Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Neal Liu | 5820 | 93.66% | 3 | 42.86% |
Herbert Xu | 394 | 6.34% | 4 | 57.14% |
Total | 6214 | 7 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2021 Aspeed Technology Inc. */ #include "aspeed-hace.h" #include <crypto/engine.h> #include <crypto/hmac.h> #include <crypto/internal/hash.h> #include <crypto/scatterwalk.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/string.h> #ifdef CONFIG_CRYPTO_DEV_ASPEED_DEBUG #define AHASH_DBG(h, fmt, ...) \ dev_info((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__) #else #define AHASH_DBG(h, fmt, ...) \ dev_dbg((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__) #endif /* Initialization Vectors for SHA-family */ static const __be32 sha1_iv[8] = { cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1), cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3), cpu_to_be32(SHA1_H4), 0, 0, 0 }; static const __be32 sha224_iv[8] = { cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1), cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3), cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5), cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7), }; static const __be32 sha256_iv[8] = { cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1), cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3), cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5), cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7), }; static const __be64 sha384_iv[8] = { cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1), cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3), cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5), cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7) }; static const __be64 sha512_iv[8] = { cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1), cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3), cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5), cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7) }; /* The purpose of this padding is to ensure that the padded message is a * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512). * The bit "1" is appended at the end of the message followed by * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or * 128 bits block (SHA384/SHA512) equals to the message length in bits * is appended. * * For SHA1/SHA224/SHA256, padlen is calculated as followed: * - if message length < 56 bytes then padlen = 56 - message length * - else padlen = 64 + 56 - message length * * For SHA384/SHA512, padlen is calculated as followed: * - if message length < 112 bytes then padlen = 112 - message length * - else padlen = 128 + 112 - message length */ static void aspeed_ahash_fill_padding(struct aspeed_hace_dev *hace_dev, struct aspeed_sham_reqctx *rctx) { unsigned int index, padlen; __be64 bits[2]; AHASH_DBG(hace_dev, "rctx flags:0x%x\n", (u32)rctx->flags); switch (rctx->flags & SHA_FLAGS_MASK) { case SHA_FLAGS_SHA1: case SHA_FLAGS_SHA224: case SHA_FLAGS_SHA256: bits[0] = cpu_to_be64(rctx->digcnt[0] << 3); index = rctx->bufcnt & 0x3f; padlen = (index < 56) ? (56 - index) : ((64 + 56) - index); *(rctx->buffer + rctx->bufcnt) = 0x80; memset(rctx->buffer + rctx->bufcnt + 1, 0, padlen - 1); memcpy(rctx->buffer + rctx->bufcnt + padlen, bits, 8); rctx->bufcnt += padlen + 8; break; default: bits[1] = cpu_to_be64(rctx->digcnt[0] << 3); bits[0] = cpu_to_be64(rctx->digcnt[1] << 3 | rctx->digcnt[0] >> 61); index = rctx->bufcnt & 0x7f; padlen = (index < 112) ? (112 - index) : ((128 + 112) - index); *(rctx->buffer + rctx->bufcnt) = 0x80; memset(rctx->buffer + rctx->bufcnt + 1, 0, padlen - 1); memcpy(rctx->buffer + rctx->bufcnt + padlen, bits, 16); rctx->bufcnt += padlen + 16; break; } } /* * Prepare DMA buffer before hardware engine * processing. */ static int aspeed_ahash_dma_prepare(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); int length, remain; length = rctx->total + rctx->bufcnt; remain = length % rctx->block_size; AHASH_DBG(hace_dev, "length:0x%x, remain:0x%x\n", length, remain); if (rctx->bufcnt) memcpy(hash_engine->ahash_src_addr, rctx->buffer, rctx->bufcnt); if (rctx->total + rctx->bufcnt < ASPEED_CRYPTO_SRC_DMA_BUF_LEN) { scatterwalk_map_and_copy(hash_engine->ahash_src_addr + rctx->bufcnt, rctx->src_sg, rctx->offset, rctx->total - remain, 0); rctx->offset += rctx->total - remain; } else { dev_warn(hace_dev->dev, "Hash data length is too large\n"); return -EINVAL; } scatterwalk_map_and_copy(rctx->buffer, rctx->src_sg, rctx->offset, remain, 0); rctx->bufcnt = remain; rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) { dev_warn(hace_dev->dev, "dma_map() rctx digest error\n"); return -ENOMEM; } hash_engine->src_length = length - remain; hash_engine->src_dma = hash_engine->ahash_src_dma_addr; hash_engine->digest_dma = rctx->digest_dma_addr; return 0; } /* * Prepare DMA buffer as SG list buffer before * hardware engine processing. */ static int aspeed_ahash_dma_prepare_sg(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); struct aspeed_sg_list *src_list; struct scatterlist *s; int length, remain, sg_len, i; int rc = 0; remain = (rctx->total + rctx->bufcnt) % rctx->block_size; length = rctx->total + rctx->bufcnt - remain; AHASH_DBG(hace_dev, "%s:0x%x, %s:%zu, %s:0x%x, %s:0x%x\n", "rctx total", rctx->total, "bufcnt", rctx->bufcnt, "length", length, "remain", remain); sg_len = dma_map_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents, DMA_TO_DEVICE); if (!sg_len) { dev_warn(hace_dev->dev, "dma_map_sg() src error\n"); rc = -ENOMEM; goto end; } src_list = (struct aspeed_sg_list *)hash_engine->ahash_src_addr; rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) { dev_warn(hace_dev->dev, "dma_map() rctx digest error\n"); rc = -ENOMEM; goto free_src_sg; } if (rctx->bufcnt != 0) { u32 phy_addr; u32 len; rctx->buffer_dma_addr = dma_map_single(hace_dev->dev, rctx->buffer, rctx->block_size * 2, DMA_TO_DEVICE); if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) { dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n"); rc = -ENOMEM; goto free_rctx_digest; } phy_addr = rctx->buffer_dma_addr; len = rctx->bufcnt; length -= len; /* Last sg list */ if (length == 0) len |= HASH_SG_LAST_LIST; src_list[0].phy_addr = cpu_to_le32(phy_addr); src_list[0].len = cpu_to_le32(len); src_list++; } if (length != 0) { for_each_sg(rctx->src_sg, s, sg_len, i) { u32 phy_addr = sg_dma_address(s); u32 len = sg_dma_len(s); if (length > len) length -= len; else { /* Last sg list */ len = length; len |= HASH_SG_LAST_LIST; length = 0; } src_list[i].phy_addr = cpu_to_le32(phy_addr); src_list[i].len = cpu_to_le32(len); } } if (length != 0) { rc = -EINVAL; goto free_rctx_buffer; } rctx->offset = rctx->total - remain; hash_engine->src_length = rctx->total + rctx->bufcnt - remain; hash_engine->src_dma = hash_engine->ahash_src_dma_addr; hash_engine->digest_dma = rctx->digest_dma_addr; return 0; free_rctx_buffer: if (rctx->bufcnt != 0) dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr, rctx->block_size * 2, DMA_TO_DEVICE); free_rctx_digest: dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); free_src_sg: dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents, DMA_TO_DEVICE); end: return rc; } static int aspeed_ahash_complete(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; AHASH_DBG(hace_dev, "\n"); hash_engine->flags &= ~CRYPTO_FLAGS_BUSY; crypto_finalize_hash_request(hace_dev->crypt_engine_hash, req, 0); return 0; } /* * Copy digest to the corresponding request result. * This function will be called at final() stage. */ static int aspeed_ahash_transfer(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); AHASH_DBG(hace_dev, "\n"); dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr, rctx->block_size * 2, DMA_TO_DEVICE); memcpy(req->result, rctx->digest, rctx->digsize); return aspeed_ahash_complete(hace_dev); } /* * Trigger hardware engines to do the math. */ static int aspeed_hace_ahash_trigger(struct aspeed_hace_dev *hace_dev, aspeed_hace_fn_t resume) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); AHASH_DBG(hace_dev, "src_dma:%pad, digest_dma:%pad, length:%zu\n", &hash_engine->src_dma, &hash_engine->digest_dma, hash_engine->src_length); rctx->cmd |= HASH_CMD_INT_ENABLE; hash_engine->resume = resume; ast_hace_write(hace_dev, hash_engine->src_dma, ASPEED_HACE_HASH_SRC); ast_hace_write(hace_dev, hash_engine->digest_dma, ASPEED_HACE_HASH_DIGEST_BUFF); ast_hace_write(hace_dev, hash_engine->digest_dma, ASPEED_HACE_HASH_KEY_BUFF); ast_hace_write(hace_dev, hash_engine->src_length, ASPEED_HACE_HASH_DATA_LEN); /* Memory barrier to ensure all data setup before engine starts */ mb(); ast_hace_write(hace_dev, rctx->cmd, ASPEED_HACE_HASH_CMD); return -EINPROGRESS; } /* * HMAC resume aims to do the second pass produces * the final HMAC code derived from the inner hash * result and the outer key. */ static int aspeed_ahash_hmac_resume(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_sha_hmac_ctx *bctx = tctx->base; int rc = 0; AHASH_DBG(hace_dev, "\n"); dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr, rctx->block_size * 2, DMA_TO_DEVICE); /* o key pad + hash sum 1 */ memcpy(rctx->buffer, bctx->opad, rctx->block_size); memcpy(rctx->buffer + rctx->block_size, rctx->digest, rctx->digsize); rctx->bufcnt = rctx->block_size + rctx->digsize; rctx->digcnt[0] = rctx->block_size + rctx->digsize; aspeed_ahash_fill_padding(hace_dev, rctx); memcpy(rctx->digest, rctx->sha_iv, rctx->ivsize); rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) { dev_warn(hace_dev->dev, "dma_map() rctx digest error\n"); rc = -ENOMEM; goto end; } rctx->buffer_dma_addr = dma_map_single(hace_dev->dev, rctx->buffer, rctx->block_size * 2, DMA_TO_DEVICE); if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) { dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n"); rc = -ENOMEM; goto free_rctx_digest; } hash_engine->src_dma = rctx->buffer_dma_addr; hash_engine->src_length = rctx->bufcnt; hash_engine->digest_dma = rctx->digest_dma_addr; return aspeed_hace_ahash_trigger(hace_dev, aspeed_ahash_transfer); free_rctx_digest: dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); end: return rc; } static int aspeed_ahash_req_final(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); int rc = 0; AHASH_DBG(hace_dev, "\n"); aspeed_ahash_fill_padding(hace_dev, rctx); rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) { dev_warn(hace_dev->dev, "dma_map() rctx digest error\n"); rc = -ENOMEM; goto end; } rctx->buffer_dma_addr = dma_map_single(hace_dev->dev, rctx->buffer, rctx->block_size * 2, DMA_TO_DEVICE); if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) { dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n"); rc = -ENOMEM; goto free_rctx_digest; } hash_engine->src_dma = rctx->buffer_dma_addr; hash_engine->src_length = rctx->bufcnt; hash_engine->digest_dma = rctx->digest_dma_addr; if (rctx->flags & SHA_FLAGS_HMAC) return aspeed_hace_ahash_trigger(hace_dev, aspeed_ahash_hmac_resume); return aspeed_hace_ahash_trigger(hace_dev, aspeed_ahash_transfer); free_rctx_digest: dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); end: return rc; } static int aspeed_ahash_update_resume_sg(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); AHASH_DBG(hace_dev, "\n"); dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents, DMA_TO_DEVICE); if (rctx->bufcnt != 0) dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr, rctx->block_size * 2, DMA_TO_DEVICE); dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); scatterwalk_map_and_copy(rctx->buffer, rctx->src_sg, rctx->offset, rctx->total - rctx->offset, 0); rctx->bufcnt = rctx->total - rctx->offset; rctx->cmd &= ~HASH_CMD_HASH_SRC_SG_CTRL; if (rctx->flags & SHA_FLAGS_FINUP) return aspeed_ahash_req_final(hace_dev); return aspeed_ahash_complete(hace_dev); } static int aspeed_ahash_update_resume(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); AHASH_DBG(hace_dev, "\n"); dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr, SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL); if (rctx->flags & SHA_FLAGS_FINUP) return aspeed_ahash_req_final(hace_dev); return aspeed_ahash_complete(hace_dev); } static int aspeed_ahash_req_update(struct aspeed_hace_dev *hace_dev) { struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine; struct ahash_request *req = hash_engine->req; struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); aspeed_hace_fn_t resume; int ret; AHASH_DBG(hace_dev, "\n"); if (hace_dev->version == AST2600_VERSION) { rctx->cmd |= HASH_CMD_HASH_SRC_SG_CTRL; resume = aspeed_ahash_update_resume_sg; } else { resume = aspeed_ahash_update_resume; } ret = hash_engine->dma_prepare(hace_dev); if (ret) return ret; return aspeed_hace_ahash_trigger(hace_dev, resume); } static int aspeed_hace_hash_handle_queue(struct aspeed_hace_dev *hace_dev, struct ahash_request *req) { return crypto_transfer_hash_request_to_engine( hace_dev->crypt_engine_hash, req); } static int aspeed_ahash_do_request(struct crypto_engine *engine, void *areq) { struct ahash_request *req = ahash_request_cast(areq); struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; struct aspeed_engine_hash *hash_engine; int ret = 0; hash_engine = &hace_dev->hash_engine; hash_engine->flags |= CRYPTO_FLAGS_BUSY; if (rctx->op == SHA_OP_UPDATE) ret = aspeed_ahash_req_update(hace_dev); else if (rctx->op == SHA_OP_FINAL) ret = aspeed_ahash_req_final(hace_dev); if (ret != -EINPROGRESS) return ret; return 0; } static void aspeed_ahash_prepare_request(struct crypto_engine *engine, void *areq) { struct ahash_request *req = ahash_request_cast(areq); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; struct aspeed_engine_hash *hash_engine; hash_engine = &hace_dev->hash_engine; hash_engine->req = req; if (hace_dev->version == AST2600_VERSION) hash_engine->dma_prepare = aspeed_ahash_dma_prepare_sg; else hash_engine->dma_prepare = aspeed_ahash_dma_prepare; } static int aspeed_ahash_do_one(struct crypto_engine *engine, void *areq) { aspeed_ahash_prepare_request(engine, areq); return aspeed_ahash_do_request(engine, areq); } static int aspeed_sham_update(struct ahash_request *req) { struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes); rctx->total = req->nbytes; rctx->src_sg = req->src; rctx->offset = 0; rctx->src_nents = sg_nents(req->src); rctx->op = SHA_OP_UPDATE; rctx->digcnt[0] += rctx->total; if (rctx->digcnt[0] < rctx->total) rctx->digcnt[1]++; if (rctx->bufcnt + rctx->total < rctx->block_size) { scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->src_sg, rctx->offset, rctx->total, 0); rctx->bufcnt += rctx->total; return 0; } return aspeed_hace_hash_handle_queue(hace_dev, req); } static int aspeed_sham_shash_digest(struct crypto_shash *tfm, u32 flags, const u8 *data, unsigned int len, u8 *out) { SHASH_DESC_ON_STACK(shash, tfm); shash->tfm = tfm; return crypto_shash_digest(shash, data, len, out); } static int aspeed_sham_final(struct ahash_request *req) { struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; AHASH_DBG(hace_dev, "req->nbytes:%d, rctx->total:%d\n", req->nbytes, rctx->total); rctx->op = SHA_OP_FINAL; return aspeed_hace_hash_handle_queue(hace_dev, req); } static int aspeed_sham_finup(struct ahash_request *req) { struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; int rc1, rc2; AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes); rctx->flags |= SHA_FLAGS_FINUP; rc1 = aspeed_sham_update(req); if (rc1 == -EINPROGRESS || rc1 == -EBUSY) return rc1; /* * final() has to be always called to cleanup resources * even if update() failed, except EINPROGRESS */ rc2 = aspeed_sham_final(req); return rc1 ? : rc2; } static int aspeed_sham_init(struct ahash_request *req) { struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; struct aspeed_sha_hmac_ctx *bctx = tctx->base; AHASH_DBG(hace_dev, "%s: digest size:%d\n", crypto_tfm_alg_name(&tfm->base), crypto_ahash_digestsize(tfm)); rctx->cmd = HASH_CMD_ACC_MODE; rctx->flags = 0; switch (crypto_ahash_digestsize(tfm)) { case SHA1_DIGEST_SIZE: rctx->cmd |= HASH_CMD_SHA1 | HASH_CMD_SHA_SWAP; rctx->flags |= SHA_FLAGS_SHA1; rctx->digsize = SHA1_DIGEST_SIZE; rctx->block_size = SHA1_BLOCK_SIZE; rctx->sha_iv = sha1_iv; rctx->ivsize = 32; memcpy(rctx->digest, sha1_iv, rctx->ivsize); break; case SHA224_DIGEST_SIZE: rctx->cmd |= HASH_CMD_SHA224 | HASH_CMD_SHA_SWAP; rctx->flags |= SHA_FLAGS_SHA224; rctx->digsize = SHA224_DIGEST_SIZE; rctx->block_size = SHA224_BLOCK_SIZE; rctx->sha_iv = sha224_iv; rctx->ivsize = 32; memcpy(rctx->digest, sha224_iv, rctx->ivsize); break; case SHA256_DIGEST_SIZE: rctx->cmd |= HASH_CMD_SHA256 | HASH_CMD_SHA_SWAP; rctx->flags |= SHA_FLAGS_SHA256; rctx->digsize = SHA256_DIGEST_SIZE; rctx->block_size = SHA256_BLOCK_SIZE; rctx->sha_iv = sha256_iv; rctx->ivsize = 32; memcpy(rctx->digest, sha256_iv, rctx->ivsize); break; case SHA384_DIGEST_SIZE: rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA384 | HASH_CMD_SHA_SWAP; rctx->flags |= SHA_FLAGS_SHA384; rctx->digsize = SHA384_DIGEST_SIZE; rctx->block_size = SHA384_BLOCK_SIZE; rctx->sha_iv = (const __be32 *)sha384_iv; rctx->ivsize = 64; memcpy(rctx->digest, sha384_iv, rctx->ivsize); break; case SHA512_DIGEST_SIZE: rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA512 | HASH_CMD_SHA_SWAP; rctx->flags |= SHA_FLAGS_SHA512; rctx->digsize = SHA512_DIGEST_SIZE; rctx->block_size = SHA512_BLOCK_SIZE; rctx->sha_iv = (const __be32 *)sha512_iv; rctx->ivsize = 64; memcpy(rctx->digest, sha512_iv, rctx->ivsize); break; default: dev_warn(tctx->hace_dev->dev, "digest size %d not support\n", crypto_ahash_digestsize(tfm)); return -EINVAL; } rctx->bufcnt = 0; rctx->total = 0; rctx->digcnt[0] = 0; rctx->digcnt[1] = 0; /* HMAC init */ if (tctx->flags & SHA_FLAGS_HMAC) { rctx->digcnt[0] = rctx->block_size; rctx->bufcnt = rctx->block_size; memcpy(rctx->buffer, bctx->ipad, rctx->block_size); rctx->flags |= SHA_FLAGS_HMAC; } return 0; } static int aspeed_sham_digest(struct ahash_request *req) { return aspeed_sham_init(req) ? : aspeed_sham_finup(req); } static int aspeed_sham_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; struct aspeed_sha_hmac_ctx *bctx = tctx->base; int ds = crypto_shash_digestsize(bctx->shash); int bs = crypto_shash_blocksize(bctx->shash); int err = 0; int i; AHASH_DBG(hace_dev, "%s: keylen:%d\n", crypto_tfm_alg_name(&tfm->base), keylen); if (keylen > bs) { err = aspeed_sham_shash_digest(bctx->shash, crypto_shash_get_flags(bctx->shash), key, keylen, bctx->ipad); if (err) return err; keylen = ds; } else { memcpy(bctx->ipad, key, keylen); } memset(bctx->ipad + keylen, 0, bs - keylen); memcpy(bctx->opad, bctx->ipad, bs); for (i = 0; i < bs; i++) { bctx->ipad[i] ^= HMAC_IPAD_VALUE; bctx->opad[i] ^= HMAC_OPAD_VALUE; } return err; } static int aspeed_sham_cra_init(struct crypto_tfm *tfm) { struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg); struct aspeed_sham_ctx *tctx = crypto_tfm_ctx(tfm); struct aspeed_hace_alg *ast_alg; ast_alg = container_of(alg, struct aspeed_hace_alg, alg.ahash.base); tctx->hace_dev = ast_alg->hace_dev; tctx->flags = 0; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct aspeed_sham_reqctx)); if (ast_alg->alg_base) { /* hmac related */ struct aspeed_sha_hmac_ctx *bctx = tctx->base; tctx->flags |= SHA_FLAGS_HMAC; bctx->shash = crypto_alloc_shash(ast_alg->alg_base, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(bctx->shash)) { dev_warn(ast_alg->hace_dev->dev, "base driver '%s' could not be loaded.\n", ast_alg->alg_base); return PTR_ERR(bctx->shash); } } return 0; } static void aspeed_sham_cra_exit(struct crypto_tfm *tfm) { struct aspeed_sham_ctx *tctx = crypto_tfm_ctx(tfm); struct aspeed_hace_dev *hace_dev = tctx->hace_dev; AHASH_DBG(hace_dev, "%s\n", crypto_tfm_alg_name(tfm)); if (tctx->flags & SHA_FLAGS_HMAC) { struct aspeed_sha_hmac_ctx *bctx = tctx->base; crypto_free_shash(bctx->shash); } } static int aspeed_sham_export(struct ahash_request *req, void *out) { struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); memcpy(out, rctx, sizeof(*rctx)); return 0; } static int aspeed_sham_import(struct ahash_request *req, const void *in) { struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req); memcpy(rctx, in, sizeof(*rctx)); return 0; } static struct aspeed_hace_alg aspeed_ahash_algs[] = { { .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .final = aspeed_sham_final, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .export = aspeed_sham_export, .import = aspeed_sham_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "sha1", .cra_driver_name = "aspeed-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = aspeed_sham_cra_init, .cra_exit = aspeed_sham_cra_exit, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, { .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .final = aspeed_sham_final, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .export = aspeed_sham_export, .import = aspeed_sham_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "sha256", .cra_driver_name = "aspeed-sha256", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = aspeed_sham_cra_init, .cra_exit = aspeed_sham_cra_exit, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, { .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .final = aspeed_sham_final, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .export = aspeed_sham_export, .import = aspeed_sham_import, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "sha224", .cra_driver_name = "aspeed-sha224", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = aspeed_sham_cra_init, .cra_exit = aspeed_sham_cra_exit, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, { .alg_base = "sha1", .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .final = aspeed_sham_final, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .setkey = aspeed_sham_setkey, .export = aspeed_sham_export, .import = aspeed_sham_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "hmac(sha1)", .cra_driver_name = "aspeed-hmac-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx) + sizeof(struct aspeed_sha_hmac_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = aspeed_sham_cra_init, .cra_exit = aspeed_sham_cra_exit, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, { .alg_base = "sha224", .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .final = aspeed_sham_final, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .setkey = aspeed_sham_setkey, .export = aspeed_sham_export, .import = aspeed_sham_import, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "hmac(sha224)", .cra_driver_name = "aspeed-hmac-sha224", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx) + sizeof(struct aspeed_sha_hmac_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = aspeed_sham_cra_init, .cra_exit = aspeed_sham_cra_exit, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, { .alg_base = "sha256", .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .final = aspeed_sham_final, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .setkey = aspeed_sham_setkey, .export = aspeed_sham_export, .import = aspeed_sham_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "hmac(sha256)", .cra_driver_name = "aspeed-hmac-sha256", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx) + sizeof(struct aspeed_sha_hmac_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = aspeed_sham_cra_init, .cra_exit = aspeed_sham_cra_exit, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, }; static struct aspeed_hace_alg aspeed_ahash_algs_g6[] = { { .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .final = aspeed_sham_final, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .export = aspeed_sham_export, .import = aspeed_sham_import, .halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "sha384", .cra_driver_name = "aspeed-sha384", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = aspeed_sham_cra_init, .cra_exit = aspeed_sham_cra_exit, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, { .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .final = aspeed_sham_final, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .export = aspeed_sham_export, .import = aspeed_sham_import, .halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "sha512", .cra_driver_name = "aspeed-sha512", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = aspeed_sham_cra_init, .cra_exit = aspeed_sham_cra_exit, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, { .alg_base = "sha384", .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .final = aspeed_sham_final, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .setkey = aspeed_sham_setkey, .export = aspeed_sham_export, .import = aspeed_sham_import, .halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "hmac(sha384)", .cra_driver_name = "aspeed-hmac-sha384", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx) + sizeof(struct aspeed_sha_hmac_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = aspeed_sham_cra_init, .cra_exit = aspeed_sham_cra_exit, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, { .alg_base = "sha512", .alg.ahash.base = { .init = aspeed_sham_init, .update = aspeed_sham_update, .final = aspeed_sham_final, .finup = aspeed_sham_finup, .digest = aspeed_sham_digest, .setkey = aspeed_sham_setkey, .export = aspeed_sham_export, .import = aspeed_sham_import, .halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct aspeed_sham_reqctx), .base = { .cra_name = "hmac(sha512)", .cra_driver_name = "aspeed-hmac-sha512", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aspeed_sham_ctx) + sizeof(struct aspeed_sha_hmac_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = aspeed_sham_cra_init, .cra_exit = aspeed_sham_cra_exit, } } }, .alg.ahash.op = { .do_one_request = aspeed_ahash_do_one, }, }, }; void aspeed_unregister_hace_hash_algs(struct aspeed_hace_dev *hace_dev) { int i; for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++) crypto_engine_unregister_ahash(&aspeed_ahash_algs[i].alg.ahash); if (hace_dev->version != AST2600_VERSION) return; for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++) crypto_engine_unregister_ahash(&aspeed_ahash_algs_g6[i].alg.ahash); } void aspeed_register_hace_hash_algs(struct aspeed_hace_dev *hace_dev) { int rc, i; AHASH_DBG(hace_dev, "\n"); for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++) { aspeed_ahash_algs[i].hace_dev = hace_dev; rc = crypto_engine_register_ahash(&aspeed_ahash_algs[i].alg.ahash); if (rc) { AHASH_DBG(hace_dev, "Failed to register %s\n", aspeed_ahash_algs[i].alg.ahash.base.halg.base.cra_name); } } if (hace_dev->version != AST2600_VERSION) return; for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++) { aspeed_ahash_algs_g6[i].hace_dev = hace_dev; rc = crypto_engine_register_ahash(&aspeed_ahash_algs_g6[i].alg.ahash); if (rc) { AHASH_DBG(hace_dev, "Failed to register %s\n", aspeed_ahash_algs_g6[i].alg.ahash.base.halg.base.cra_name); } } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1