Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Cyrille Pitchen | 6395 | 48.73% | 19 | 29.69% |
Nicolas Royer | 5995 | 45.68% | 3 | 4.69% |
Tudor-Dan Ambarus | 378 | 2.88% | 9 | 14.06% |
Ryan Wanner | 126 | 0.96% | 1 | 1.56% |
Nicolas Ferre | 83 | 0.63% | 2 | 3.12% |
Leilei Zhao | 38 | 0.29% | 3 | 4.69% |
Corentin Labbe | 21 | 0.16% | 2 | 3.12% |
Yangtao Li | 13 | 0.10% | 1 | 1.56% |
Gilad Ben-Yossef | 11 | 0.08% | 1 | 1.56% |
Arnd Bergmann | 11 | 0.08% | 2 | 3.12% |
Herbert Xu | 10 | 0.08% | 4 | 6.25% |
Eric Biggers | 8 | 0.06% | 4 | 6.25% |
Pramod Gurav | 6 | 0.05% | 1 | 1.56% |
Vladimir Zapolskiy | 6 | 0.05% | 1 | 1.56% |
Peter Ujfalusi | 4 | 0.03% | 1 | 1.56% |
Sergiu Moga | 3 | 0.02% | 1 | 1.56% |
Kavya Sree Kotagiri | 3 | 0.02% | 1 | 1.56% |
Ye Kai | 2 | 0.02% | 1 | 1.56% |
Claudiu Beznea | 2 | 0.02% | 1 | 1.56% |
Wang Ming | 2 | 0.02% | 1 | 1.56% |
Uwe Kleine-König | 2 | 0.02% | 1 | 1.56% |
Rahul Pathak | 1 | 0.01% | 1 | 1.56% |
Colin Ian King | 1 | 0.01% | 1 | 1.56% |
Svenning Sörensen | 1 | 0.01% | 1 | 1.56% |
Rob Herring | 1 | 0.01% | 1 | 1.56% |
Total | 13123 | 64 |
// SPDX-License-Identifier: GPL-2.0 /* * Cryptographic API. * * Support for ATMEL SHA1/SHA256 HW acceleration. * * Copyright (c) 2012 Eukréa Electromatique - ATMEL * Author: Nicolas Royer <nicolas@eukrea.com> * * Some ideas are from omap-sham.c drivers. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/hw_random.h> #include <linux/platform_device.h> #include <linux/device.h> #include <linux/dmaengine.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/scatterlist.h> #include <linux/dma-mapping.h> #include <linux/mod_devicetable.h> #include <linux/delay.h> #include <linux/crypto.h> #include <crypto/scatterwalk.h> #include <crypto/algapi.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <crypto/hash.h> #include <crypto/internal/hash.h> #include "atmel-sha-regs.h" #include "atmel-authenc.h" #define ATMEL_SHA_PRIORITY 300 /* SHA flags */ #define SHA_FLAGS_BUSY BIT(0) #define SHA_FLAGS_FINAL BIT(1) #define SHA_FLAGS_DMA_ACTIVE BIT(2) #define SHA_FLAGS_OUTPUT_READY BIT(3) #define SHA_FLAGS_INIT BIT(4) #define SHA_FLAGS_CPU BIT(5) #define SHA_FLAGS_DMA_READY BIT(6) #define SHA_FLAGS_DUMP_REG BIT(7) /* bits[11:8] are reserved. */ #define SHA_FLAGS_FINUP BIT(16) #define SHA_FLAGS_SG BIT(17) #define SHA_FLAGS_ERROR BIT(23) #define SHA_FLAGS_PAD BIT(24) #define SHA_FLAGS_RESTORE BIT(25) #define SHA_FLAGS_IDATAR0 BIT(26) #define SHA_FLAGS_WAIT_DATARDY BIT(27) #define SHA_OP_INIT 0 #define SHA_OP_UPDATE 1 #define SHA_OP_FINAL 2 #define SHA_OP_DIGEST 3 #define SHA_BUFFER_LEN (PAGE_SIZE / 16) #define ATMEL_SHA_DMA_THRESHOLD 56 struct atmel_sha_caps { bool has_dma; bool has_dualbuff; bool has_sha224; bool has_sha_384_512; bool has_uihv; bool has_hmac; }; struct atmel_sha_dev; /* * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as * tested by the ahash_prepare_alg() function. */ struct atmel_sha_reqctx { struct atmel_sha_dev *dd; unsigned long flags; unsigned long op; u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32)); u64 digcnt[2]; size_t bufcnt; size_t buflen; dma_addr_t dma_addr; /* walk state */ struct scatterlist *sg; unsigned int offset; /* offset in current sg */ unsigned int total; /* total request */ size_t block_size; size_t hash_size; u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32)); }; typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *); struct atmel_sha_ctx { struct atmel_sha_dev *dd; atmel_sha_fn_t start; unsigned long flags; }; #define ATMEL_SHA_QUEUE_LENGTH 50 struct atmel_sha_dma { struct dma_chan *chan; struct dma_slave_config dma_conf; struct scatterlist *sg; int nents; unsigned int last_sg_length; }; struct atmel_sha_dev { struct list_head list; unsigned long phys_base; struct device *dev; struct clk *iclk; int irq; void __iomem *io_base; spinlock_t lock; struct tasklet_struct done_task; struct tasklet_struct queue_task; unsigned long flags; struct crypto_queue queue; struct ahash_request *req; bool is_async; bool force_complete; atmel_sha_fn_t resume; atmel_sha_fn_t cpu_transfer_complete; struct atmel_sha_dma dma_lch_in; struct atmel_sha_caps caps; struct scatterlist tmp; u32 hw_version; }; struct atmel_sha_drv { struct list_head dev_list; spinlock_t lock; }; static struct atmel_sha_drv atmel_sha = { .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list), .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock), }; #ifdef VERBOSE_DEBUG static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr) { switch (offset) { case SHA_CR: return "CR"; case SHA_MR: return "MR"; case SHA_IER: return "IER"; case SHA_IDR: return "IDR"; case SHA_IMR: return "IMR"; case SHA_ISR: return "ISR"; case SHA_MSR: return "MSR"; case SHA_BCR: return "BCR"; case SHA_REG_DIN(0): case SHA_REG_DIN(1): case SHA_REG_DIN(2): case SHA_REG_DIN(3): case SHA_REG_DIN(4): case SHA_REG_DIN(5): case SHA_REG_DIN(6): case SHA_REG_DIN(7): case SHA_REG_DIN(8): case SHA_REG_DIN(9): case SHA_REG_DIN(10): case SHA_REG_DIN(11): case SHA_REG_DIN(12): case SHA_REG_DIN(13): case SHA_REG_DIN(14): case SHA_REG_DIN(15): snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2); break; case SHA_REG_DIGEST(0): case SHA_REG_DIGEST(1): case SHA_REG_DIGEST(2): case SHA_REG_DIGEST(3): case SHA_REG_DIGEST(4): case SHA_REG_DIGEST(5): case SHA_REG_DIGEST(6): case SHA_REG_DIGEST(7): case SHA_REG_DIGEST(8): case SHA_REG_DIGEST(9): case SHA_REG_DIGEST(10): case SHA_REG_DIGEST(11): case SHA_REG_DIGEST(12): case SHA_REG_DIGEST(13): case SHA_REG_DIGEST(14): case SHA_REG_DIGEST(15): if (wr) snprintf(tmp, sz, "IDATAR[%u]", 16u + ((offset - SHA_REG_DIGEST(0)) >> 2)); else snprintf(tmp, sz, "ODATAR[%u]", (offset - SHA_REG_DIGEST(0)) >> 2); break; case SHA_HW_VERSION: return "HWVER"; default: snprintf(tmp, sz, "0x%02x", offset); break; } return tmp; } #endif /* VERBOSE_DEBUG */ static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset) { u32 value = readl_relaxed(dd->io_base + offset); #ifdef VERBOSE_DEBUG if (dd->flags & SHA_FLAGS_DUMP_REG) { char tmp[16]; dev_vdbg(dd->dev, "read 0x%08x from %s\n", value, atmel_sha_reg_name(offset, tmp, sizeof(tmp), false)); } #endif /* VERBOSE_DEBUG */ return value; } static inline void atmel_sha_write(struct atmel_sha_dev *dd, u32 offset, u32 value) { #ifdef VERBOSE_DEBUG if (dd->flags & SHA_FLAGS_DUMP_REG) { char tmp[16]; dev_vdbg(dd->dev, "write 0x%08x into %s\n", value, atmel_sha_reg_name(offset, tmp, sizeof(tmp), true)); } #endif /* VERBOSE_DEBUG */ writel_relaxed(value, dd->io_base + offset); } static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err) { struct ahash_request *req = dd->req; dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU | SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY | SHA_FLAGS_DUMP_REG); clk_disable(dd->iclk); if ((dd->is_async || dd->force_complete) && req->base.complete) ahash_request_complete(req, err); /* handle new request */ tasklet_schedule(&dd->queue_task); return err; } static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx) { size_t count; while ((ctx->bufcnt < ctx->buflen) && ctx->total) { count = min(ctx->sg->length - ctx->offset, ctx->total); count = min(count, ctx->buflen - ctx->bufcnt); if (count <= 0) { /* * Check if count <= 0 because the buffer is full or * because the sg length is 0. In the latest case, * check if there is another sg in the list, a 0 length * sg doesn't necessarily mean the end of the sg list. */ if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) { ctx->sg = sg_next(ctx->sg); continue; } else { break; } } scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg, ctx->offset, count, 0); ctx->bufcnt += count; ctx->offset += count; ctx->total -= count; if (ctx->offset == ctx->sg->length) { ctx->sg = sg_next(ctx->sg); if (ctx->sg) ctx->offset = 0; else ctx->total = 0; } } return 0; } /* * The purpose of this padding is to ensure that the padded message is a * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512). * The bit "1" is appended at the end of the message followed by * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or * 128 bits block (SHA384/SHA512) equals to the message length in bits * is appended. * * For SHA1/SHA224/SHA256, padlen is calculated as followed: * - if message length < 56 bytes then padlen = 56 - message length * - else padlen = 64 + 56 - message length * * For SHA384/SHA512, padlen is calculated as followed: * - if message length < 112 bytes then padlen = 112 - message length * - else padlen = 128 + 112 - message length */ static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length) { unsigned int index, padlen; __be64 bits[2]; u64 size[2]; size[0] = ctx->digcnt[0]; size[1] = ctx->digcnt[1]; size[0] += ctx->bufcnt; if (size[0] < ctx->bufcnt) size[1]++; size[0] += length; if (size[0] < length) size[1]++; bits[1] = cpu_to_be64(size[0] << 3); bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61); switch (ctx->flags & SHA_FLAGS_ALGO_MASK) { case SHA_FLAGS_SHA384: case SHA_FLAGS_SHA512: index = ctx->bufcnt & 0x7f; padlen = (index < 112) ? (112 - index) : ((128+112) - index); *(ctx->buffer + ctx->bufcnt) = 0x80; memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1); memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16); ctx->bufcnt += padlen + 16; ctx->flags |= SHA_FLAGS_PAD; break; default: index = ctx->bufcnt & 0x3f; padlen = (index < 56) ? (56 - index) : ((64+56) - index); *(ctx->buffer + ctx->bufcnt) = 0x80; memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1); memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8); ctx->bufcnt += padlen + 8; ctx->flags |= SHA_FLAGS_PAD; break; } } static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx) { struct atmel_sha_dev *dd = NULL; struct atmel_sha_dev *tmp; spin_lock_bh(&atmel_sha.lock); if (!tctx->dd) { list_for_each_entry(tmp, &atmel_sha.dev_list, list) { dd = tmp; break; } tctx->dd = dd; } else { dd = tctx->dd; } spin_unlock_bh(&atmel_sha.lock); return dd; } static int atmel_sha_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm); struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx); ctx->dd = dd; ctx->flags = 0; dev_dbg(dd->dev, "init: digest size: %u\n", crypto_ahash_digestsize(tfm)); switch (crypto_ahash_digestsize(tfm)) { case SHA1_DIGEST_SIZE: ctx->flags |= SHA_FLAGS_SHA1; ctx->block_size = SHA1_BLOCK_SIZE; break; case SHA224_DIGEST_SIZE: ctx->flags |= SHA_FLAGS_SHA224; ctx->block_size = SHA224_BLOCK_SIZE; break; case SHA256_DIGEST_SIZE: ctx->flags |= SHA_FLAGS_SHA256; ctx->block_size = SHA256_BLOCK_SIZE; break; case SHA384_DIGEST_SIZE: ctx->flags |= SHA_FLAGS_SHA384; ctx->block_size = SHA384_BLOCK_SIZE; break; case SHA512_DIGEST_SIZE: ctx->flags |= SHA_FLAGS_SHA512; ctx->block_size = SHA512_BLOCK_SIZE; break; default: return -EINVAL; } ctx->bufcnt = 0; ctx->digcnt[0] = 0; ctx->digcnt[1] = 0; ctx->buflen = SHA_BUFFER_LEN; return 0; } static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); u32 valmr = SHA_MR_MODE_AUTO; unsigned int i, hashsize = 0; if (likely(dma)) { if (!dd->caps.has_dma) atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE); valmr = SHA_MR_MODE_PDC; if (dd->caps.has_dualbuff) valmr |= SHA_MR_DUALBUFF; } else { atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY); } switch (ctx->flags & SHA_FLAGS_ALGO_MASK) { case SHA_FLAGS_SHA1: valmr |= SHA_MR_ALGO_SHA1; hashsize = SHA1_DIGEST_SIZE; break; case SHA_FLAGS_SHA224: valmr |= SHA_MR_ALGO_SHA224; hashsize = SHA256_DIGEST_SIZE; break; case SHA_FLAGS_SHA256: valmr |= SHA_MR_ALGO_SHA256; hashsize = SHA256_DIGEST_SIZE; break; case SHA_FLAGS_SHA384: valmr |= SHA_MR_ALGO_SHA384; hashsize = SHA512_DIGEST_SIZE; break; case SHA_FLAGS_SHA512: valmr |= SHA_MR_ALGO_SHA512; hashsize = SHA512_DIGEST_SIZE; break; default: break; } /* Setting CR_FIRST only for the first iteration */ if (!(ctx->digcnt[0] || ctx->digcnt[1])) { atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST); } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) { const u32 *hash = (const u32 *)ctx->digest; /* * Restore the hardware context: update the User Initialize * Hash Value (UIHV) with the value saved when the latest * 'update' operation completed on this very same crypto * request. */ ctx->flags &= ~SHA_FLAGS_RESTORE; atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV); for (i = 0; i < hashsize / sizeof(u32); ++i) atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]); atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST); valmr |= SHA_MR_UIHV; } /* * WARNING: If the UIHV feature is not available, the hardware CANNOT * process concurrent requests: the internal registers used to store * the hash/digest are still set to the partial digest output values * computed during the latest round. */ atmel_sha_write(dd, SHA_MR, valmr); } static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd, atmel_sha_fn_t resume) { u32 isr = atmel_sha_read(dd, SHA_ISR); if (unlikely(isr & SHA_INT_DATARDY)) return resume(dd); dd->resume = resume; atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY); return -EINPROGRESS; } static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf, size_t length, int final) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); int count, len32; const u32 *buffer = (const u32 *)buf; dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n", ctx->digcnt[1], ctx->digcnt[0], length, final); atmel_sha_write_ctrl(dd, 0); /* should be non-zero before next lines to disable clocks later */ ctx->digcnt[0] += length; if (ctx->digcnt[0] < length) ctx->digcnt[1]++; if (final) dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */ len32 = DIV_ROUND_UP(length, sizeof(u32)); dd->flags |= SHA_FLAGS_CPU; for (count = 0; count < len32; count++) atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]); return -EINPROGRESS; } static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1, size_t length1, dma_addr_t dma_addr2, size_t length2, int final) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); int len32; dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n", ctx->digcnt[1], ctx->digcnt[0], length1, final); len32 = DIV_ROUND_UP(length1, sizeof(u32)); atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS); atmel_sha_write(dd, SHA_TPR, dma_addr1); atmel_sha_write(dd, SHA_TCR, len32); len32 = DIV_ROUND_UP(length2, sizeof(u32)); atmel_sha_write(dd, SHA_TNPR, dma_addr2); atmel_sha_write(dd, SHA_TNCR, len32); atmel_sha_write_ctrl(dd, 1); /* should be non-zero before next lines to disable clocks later */ ctx->digcnt[0] += length1; if (ctx->digcnt[0] < length1) ctx->digcnt[1]++; if (final) dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */ dd->flags |= SHA_FLAGS_DMA_ACTIVE; /* Start DMA transfer */ atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN); return -EINPROGRESS; } static void atmel_sha_dma_callback(void *data) { struct atmel_sha_dev *dd = data; dd->is_async = true; /* dma_lch_in - completed - wait DATRDY */ atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY); } static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1, size_t length1, dma_addr_t dma_addr2, size_t length2, int final) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); struct dma_async_tx_descriptor *in_desc; struct scatterlist sg[2]; dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n", ctx->digcnt[1], ctx->digcnt[0], length1, final); dd->dma_lch_in.dma_conf.src_maxburst = 16; dd->dma_lch_in.dma_conf.dst_maxburst = 16; dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf); if (length2) { sg_init_table(sg, 2); sg_dma_address(&sg[0]) = dma_addr1; sg_dma_len(&sg[0]) = length1; sg_dma_address(&sg[1]) = dma_addr2; sg_dma_len(&sg[1]) = length2; in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } else { sg_init_table(sg, 1); sg_dma_address(&sg[0]) = dma_addr1; sg_dma_len(&sg[0]) = length1; in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } if (!in_desc) return atmel_sha_complete(dd, -EINVAL); in_desc->callback = atmel_sha_dma_callback; in_desc->callback_param = dd; atmel_sha_write_ctrl(dd, 1); /* should be non-zero before next lines to disable clocks later */ ctx->digcnt[0] += length1; if (ctx->digcnt[0] < length1) ctx->digcnt[1]++; if (final) dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */ dd->flags |= SHA_FLAGS_DMA_ACTIVE; /* Start DMA transfer */ dmaengine_submit(in_desc); dma_async_issue_pending(dd->dma_lch_in.chan); return -EINPROGRESS; } static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1, size_t length1, dma_addr_t dma_addr2, size_t length2, int final) { if (dd->caps.has_dma) return atmel_sha_xmit_dma(dd, dma_addr1, length1, dma_addr2, length2, final); else return atmel_sha_xmit_pdc(dd, dma_addr1, length1, dma_addr2, length2, final); } static int atmel_sha_update_cpu(struct atmel_sha_dev *dd) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); int bufcnt; atmel_sha_append_sg(ctx); atmel_sha_fill_padding(ctx, 0); bufcnt = ctx->bufcnt; ctx->bufcnt = 0; return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1); } static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd, struct atmel_sha_reqctx *ctx, size_t length, int final) { ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer, ctx->buflen + ctx->block_size, DMA_TO_DEVICE); if (dma_mapping_error(dd->dev, ctx->dma_addr)) { dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen + ctx->block_size); return atmel_sha_complete(dd, -EINVAL); } ctx->flags &= ~SHA_FLAGS_SG; /* next call does not fail... so no unmap in the case of error */ return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final); } static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); unsigned int final; size_t count; atmel_sha_append_sg(ctx); final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total; dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n", ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final); if (final) atmel_sha_fill_padding(ctx, 0); if (final || (ctx->bufcnt == ctx->buflen)) { count = ctx->bufcnt; ctx->bufcnt = 0; return atmel_sha_xmit_dma_map(dd, ctx, count, final); } return 0; } static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); unsigned int length, final, tail; struct scatterlist *sg; unsigned int count; if (!ctx->total) return 0; if (ctx->bufcnt || ctx->offset) return atmel_sha_update_dma_slow(dd); dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n", ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total); sg = ctx->sg; if (!IS_ALIGNED(sg->offset, sizeof(u32))) return atmel_sha_update_dma_slow(dd); if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size)) /* size is not ctx->block_size aligned */ return atmel_sha_update_dma_slow(dd); length = min(ctx->total, sg->length); if (sg_is_last(sg)) { if (!(ctx->flags & SHA_FLAGS_FINUP)) { /* not last sg must be ctx->block_size aligned */ tail = length & (ctx->block_size - 1); length -= tail; } } ctx->total -= length; ctx->offset = length; /* offset where to start slow */ final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total; /* Add padding */ if (final) { tail = length & (ctx->block_size - 1); length -= tail; ctx->total += tail; ctx->offset = length; /* offset where to start slow */ sg = ctx->sg; atmel_sha_append_sg(ctx); atmel_sha_fill_padding(ctx, length); ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer, ctx->buflen + ctx->block_size, DMA_TO_DEVICE); if (dma_mapping_error(dd->dev, ctx->dma_addr)) { dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen + ctx->block_size); return atmel_sha_complete(dd, -EINVAL); } if (length == 0) { ctx->flags &= ~SHA_FLAGS_SG; count = ctx->bufcnt; ctx->bufcnt = 0; return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0, 0, final); } else { ctx->sg = sg; if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) { dev_err(dd->dev, "dma_map_sg error\n"); return atmel_sha_complete(dd, -EINVAL); } ctx->flags |= SHA_FLAGS_SG; count = ctx->bufcnt; ctx->bufcnt = 0; return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, ctx->dma_addr, count, final); } } if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) { dev_err(dd->dev, "dma_map_sg error\n"); return atmel_sha_complete(dd, -EINVAL); } ctx->flags |= SHA_FLAGS_SG; /* next call does not fail... so no unmap in the case of error */ return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0, 0, final); } static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); if (ctx->flags & SHA_FLAGS_SG) { dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE); if (ctx->sg->length == ctx->offset) { ctx->sg = sg_next(ctx->sg); if (ctx->sg) ctx->offset = 0; } if (ctx->flags & SHA_FLAGS_PAD) { dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen + ctx->block_size, DMA_TO_DEVICE); } } else { dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen + ctx->block_size, DMA_TO_DEVICE); } } static int atmel_sha_update_req(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); int err; dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n", ctx->total, ctx->digcnt[1], ctx->digcnt[0]); if (ctx->flags & SHA_FLAGS_CPU) err = atmel_sha_update_cpu(dd); else err = atmel_sha_update_dma_start(dd); /* wait for dma completion before can take more data */ dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n", err, ctx->digcnt[1], ctx->digcnt[0]); return err; } static int atmel_sha_final_req(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); int err = 0; int count; if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) { atmel_sha_fill_padding(ctx, 0); count = ctx->bufcnt; ctx->bufcnt = 0; err = atmel_sha_xmit_dma_map(dd, ctx, count, 1); } /* faster to handle last block with cpu */ else { atmel_sha_fill_padding(ctx, 0); count = ctx->bufcnt; ctx->bufcnt = 0; err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1); } dev_dbg(dd->dev, "final_req: err: %d\n", err); return err; } static void atmel_sha_copy_hash(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); u32 *hash = (u32 *)ctx->digest; unsigned int i, hashsize; switch (ctx->flags & SHA_FLAGS_ALGO_MASK) { case SHA_FLAGS_SHA1: hashsize = SHA1_DIGEST_SIZE; break; case SHA_FLAGS_SHA224: case SHA_FLAGS_SHA256: hashsize = SHA256_DIGEST_SIZE; break; case SHA_FLAGS_SHA384: case SHA_FLAGS_SHA512: hashsize = SHA512_DIGEST_SIZE; break; default: /* Should not happen... */ return; } for (i = 0; i < hashsize / sizeof(u32); ++i) hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i)); ctx->flags |= SHA_FLAGS_RESTORE; } static void atmel_sha_copy_ready_hash(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); if (!req->result) return; switch (ctx->flags & SHA_FLAGS_ALGO_MASK) { default: case SHA_FLAGS_SHA1: memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE); break; case SHA_FLAGS_SHA224: memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE); break; case SHA_FLAGS_SHA256: memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE); break; case SHA_FLAGS_SHA384: memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE); break; case SHA_FLAGS_SHA512: memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE); break; } } static int atmel_sha_finish(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_dev *dd = ctx->dd; if (ctx->digcnt[0] || ctx->digcnt[1]) atmel_sha_copy_ready_hash(req); dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt); return 0; } static void atmel_sha_finish_req(struct ahash_request *req, int err) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_dev *dd = ctx->dd; if (!err) { atmel_sha_copy_hash(req); if (SHA_FLAGS_FINAL & dd->flags) err = atmel_sha_finish(req); } else { ctx->flags |= SHA_FLAGS_ERROR; } /* atomic operation is not needed here */ (void)atmel_sha_complete(dd, err); } static int atmel_sha_hw_init(struct atmel_sha_dev *dd) { int err; err = clk_enable(dd->iclk); if (err) return err; if (!(SHA_FLAGS_INIT & dd->flags)) { atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST); dd->flags |= SHA_FLAGS_INIT; } return 0; } static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd) { return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff; } static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd) { int err; err = atmel_sha_hw_init(dd); if (err) return err; dd->hw_version = atmel_sha_get_version(dd); dev_info(dd->dev, "version: 0x%x\n", dd->hw_version); clk_disable(dd->iclk); return 0; } static int atmel_sha_handle_queue(struct atmel_sha_dev *dd, struct ahash_request *req) { struct crypto_async_request *async_req, *backlog; struct atmel_sha_ctx *ctx; unsigned long flags; bool start_async; int err = 0, ret = 0; spin_lock_irqsave(&dd->lock, flags); if (req) ret = ahash_enqueue_request(&dd->queue, req); if (SHA_FLAGS_BUSY & dd->flags) { spin_unlock_irqrestore(&dd->lock, flags); return ret; } backlog = crypto_get_backlog(&dd->queue); async_req = crypto_dequeue_request(&dd->queue); if (async_req) dd->flags |= SHA_FLAGS_BUSY; spin_unlock_irqrestore(&dd->lock, flags); if (!async_req) return ret; if (backlog) crypto_request_complete(backlog, -EINPROGRESS); ctx = crypto_tfm_ctx(async_req->tfm); dd->req = ahash_request_cast(async_req); start_async = (dd->req != req); dd->is_async = start_async; dd->force_complete = false; /* WARNING: ctx->start() MAY change dd->is_async. */ err = ctx->start(dd); return (start_async) ? ret : err; } static int atmel_sha_done(struct atmel_sha_dev *dd); static int atmel_sha_start(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); int err; dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %u\n", ctx->op, req->nbytes); err = atmel_sha_hw_init(dd); if (err) return atmel_sha_complete(dd, err); /* * atmel_sha_update_req() and atmel_sha_final_req() can return either: * -EINPROGRESS: the hardware is busy and the SHA driver will resume * its job later in the done_task. * This is the main path. * * 0: the SHA driver can continue its job then release the hardware * later, if needed, with atmel_sha_finish_req(). * This is the alternate path. * * < 0: an error has occurred so atmel_sha_complete(dd, err) has already * been called, hence the hardware has been released. * The SHA driver must stop its job without calling * atmel_sha_finish_req(), otherwise atmel_sha_complete() would be * called a second time. * * Please note that currently, atmel_sha_final_req() never returns 0. */ dd->resume = atmel_sha_done; if (ctx->op == SHA_OP_UPDATE) { err = atmel_sha_update_req(dd); if (!err && (ctx->flags & SHA_FLAGS_FINUP)) /* no final() after finup() */ err = atmel_sha_final_req(dd); } else if (ctx->op == SHA_OP_FINAL) { err = atmel_sha_final_req(dd); } if (!err) /* done_task will not finish it, so do it here */ atmel_sha_finish_req(req, err); dev_dbg(dd->dev, "exit, err: %d\n", err); return err; } static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm); struct atmel_sha_dev *dd = tctx->dd; ctx->op = op; return atmel_sha_handle_queue(dd, req); } static int atmel_sha_update(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); if (!req->nbytes) return 0; ctx->total = req->nbytes; ctx->sg = req->src; ctx->offset = 0; if (ctx->flags & SHA_FLAGS_FINUP) { if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD) /* faster to use CPU for short transfers */ ctx->flags |= SHA_FLAGS_CPU; } else if (ctx->bufcnt + ctx->total < ctx->buflen) { atmel_sha_append_sg(ctx); return 0; } return atmel_sha_enqueue(req, SHA_OP_UPDATE); } static int atmel_sha_final(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); ctx->flags |= SHA_FLAGS_FINUP; if (ctx->flags & SHA_FLAGS_ERROR) return 0; /* uncompleted hash is not needed */ if (ctx->flags & SHA_FLAGS_PAD) /* copy ready hash (+ finalize hmac) */ return atmel_sha_finish(req); return atmel_sha_enqueue(req, SHA_OP_FINAL); } static int atmel_sha_finup(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); int err1, err2; ctx->flags |= SHA_FLAGS_FINUP; err1 = atmel_sha_update(req); if (err1 == -EINPROGRESS || (err1 == -EBUSY && (ahash_request_flags(req) & CRYPTO_TFM_REQ_MAY_BACKLOG))) return err1; /* * final() has to be always called to cleanup resources * even if udpate() failed, except EINPROGRESS */ err2 = atmel_sha_final(req); return err1 ?: err2; } static int atmel_sha_digest(struct ahash_request *req) { return atmel_sha_init(req) ?: atmel_sha_finup(req); } static int atmel_sha_export(struct ahash_request *req, void *out) { const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); memcpy(out, ctx, sizeof(*ctx)); return 0; } static int atmel_sha_import(struct ahash_request *req, const void *in) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); memcpy(ctx, in, sizeof(*ctx)); return 0; } static int atmel_sha_cra_init(struct crypto_tfm *tfm) { struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm); crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct atmel_sha_reqctx)); ctx->start = atmel_sha_start; return 0; } static void atmel_sha_alg_init(struct ahash_alg *alg) { alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY; alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC; alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx); alg->halg.base.cra_module = THIS_MODULE; alg->halg.base.cra_init = atmel_sha_cra_init; alg->halg.statesize = sizeof(struct atmel_sha_reqctx); alg->init = atmel_sha_init; alg->update = atmel_sha_update; alg->final = atmel_sha_final; alg->finup = atmel_sha_finup; alg->digest = atmel_sha_digest; alg->export = atmel_sha_export; alg->import = atmel_sha_import; } static struct ahash_alg sha_1_256_algs[] = { { .halg.base.cra_name = "sha1", .halg.base.cra_driver_name = "atmel-sha1", .halg.base.cra_blocksize = SHA1_BLOCK_SIZE, .halg.digestsize = SHA1_DIGEST_SIZE, }, { .halg.base.cra_name = "sha256", .halg.base.cra_driver_name = "atmel-sha256", .halg.base.cra_blocksize = SHA256_BLOCK_SIZE, .halg.digestsize = SHA256_DIGEST_SIZE, }, }; static struct ahash_alg sha_224_alg = { .halg.base.cra_name = "sha224", .halg.base.cra_driver_name = "atmel-sha224", .halg.base.cra_blocksize = SHA224_BLOCK_SIZE, .halg.digestsize = SHA224_DIGEST_SIZE, }; static struct ahash_alg sha_384_512_algs[] = { { .halg.base.cra_name = "sha384", .halg.base.cra_driver_name = "atmel-sha384", .halg.base.cra_blocksize = SHA384_BLOCK_SIZE, .halg.digestsize = SHA384_DIGEST_SIZE, }, { .halg.base.cra_name = "sha512", .halg.base.cra_driver_name = "atmel-sha512", .halg.base.cra_blocksize = SHA512_BLOCK_SIZE, .halg.digestsize = SHA512_DIGEST_SIZE, }, }; static void atmel_sha_queue_task(unsigned long data) { struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data; atmel_sha_handle_queue(dd, NULL); } static int atmel_sha_done(struct atmel_sha_dev *dd) { int err = 0; if (SHA_FLAGS_CPU & dd->flags) { if (SHA_FLAGS_OUTPUT_READY & dd->flags) { dd->flags &= ~SHA_FLAGS_OUTPUT_READY; goto finish; } } else if (SHA_FLAGS_DMA_READY & dd->flags) { if (SHA_FLAGS_DMA_ACTIVE & dd->flags) { dd->flags &= ~SHA_FLAGS_DMA_ACTIVE; atmel_sha_update_dma_stop(dd); } if (SHA_FLAGS_OUTPUT_READY & dd->flags) { /* hash or semi-hash ready */ dd->flags &= ~(SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY); err = atmel_sha_update_dma_start(dd); if (err != -EINPROGRESS) goto finish; } } return err; finish: /* finish curent request */ atmel_sha_finish_req(dd->req, err); return err; } static void atmel_sha_done_task(unsigned long data) { struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data; dd->is_async = true; (void)dd->resume(dd); } static irqreturn_t atmel_sha_irq(int irq, void *dev_id) { struct atmel_sha_dev *sha_dd = dev_id; u32 reg; reg = atmel_sha_read(sha_dd, SHA_ISR); if (reg & atmel_sha_read(sha_dd, SHA_IMR)) { atmel_sha_write(sha_dd, SHA_IDR, reg); if (SHA_FLAGS_BUSY & sha_dd->flags) { sha_dd->flags |= SHA_FLAGS_OUTPUT_READY; if (!(SHA_FLAGS_CPU & sha_dd->flags)) sha_dd->flags |= SHA_FLAGS_DMA_READY; tasklet_schedule(&sha_dd->done_task); } else { dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n"); } return IRQ_HANDLED; } return IRQ_NONE; } /* DMA transfer functions */ static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd, struct scatterlist *sg, size_t len) { struct atmel_sha_dma *dma = &dd->dma_lch_in; struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); size_t bs = ctx->block_size; int nents; for (nents = 0; sg; sg = sg_next(sg), ++nents) { if (!IS_ALIGNED(sg->offset, sizeof(u32))) return false; /* * This is the last sg, the only one that is allowed to * have an unaligned length. */ if (len <= sg->length) { dma->nents = nents + 1; dma->last_sg_length = sg->length; sg->length = ALIGN(len, sizeof(u32)); return true; } /* All other sg lengths MUST be aligned to the block size. */ if (!IS_ALIGNED(sg->length, bs)) return false; len -= sg->length; } return false; } static void atmel_sha_dma_callback2(void *data) { struct atmel_sha_dev *dd = data; struct atmel_sha_dma *dma = &dd->dma_lch_in; struct scatterlist *sg; int nents; dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE); sg = dma->sg; for (nents = 0; nents < dma->nents - 1; ++nents) sg = sg_next(sg); sg->length = dma->last_sg_length; dd->is_async = true; (void)atmel_sha_wait_for_data_ready(dd, dd->resume); } static int atmel_sha_dma_start(struct atmel_sha_dev *dd, struct scatterlist *src, size_t len, atmel_sha_fn_t resume) { struct atmel_sha_dma *dma = &dd->dma_lch_in; struct dma_slave_config *config = &dma->dma_conf; struct dma_chan *chan = dma->chan; struct dma_async_tx_descriptor *desc; dma_cookie_t cookie; unsigned int sg_len; int err; dd->resume = resume; /* * dma->nents has already been initialized by * atmel_sha_dma_check_aligned(). */ dma->sg = src; sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE); if (!sg_len) { err = -ENOMEM; goto exit; } config->src_maxburst = 16; config->dst_maxburst = 16; err = dmaengine_slave_config(chan, config); if (err) goto unmap_sg; desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { err = -ENOMEM; goto unmap_sg; } desc->callback = atmel_sha_dma_callback2; desc->callback_param = dd; cookie = dmaengine_submit(desc); err = dma_submit_error(cookie); if (err) goto unmap_sg; dma_async_issue_pending(chan); return -EINPROGRESS; unmap_sg: dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE); exit: return atmel_sha_complete(dd, err); } /* CPU transfer functions */ static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); const u32 *words = (const u32 *)ctx->buffer; size_t i, num_words; u32 isr, din, din_inc; din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1; for (;;) { /* Write data into the Input Data Registers. */ num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32)); for (i = 0, din = 0; i < num_words; ++i, din += din_inc) atmel_sha_write(dd, SHA_REG_DIN(din), words[i]); ctx->offset += ctx->bufcnt; ctx->total -= ctx->bufcnt; if (!ctx->total) break; /* * Prepare next block: * Fill ctx->buffer now with the next data to be written into * IDATARx: it gives time for the SHA hardware to process * the current data so the SHA_INT_DATARDY flag might be set * in SHA_ISR when polling this register at the beginning of * the next loop. */ ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total); scatterwalk_map_and_copy(ctx->buffer, ctx->sg, ctx->offset, ctx->bufcnt, 0); /* Wait for hardware to be ready again. */ isr = atmel_sha_read(dd, SHA_ISR); if (!(isr & SHA_INT_DATARDY)) { /* Not ready yet. */ dd->resume = atmel_sha_cpu_transfer; atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY); return -EINPROGRESS; } } if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY))) return dd->cpu_transfer_complete(dd); return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete); } static int atmel_sha_cpu_start(struct atmel_sha_dev *dd, struct scatterlist *sg, unsigned int len, bool idatar0_only, bool wait_data_ready, atmel_sha_fn_t resume) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); if (!len) return resume(dd); ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY); if (idatar0_only) ctx->flags |= SHA_FLAGS_IDATAR0; if (wait_data_ready) ctx->flags |= SHA_FLAGS_WAIT_DATARDY; ctx->sg = sg; ctx->total = len; ctx->offset = 0; /* Prepare the first block to be written. */ ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total); scatterwalk_map_and_copy(ctx->buffer, ctx->sg, ctx->offset, ctx->bufcnt, 0); dd->cpu_transfer_complete = resume; return atmel_sha_cpu_transfer(dd); } static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd, const void *data, unsigned int datalen, bool auto_padding, atmel_sha_fn_t resume) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); u32 msglen = (auto_padding) ? datalen : 0; u32 mr = SHA_MR_MODE_AUTO; if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding)) return atmel_sha_complete(dd, -EINVAL); mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK); atmel_sha_write(dd, SHA_MR, mr); atmel_sha_write(dd, SHA_MSR, msglen); atmel_sha_write(dd, SHA_BCR, msglen); atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST); sg_init_one(&dd->tmp, data, datalen); return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume); } /* hmac functions */ struct atmel_sha_hmac_key { bool valid; unsigned int keylen; u8 buffer[SHA512_BLOCK_SIZE]; u8 *keydup; }; static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey) { memset(hkey, 0, sizeof(*hkey)); } static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey) { kfree(hkey->keydup); memset(hkey, 0, sizeof(*hkey)); } static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey, const u8 *key, unsigned int keylen) { atmel_sha_hmac_key_release(hkey); if (keylen > sizeof(hkey->buffer)) { hkey->keydup = kmemdup(key, keylen, GFP_KERNEL); if (!hkey->keydup) return -ENOMEM; } else { memcpy(hkey->buffer, key, keylen); } hkey->valid = true; hkey->keylen = keylen; return 0; } static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey, const u8 **key, unsigned int *keylen) { if (!hkey->valid) return false; *keylen = hkey->keylen; *key = (hkey->keydup) ? hkey->keydup : hkey->buffer; return true; } struct atmel_sha_hmac_ctx { struct atmel_sha_ctx base; struct atmel_sha_hmac_key hkey; u32 ipad[SHA512_BLOCK_SIZE / sizeof(u32)]; u32 opad[SHA512_BLOCK_SIZE / sizeof(u32)]; atmel_sha_fn_t resume; }; static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd, atmel_sha_fn_t resume); static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd, const u8 *key, unsigned int keylen); static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd); static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd); static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd); static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd); static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd); static int atmel_sha_hmac_final(struct atmel_sha_dev *dd); static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd); static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd); static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd, atmel_sha_fn_t resume) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm); unsigned int keylen; const u8 *key; size_t bs; hmac->resume = resume; switch (ctx->flags & SHA_FLAGS_ALGO_MASK) { case SHA_FLAGS_SHA1: ctx->block_size = SHA1_BLOCK_SIZE; ctx->hash_size = SHA1_DIGEST_SIZE; break; case SHA_FLAGS_SHA224: ctx->block_size = SHA224_BLOCK_SIZE; ctx->hash_size = SHA256_DIGEST_SIZE; break; case SHA_FLAGS_SHA256: ctx->block_size = SHA256_BLOCK_SIZE; ctx->hash_size = SHA256_DIGEST_SIZE; break; case SHA_FLAGS_SHA384: ctx->block_size = SHA384_BLOCK_SIZE; ctx->hash_size = SHA512_DIGEST_SIZE; break; case SHA_FLAGS_SHA512: ctx->block_size = SHA512_BLOCK_SIZE; ctx->hash_size = SHA512_DIGEST_SIZE; break; default: return atmel_sha_complete(dd, -EINVAL); } bs = ctx->block_size; if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen))) return resume(dd); /* Compute K' from K. */ if (unlikely(keylen > bs)) return atmel_sha_hmac_prehash_key(dd, key, keylen); /* Prepare ipad. */ memcpy((u8 *)hmac->ipad, key, keylen); memset((u8 *)hmac->ipad + keylen, 0, bs - keylen); return atmel_sha_hmac_compute_ipad_hash(dd); } static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd, const u8 *key, unsigned int keylen) { return atmel_sha_cpu_hash(dd, key, keylen, true, atmel_sha_hmac_prehash_key_done); } static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm); struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); size_t ds = crypto_ahash_digestsize(tfm); size_t bs = ctx->block_size; size_t i, num_words = ds / sizeof(u32); /* Prepare ipad. */ for (i = 0; i < num_words; ++i) hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i)); memset((u8 *)hmac->ipad + ds, 0, bs - ds); return atmel_sha_hmac_compute_ipad_hash(dd); } static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm); struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); size_t bs = ctx->block_size; size_t i, num_words = bs / sizeof(u32); unsafe_memcpy(hmac->opad, hmac->ipad, bs, "fortified memcpy causes -Wrestrict warning"); for (i = 0; i < num_words; ++i) { hmac->ipad[i] ^= 0x36363636; hmac->opad[i] ^= 0x5c5c5c5c; } return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false, atmel_sha_hmac_compute_opad_hash); } static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm); struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); size_t bs = ctx->block_size; size_t hs = ctx->hash_size; size_t i, num_words = hs / sizeof(u32); for (i = 0; i < num_words; ++i) hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i)); return atmel_sha_cpu_hash(dd, hmac->opad, bs, false, atmel_sha_hmac_setup_done); } static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm); struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); size_t hs = ctx->hash_size; size_t i, num_words = hs / sizeof(u32); for (i = 0; i < num_words; ++i) hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i)); atmel_sha_hmac_key_release(&hmac->hkey); return hmac->resume(dd); } static int atmel_sha_hmac_start(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); int err; err = atmel_sha_hw_init(dd); if (err) return atmel_sha_complete(dd, err); switch (ctx->op) { case SHA_OP_INIT: err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done); break; case SHA_OP_UPDATE: dd->resume = atmel_sha_done; err = atmel_sha_update_req(dd); break; case SHA_OP_FINAL: dd->resume = atmel_sha_hmac_final; err = atmel_sha_final_req(dd); break; case SHA_OP_DIGEST: err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2); break; default: return atmel_sha_complete(dd, -EINVAL); } return err; } static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm); return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen); } static int atmel_sha_hmac_init(struct ahash_request *req) { int err; err = atmel_sha_init(req); if (err) return err; return atmel_sha_enqueue(req, SHA_OP_INIT); } static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm); size_t bs = ctx->block_size; size_t hs = ctx->hash_size; ctx->bufcnt = 0; ctx->digcnt[0] = bs; ctx->digcnt[1] = 0; ctx->flags |= SHA_FLAGS_RESTORE; memcpy(ctx->digest, hmac->ipad, hs); return atmel_sha_complete(dd, 0); } static int atmel_sha_hmac_final(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm); u32 *digest = (u32 *)ctx->digest; size_t ds = crypto_ahash_digestsize(tfm); size_t bs = ctx->block_size; size_t hs = ctx->hash_size; size_t i, num_words; u32 mr; /* Save d = SHA((K' + ipad) | msg). */ num_words = ds / sizeof(u32); for (i = 0; i < num_words; ++i) digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i)); /* Restore context to finish computing SHA((K' + opad) | d). */ atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV); num_words = hs / sizeof(u32); for (i = 0; i < num_words; ++i) atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]); mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV; mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK); atmel_sha_write(dd, SHA_MR, mr); atmel_sha_write(dd, SHA_MSR, bs + ds); atmel_sha_write(dd, SHA_BCR, ds); atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST); sg_init_one(&dd->tmp, digest, ds); return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true, atmel_sha_hmac_final_done); } static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd) { /* * req->result might not be sizeof(u32) aligned, so copy the * digest into ctx->digest[] before memcpy() the data into * req->result. */ atmel_sha_copy_hash(dd->req); atmel_sha_copy_ready_hash(dd->req); return atmel_sha_complete(dd, 0); } static int atmel_sha_hmac_digest(struct ahash_request *req) { int err; err = atmel_sha_init(req); if (err) return err; return atmel_sha_enqueue(req, SHA_OP_DIGEST); } static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm); struct scatterlist *sgbuf; size_t hs = ctx->hash_size; size_t i, num_words = hs / sizeof(u32); bool use_dma = false; u32 mr; /* Special case for empty message. */ if (!req->nbytes) { req->nbytes = 0; ctx->bufcnt = 0; ctx->digcnt[0] = 0; ctx->digcnt[1] = 0; switch (ctx->flags & SHA_FLAGS_ALGO_MASK) { case SHA_FLAGS_SHA1: case SHA_FLAGS_SHA224: case SHA_FLAGS_SHA256: atmel_sha_fill_padding(ctx, 64); break; case SHA_FLAGS_SHA384: case SHA_FLAGS_SHA512: atmel_sha_fill_padding(ctx, 128); break; } sg_init_one(&dd->tmp, ctx->buffer, ctx->bufcnt); } /* Check DMA threshold and alignment. */ if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD && atmel_sha_dma_check_aligned(dd, req->src, req->nbytes)) use_dma = true; /* Write both initial hash values to compute a HMAC. */ atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV); for (i = 0; i < num_words; ++i) atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]); atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV); for (i = 0; i < num_words; ++i) atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]); /* Write the Mode, Message Size, Bytes Count then Control Registers. */ mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF); mr |= ctx->flags & SHA_FLAGS_ALGO_MASK; if (use_dma) mr |= SHA_MR_MODE_IDATAR0; else mr |= SHA_MR_MODE_AUTO; atmel_sha_write(dd, SHA_MR, mr); atmel_sha_write(dd, SHA_MSR, req->nbytes); atmel_sha_write(dd, SHA_BCR, req->nbytes); atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST); /* Special case for empty message. */ if (!req->nbytes) { sgbuf = &dd->tmp; req->nbytes = ctx->bufcnt; } else { sgbuf = req->src; } /* Process data. */ if (use_dma) return atmel_sha_dma_start(dd, sgbuf, req->nbytes, atmel_sha_hmac_final_done); return atmel_sha_cpu_start(dd, sgbuf, req->nbytes, false, true, atmel_sha_hmac_final_done); } static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm) { struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm); crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct atmel_sha_reqctx)); hmac->base.start = atmel_sha_hmac_start; atmel_sha_hmac_key_init(&hmac->hkey); return 0; } static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm) { struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm); atmel_sha_hmac_key_release(&hmac->hkey); } static void atmel_sha_hmac_alg_init(struct ahash_alg *alg) { alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY; alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC; alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx); alg->halg.base.cra_module = THIS_MODULE; alg->halg.base.cra_init = atmel_sha_hmac_cra_init; alg->halg.base.cra_exit = atmel_sha_hmac_cra_exit; alg->halg.statesize = sizeof(struct atmel_sha_reqctx); alg->init = atmel_sha_hmac_init; alg->update = atmel_sha_update; alg->final = atmel_sha_final; alg->digest = atmel_sha_hmac_digest; alg->setkey = atmel_sha_hmac_setkey; alg->export = atmel_sha_export; alg->import = atmel_sha_import; } static struct ahash_alg sha_hmac_algs[] = { { .halg.base.cra_name = "hmac(sha1)", .halg.base.cra_driver_name = "atmel-hmac-sha1", .halg.base.cra_blocksize = SHA1_BLOCK_SIZE, .halg.digestsize = SHA1_DIGEST_SIZE, }, { .halg.base.cra_name = "hmac(sha224)", .halg.base.cra_driver_name = "atmel-hmac-sha224", .halg.base.cra_blocksize = SHA224_BLOCK_SIZE, .halg.digestsize = SHA224_DIGEST_SIZE, }, { .halg.base.cra_name = "hmac(sha256)", .halg.base.cra_driver_name = "atmel-hmac-sha256", .halg.base.cra_blocksize = SHA256_BLOCK_SIZE, .halg.digestsize = SHA256_DIGEST_SIZE, }, { .halg.base.cra_name = "hmac(sha384)", .halg.base.cra_driver_name = "atmel-hmac-sha384", .halg.base.cra_blocksize = SHA384_BLOCK_SIZE, .halg.digestsize = SHA384_DIGEST_SIZE, }, { .halg.base.cra_name = "hmac(sha512)", .halg.base.cra_driver_name = "atmel-hmac-sha512", .halg.base.cra_blocksize = SHA512_BLOCK_SIZE, .halg.digestsize = SHA512_DIGEST_SIZE, }, }; #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) /* authenc functions */ static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd); static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd); static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd); struct atmel_sha_authenc_ctx { struct crypto_ahash *tfm; }; struct atmel_sha_authenc_reqctx { struct atmel_sha_reqctx base; atmel_aes_authenc_fn_t cb; struct atmel_aes_dev *aes_dev; /* _init() parameters. */ struct scatterlist *assoc; u32 assoclen; u32 textlen; /* _final() parameters. */ u32 *digest; unsigned int digestlen; }; static void atmel_sha_authenc_complete(void *data, int err) { struct ahash_request *req = data; struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req); authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async); } static int atmel_sha_authenc_start(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req); int err; /* * Force atmel_sha_complete() to call req->base.complete(), ie * atmel_sha_authenc_complete(), which in turn calls authctx->cb(). */ dd->force_complete = true; err = atmel_sha_hw_init(dd); return authctx->cb(authctx->aes_dev, err, dd->is_async); } bool atmel_sha_authenc_is_ready(void) { struct atmel_sha_ctx dummy; dummy.dd = NULL; return (atmel_sha_find_dev(&dummy) != NULL); } EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready); unsigned int atmel_sha_authenc_get_reqsize(void) { return sizeof(struct atmel_sha_authenc_reqctx); } EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize); struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode) { struct atmel_sha_authenc_ctx *auth; struct crypto_ahash *tfm; struct atmel_sha_ctx *tctx; const char *name; int err = -EINVAL; switch (mode & SHA_FLAGS_MODE_MASK) { case SHA_FLAGS_HMAC_SHA1: name = "atmel-hmac-sha1"; break; case SHA_FLAGS_HMAC_SHA224: name = "atmel-hmac-sha224"; break; case SHA_FLAGS_HMAC_SHA256: name = "atmel-hmac-sha256"; break; case SHA_FLAGS_HMAC_SHA384: name = "atmel-hmac-sha384"; break; case SHA_FLAGS_HMAC_SHA512: name = "atmel-hmac-sha512"; break; default: goto error; } tfm = crypto_alloc_ahash(name, 0, 0); if (IS_ERR(tfm)) { err = PTR_ERR(tfm); goto error; } tctx = crypto_ahash_ctx(tfm); tctx->start = atmel_sha_authenc_start; tctx->flags = mode; auth = kzalloc(sizeof(*auth), GFP_KERNEL); if (!auth) { err = -ENOMEM; goto err_free_ahash; } auth->tfm = tfm; return auth; err_free_ahash: crypto_free_ahash(tfm); error: return ERR_PTR(err); } EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn); void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth) { if (auth) crypto_free_ahash(auth->tfm); kfree(auth); } EXPORT_SYMBOL_GPL(atmel_sha_authenc_free); int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth, const u8 *key, unsigned int keylen, u32 flags) { struct crypto_ahash *tfm = auth->tfm; crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK); crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK); return crypto_ahash_setkey(tfm, key, keylen); } EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey); int atmel_sha_authenc_schedule(struct ahash_request *req, struct atmel_sha_authenc_ctx *auth, atmel_aes_authenc_fn_t cb, struct atmel_aes_dev *aes_dev) { struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req); struct atmel_sha_reqctx *ctx = &authctx->base; struct crypto_ahash *tfm = auth->tfm; struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm); struct atmel_sha_dev *dd; /* Reset request context (MUST be done first). */ memset(authctx, 0, sizeof(*authctx)); /* Get SHA device. */ dd = atmel_sha_find_dev(tctx); if (!dd) return cb(aes_dev, -ENODEV, false); /* Init request context. */ ctx->dd = dd; ctx->buflen = SHA_BUFFER_LEN; authctx->cb = cb; authctx->aes_dev = aes_dev; ahash_request_set_tfm(req, tfm); ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req); return atmel_sha_handle_queue(dd, req); } EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule); int atmel_sha_authenc_init(struct ahash_request *req, struct scatterlist *assoc, unsigned int assoclen, unsigned int textlen, atmel_aes_authenc_fn_t cb, struct atmel_aes_dev *aes_dev) { struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req); struct atmel_sha_reqctx *ctx = &authctx->base; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm); struct atmel_sha_dev *dd = ctx->dd; if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32)))) return atmel_sha_complete(dd, -EINVAL); authctx->cb = cb; authctx->aes_dev = aes_dev; authctx->assoc = assoc; authctx->assoclen = assoclen; authctx->textlen = textlen; ctx->flags = hmac->base.flags; return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2); } EXPORT_SYMBOL_GPL(atmel_sha_authenc_init); static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req); struct atmel_sha_reqctx *ctx = &authctx->base; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm); size_t hs = ctx->hash_size; size_t i, num_words = hs / sizeof(u32); u32 mr, msg_size; atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV); for (i = 0; i < num_words; ++i) atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]); atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV); for (i = 0; i < num_words; ++i) atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]); mr = (SHA_MR_MODE_IDATAR0 | SHA_MR_HMAC | SHA_MR_DUALBUFF); mr |= ctx->flags & SHA_FLAGS_ALGO_MASK; atmel_sha_write(dd, SHA_MR, mr); msg_size = authctx->assoclen + authctx->textlen; atmel_sha_write(dd, SHA_MSR, msg_size); atmel_sha_write(dd, SHA_BCR, msg_size); atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST); /* Process assoc data. */ return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen, true, false, atmel_sha_authenc_init_done); } static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req); return authctx->cb(authctx->aes_dev, 0, dd->is_async); } int atmel_sha_authenc_final(struct ahash_request *req, u32 *digest, unsigned int digestlen, atmel_aes_authenc_fn_t cb, struct atmel_aes_dev *aes_dev) { struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req); struct atmel_sha_reqctx *ctx = &authctx->base; struct atmel_sha_dev *dd = ctx->dd; switch (ctx->flags & SHA_FLAGS_ALGO_MASK) { case SHA_FLAGS_SHA1: authctx->digestlen = SHA1_DIGEST_SIZE; break; case SHA_FLAGS_SHA224: authctx->digestlen = SHA224_DIGEST_SIZE; break; case SHA_FLAGS_SHA256: authctx->digestlen = SHA256_DIGEST_SIZE; break; case SHA_FLAGS_SHA384: authctx->digestlen = SHA384_DIGEST_SIZE; break; case SHA_FLAGS_SHA512: authctx->digestlen = SHA512_DIGEST_SIZE; break; default: return atmel_sha_complete(dd, -EINVAL); } if (authctx->digestlen > digestlen) authctx->digestlen = digestlen; authctx->cb = cb; authctx->aes_dev = aes_dev; authctx->digest = digest; return atmel_sha_wait_for_data_ready(dd, atmel_sha_authenc_final_done); } EXPORT_SYMBOL_GPL(atmel_sha_authenc_final); static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req); size_t i, num_words = authctx->digestlen / sizeof(u32); for (i = 0; i < num_words; ++i) authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i)); return atmel_sha_complete(dd, 0); } void atmel_sha_authenc_abort(struct ahash_request *req) { struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req); struct atmel_sha_reqctx *ctx = &authctx->base; struct atmel_sha_dev *dd = ctx->dd; /* Prevent atmel_sha_complete() from calling req->base.complete(). */ dd->is_async = false; dd->force_complete = false; (void)atmel_sha_complete(dd, 0); } EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort); #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */ static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd) { int i; if (dd->caps.has_hmac) for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) crypto_unregister_ahash(&sha_hmac_algs[i]); for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) crypto_unregister_ahash(&sha_1_256_algs[i]); if (dd->caps.has_sha224) crypto_unregister_ahash(&sha_224_alg); if (dd->caps.has_sha_384_512) { for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) crypto_unregister_ahash(&sha_384_512_algs[i]); } } static int atmel_sha_register_algs(struct atmel_sha_dev *dd) { int err, i, j; for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) { atmel_sha_alg_init(&sha_1_256_algs[i]); err = crypto_register_ahash(&sha_1_256_algs[i]); if (err) goto err_sha_1_256_algs; } if (dd->caps.has_sha224) { atmel_sha_alg_init(&sha_224_alg); err = crypto_register_ahash(&sha_224_alg); if (err) goto err_sha_224_algs; } if (dd->caps.has_sha_384_512) { for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) { atmel_sha_alg_init(&sha_384_512_algs[i]); err = crypto_register_ahash(&sha_384_512_algs[i]); if (err) goto err_sha_384_512_algs; } } if (dd->caps.has_hmac) { for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) { atmel_sha_hmac_alg_init(&sha_hmac_algs[i]); err = crypto_register_ahash(&sha_hmac_algs[i]); if (err) goto err_sha_hmac_algs; } } return 0; /*i = ARRAY_SIZE(sha_hmac_algs);*/ err_sha_hmac_algs: for (j = 0; j < i; j++) crypto_unregister_ahash(&sha_hmac_algs[j]); i = ARRAY_SIZE(sha_384_512_algs); err_sha_384_512_algs: for (j = 0; j < i; j++) crypto_unregister_ahash(&sha_384_512_algs[j]); crypto_unregister_ahash(&sha_224_alg); err_sha_224_algs: i = ARRAY_SIZE(sha_1_256_algs); err_sha_1_256_algs: for (j = 0; j < i; j++) crypto_unregister_ahash(&sha_1_256_algs[j]); return err; } static int atmel_sha_dma_init(struct atmel_sha_dev *dd) { dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx"); if (IS_ERR(dd->dma_lch_in.chan)) { return dev_err_probe(dd->dev, PTR_ERR(dd->dma_lch_in.chan), "DMA channel is not available\n"); } dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base + SHA_REG_DIN(0); dd->dma_lch_in.dma_conf.src_maxburst = 1; dd->dma_lch_in.dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dd->dma_lch_in.dma_conf.dst_maxburst = 1; dd->dma_lch_in.dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dd->dma_lch_in.dma_conf.device_fc = false; return 0; } static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd) { dma_release_channel(dd->dma_lch_in.chan); } static void atmel_sha_get_cap(struct atmel_sha_dev *dd) { dd->caps.has_dma = 0; dd->caps.has_dualbuff = 0; dd->caps.has_sha224 = 0; dd->caps.has_sha_384_512 = 0; dd->caps.has_uihv = 0; dd->caps.has_hmac = 0; /* keep only major version number */ switch (dd->hw_version & 0xff0) { case 0x700: case 0x600: case 0x510: dd->caps.has_dma = 1; dd->caps.has_dualbuff = 1; dd->caps.has_sha224 = 1; dd->caps.has_sha_384_512 = 1; dd->caps.has_uihv = 1; dd->caps.has_hmac = 1; break; case 0x420: dd->caps.has_dma = 1; dd->caps.has_dualbuff = 1; dd->caps.has_sha224 = 1; dd->caps.has_sha_384_512 = 1; dd->caps.has_uihv = 1; break; case 0x410: dd->caps.has_dma = 1; dd->caps.has_dualbuff = 1; dd->caps.has_sha224 = 1; dd->caps.has_sha_384_512 = 1; break; case 0x400: dd->caps.has_dma = 1; dd->caps.has_dualbuff = 1; dd->caps.has_sha224 = 1; break; case 0x320: break; default: dev_warn(dd->dev, "Unmanaged sha version, set minimum capabilities\n"); break; } } static const struct of_device_id atmel_sha_dt_ids[] = { { .compatible = "atmel,at91sam9g46-sha" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids); static int atmel_sha_probe(struct platform_device *pdev) { struct atmel_sha_dev *sha_dd; struct device *dev = &pdev->dev; struct resource *sha_res; int err; sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL); if (!sha_dd) return -ENOMEM; sha_dd->dev = dev; platform_set_drvdata(pdev, sha_dd); INIT_LIST_HEAD(&sha_dd->list); spin_lock_init(&sha_dd->lock); tasklet_init(&sha_dd->done_task, atmel_sha_done_task, (unsigned long)sha_dd); tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task, (unsigned long)sha_dd); crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH); sha_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &sha_res); if (IS_ERR(sha_dd->io_base)) { err = PTR_ERR(sha_dd->io_base); goto err_tasklet_kill; } sha_dd->phys_base = sha_res->start; /* Get the IRQ */ sha_dd->irq = platform_get_irq(pdev, 0); if (sha_dd->irq < 0) { err = sha_dd->irq; goto err_tasklet_kill; } err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha", sha_dd); if (err) { dev_err(dev, "unable to request sha irq.\n"); goto err_tasklet_kill; } /* Initializing the clock */ sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk"); if (IS_ERR(sha_dd->iclk)) { dev_err(dev, "clock initialization failed.\n"); err = PTR_ERR(sha_dd->iclk); goto err_tasklet_kill; } err = clk_prepare(sha_dd->iclk); if (err) goto err_tasklet_kill; err = atmel_sha_hw_version_init(sha_dd); if (err) goto err_iclk_unprepare; atmel_sha_get_cap(sha_dd); if (sha_dd->caps.has_dma) { err = atmel_sha_dma_init(sha_dd); if (err) goto err_iclk_unprepare; dev_info(dev, "using %s for DMA transfers\n", dma_chan_name(sha_dd->dma_lch_in.chan)); } spin_lock(&atmel_sha.lock); list_add_tail(&sha_dd->list, &atmel_sha.dev_list); spin_unlock(&atmel_sha.lock); err = atmel_sha_register_algs(sha_dd); if (err) goto err_algs; dev_info(dev, "Atmel SHA1/SHA256%s%s\n", sha_dd->caps.has_sha224 ? "/SHA224" : "", sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : ""); return 0; err_algs: spin_lock(&atmel_sha.lock); list_del(&sha_dd->list); spin_unlock(&atmel_sha.lock); if (sha_dd->caps.has_dma) atmel_sha_dma_cleanup(sha_dd); err_iclk_unprepare: clk_unprepare(sha_dd->iclk); err_tasklet_kill: tasklet_kill(&sha_dd->queue_task); tasklet_kill(&sha_dd->done_task); return err; } static void atmel_sha_remove(struct platform_device *pdev) { struct atmel_sha_dev *sha_dd = platform_get_drvdata(pdev); spin_lock(&atmel_sha.lock); list_del(&sha_dd->list); spin_unlock(&atmel_sha.lock); atmel_sha_unregister_algs(sha_dd); tasklet_kill(&sha_dd->queue_task); tasklet_kill(&sha_dd->done_task); if (sha_dd->caps.has_dma) atmel_sha_dma_cleanup(sha_dd); clk_unprepare(sha_dd->iclk); } static struct platform_driver atmel_sha_driver = { .probe = atmel_sha_probe, .remove_new = atmel_sha_remove, .driver = { .name = "atmel_sha", .of_match_table = atmel_sha_dt_ids, }, }; module_platform_driver(atmel_sha_driver); MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support."); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1