_delivered) return cpu_data->perf_ctrls.desired_perf; return (reference_perf * delta_delivered) / delta_reference; } static unsigned int cppc_cpufreq_get_rate(unsigned int cpu) { struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); struct cppc_cpudata *cpu_data; u64 delivered_perf; int ret; if (!policy) return -ENODEV; cpu_data = policy->driver_data; cpufreq_cpu_put(policy); ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0); if (ret) return 0; udelay(2); /* 2usec delay between sampling */ ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1); if (ret) return 0; delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0, &fb_ctrs_t1); return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf); } static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state) { struct cppc_cpudata *cpu_data = policy->driver_data; struct cppc_perf_caps *caps = &cpu_data->perf_caps; int ret; if (!boost_supported) { pr_err("BOOST not supported by CPU or firmware\n"); return -EINVAL; } if (state) policy->max = cppc_perf_to_khz(caps, caps->highest_perf); else policy->max = cppc_perf_to_khz(caps, caps->nominal_perf); policy->cpuinfo.max_freq = policy->max; ret = freq_qos_update_request(policy->max_freq_req, policy->max); if (ret < 0) return ret; return 0; } static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) { struct cppc_cpudata *cpu_data = policy->driver_data; return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf); } cpufreq_freq_attr_ro(freqdomain_cpus); static struct freq_attr *cppc_cpufreq_attr[] = { &freqdomain_cpus, NULL, }; static struct cpufreq_driver cppc_cpufreq_driver = { .flags = CPUFREQ_CONST_LOOPS, .verify = cppc_verify_policy, .target = cppc_cpufreq_set_target, .get = cppc_cpufreq_get_rate, .fast_switch = cppc_cpufreq_fast_switch, .init = cppc_cpufreq_cpu_init, .exit = cppc_cpufreq_cpu_exit, .set_boost = cppc_cpufreq_set_boost, .attr = cppc_cpufreq_attr, .name = "cppc_cpufreq", }; /* * HISI platform does not support delivered performance counter and * reference performance counter. It can calculate the performance using the * platform specific mechanism. We reuse the desired performance register to * store the real performance calculated by the platform. */ static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu) { struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); struct cppc_cpudata *cpu_data; u64 desired_perf; int ret; if (!policy) return -ENODEV; cpu_data = policy->driver_data; cpufreq_cpu_put(policy); ret = cppc_get_desired_perf(cpu, &desired_perf); if (ret < 0) return -EIO; return cppc_perf_to_khz(&cpu_data->perf_caps, desired_perf); } static void cppc_check_hisi_workaround(void) { struct acpi_table_header *tbl; acpi_status status = AE_OK; int i; status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl); if (ACPI_FAILURE(status) || !tbl) return; for (i = 0; i < ARRAY_SIZE(wa_info); i++) { if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) && !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && wa_info[i].oem_revision == tbl->oem_revision) { /* Overwrite the get() callback */ cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate; fie_disabled = FIE_DISABLED; break; } } acpi_put_table(tbl); } static int __init cppc_cpufreq_init(void) { int ret; if (!acpi_cpc_valid()) return -ENODEV; cppc_check_hisi_workaround(); cppc_freq_invariance_init(); populate_efficiency_class(); ret = cpufreq_register_driver(&cppc_cpufreq_driver); if (ret) cppc_freq_invariance_exit(); return ret; } static inline void free_cpu_data(void) { struct cppc_cpudata *iter, *tmp; list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) { free_cpumask_var(iter->shared_cpu_map); list_del(&iter->node); kfree(iter); } } static void __exit cppc_cpufreq_exit(void) { cpufreq_unregister_driver(&cppc_cpufreq_driver); cppc_freq_invariance_exit(); free_cpu_data(); } module_exit(cppc_cpufreq_exit); MODULE_AUTHOR("Ashwin Chaugule"); MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); MODULE_LICENSE("GPL"); late_initcall(cppc_cpufreq_init); static const struct acpi_device_id cppc_acpi_ids[] __used = { {ACPI_PROCESSOR_DEVICE_HID, }, {} }; MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1