Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Siming Wan | 1449 | 44.38% | 1 | 3.70% |
Damian Muszynski | 543 | 16.63% | 3 | 11.11% |
Giovanni Cabiddu | 353 | 10.81% | 5 | 18.52% |
Jie Wang | 251 | 7.69% | 3 | 11.11% |
Tadeusz Struk | 245 | 7.50% | 5 | 18.52% |
Marco Chiappero | 220 | 6.74% | 2 | 7.41% |
Wojciech Ziemba | 144 | 4.41% | 3 | 11.11% |
Bruce W Allan | 39 | 1.19% | 2 | 7.41% |
Arnd Bergmann | 10 | 0.31% | 1 | 3.70% |
Zeng Xin | 8 | 0.25% | 1 | 3.70% |
Tomasz Kowalik | 3 | 0.09% | 1 | 3.70% |
Total | 3265 | 27 |
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2020 Intel Corporation */ #include <linux/iopoll.h> #include <asm/div64.h> #include "adf_accel_devices.h" #include "adf_cfg_services.h" #include "adf_common_drv.h" #include "adf_fw_config.h" #include "adf_gen4_hw_data.h" #include "adf_gen4_pm.h" u32 adf_gen4_get_accel_mask(struct adf_hw_device_data *self) { return ADF_GEN4_ACCELERATORS_MASK; } EXPORT_SYMBOL_GPL(adf_gen4_get_accel_mask); u32 adf_gen4_get_num_accels(struct adf_hw_device_data *self) { return ADF_GEN4_MAX_ACCELERATORS; } EXPORT_SYMBOL_GPL(adf_gen4_get_num_accels); u32 adf_gen4_get_num_aes(struct adf_hw_device_data *self) { if (!self || !self->ae_mask) return 0; return hweight32(self->ae_mask); } EXPORT_SYMBOL_GPL(adf_gen4_get_num_aes); u32 adf_gen4_get_misc_bar_id(struct adf_hw_device_data *self) { return ADF_GEN4_PMISC_BAR; } EXPORT_SYMBOL_GPL(adf_gen4_get_misc_bar_id); u32 adf_gen4_get_etr_bar_id(struct adf_hw_device_data *self) { return ADF_GEN4_ETR_BAR; } EXPORT_SYMBOL_GPL(adf_gen4_get_etr_bar_id); u32 adf_gen4_get_sram_bar_id(struct adf_hw_device_data *self) { return ADF_GEN4_SRAM_BAR; } EXPORT_SYMBOL_GPL(adf_gen4_get_sram_bar_id); enum dev_sku_info adf_gen4_get_sku(struct adf_hw_device_data *self) { return DEV_SKU_1; } EXPORT_SYMBOL_GPL(adf_gen4_get_sku); void adf_gen4_get_arb_info(struct arb_info *arb_info) { arb_info->arb_cfg = ADF_GEN4_ARB_CONFIG; arb_info->arb_offset = ADF_GEN4_ARB_OFFSET; arb_info->wt2sam_offset = ADF_GEN4_ARB_WRK_2_SER_MAP_OFFSET; } EXPORT_SYMBOL_GPL(adf_gen4_get_arb_info); void adf_gen4_get_admin_info(struct admin_info *admin_csrs_info) { admin_csrs_info->mailbox_offset = ADF_GEN4_MAILBOX_BASE_OFFSET; admin_csrs_info->admin_msg_ur = ADF_GEN4_ADMINMSGUR_OFFSET; admin_csrs_info->admin_msg_lr = ADF_GEN4_ADMINMSGLR_OFFSET; } EXPORT_SYMBOL_GPL(adf_gen4_get_admin_info); u32 adf_gen4_get_heartbeat_clock(struct adf_hw_device_data *self) { /* * GEN4 uses KPT counter for HB */ return ADF_GEN4_KPT_COUNTER_FREQ; } EXPORT_SYMBOL_GPL(adf_gen4_get_heartbeat_clock); void adf_gen4_enable_error_correction(struct adf_accel_dev *accel_dev) { struct adf_bar *misc_bar = &GET_BARS(accel_dev)[ADF_GEN4_PMISC_BAR]; void __iomem *csr = misc_bar->virt_addr; /* Enable all in errsou3 except VFLR notification on host */ ADF_CSR_WR(csr, ADF_GEN4_ERRMSK3, ADF_GEN4_VFLNOTIFY); } EXPORT_SYMBOL_GPL(adf_gen4_enable_error_correction); void adf_gen4_enable_ints(struct adf_accel_dev *accel_dev) { void __iomem *addr; addr = (&GET_BARS(accel_dev)[ADF_GEN4_PMISC_BAR])->virt_addr; /* Enable bundle interrupts */ ADF_CSR_WR(addr, ADF_GEN4_SMIAPF_RP_X0_MASK_OFFSET, 0); ADF_CSR_WR(addr, ADF_GEN4_SMIAPF_RP_X1_MASK_OFFSET, 0); /* Enable misc interrupts */ ADF_CSR_WR(addr, ADF_GEN4_SMIAPF_MASK_OFFSET, 0); } EXPORT_SYMBOL_GPL(adf_gen4_enable_ints); int adf_gen4_init_device(struct adf_accel_dev *accel_dev) { void __iomem *addr; u32 status; u32 csr; int ret; addr = (&GET_BARS(accel_dev)[ADF_GEN4_PMISC_BAR])->virt_addr; /* Temporarily mask PM interrupt */ csr = ADF_CSR_RD(addr, ADF_GEN4_ERRMSK2); csr |= ADF_GEN4_PM_SOU; ADF_CSR_WR(addr, ADF_GEN4_ERRMSK2, csr); /* Set DRV_ACTIVE bit to power up the device */ ADF_CSR_WR(addr, ADF_GEN4_PM_INTERRUPT, ADF_GEN4_PM_DRV_ACTIVE); /* Poll status register to make sure the device is powered up */ ret = read_poll_timeout(ADF_CSR_RD, status, status & ADF_GEN4_PM_INIT_STATE, ADF_GEN4_PM_POLL_DELAY_US, ADF_GEN4_PM_POLL_TIMEOUT_US, true, addr, ADF_GEN4_PM_STATUS); if (ret) dev_err(&GET_DEV(accel_dev), "Failed to power up the device\n"); return ret; } EXPORT_SYMBOL_GPL(adf_gen4_init_device); static inline void adf_gen4_unpack_ssm_wdtimer(u64 value, u32 *upper, u32 *lower) { *lower = lower_32_bits(value); *upper = upper_32_bits(value); } void adf_gen4_set_ssm_wdtimer(struct adf_accel_dev *accel_dev) { void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); u64 timer_val_pke = ADF_SSM_WDT_PKE_DEFAULT_VALUE; u64 timer_val = ADF_SSM_WDT_DEFAULT_VALUE; u32 ssm_wdt_pke_high = 0; u32 ssm_wdt_pke_low = 0; u32 ssm_wdt_high = 0; u32 ssm_wdt_low = 0; /* Convert 64bit WDT timer value into 32bit values for * mmio write to 32bit CSRs. */ adf_gen4_unpack_ssm_wdtimer(timer_val, &ssm_wdt_high, &ssm_wdt_low); adf_gen4_unpack_ssm_wdtimer(timer_val_pke, &ssm_wdt_pke_high, &ssm_wdt_pke_low); /* Enable WDT for sym and dc */ ADF_CSR_WR(pmisc_addr, ADF_SSMWDTL_OFFSET, ssm_wdt_low); ADF_CSR_WR(pmisc_addr, ADF_SSMWDTH_OFFSET, ssm_wdt_high); /* Enable WDT for pke */ ADF_CSR_WR(pmisc_addr, ADF_SSMWDTPKEL_OFFSET, ssm_wdt_pke_low); ADF_CSR_WR(pmisc_addr, ADF_SSMWDTPKEH_OFFSET, ssm_wdt_pke_high); } EXPORT_SYMBOL_GPL(adf_gen4_set_ssm_wdtimer); /* * The vector routing table is used to select the MSI-X entry to use for each * interrupt source. * The first ADF_GEN4_ETR_MAX_BANKS entries correspond to ring interrupts. * The final entry corresponds to VF2PF or error interrupts. * This vector table could be used to configure one MSI-X entry to be shared * between multiple interrupt sources. * * The default routing is set to have a one to one correspondence between the * interrupt source and the MSI-X entry used. */ void adf_gen4_set_msix_default_rttable(struct adf_accel_dev *accel_dev) { void __iomem *csr; int i; csr = (&GET_BARS(accel_dev)[ADF_GEN4_PMISC_BAR])->virt_addr; for (i = 0; i <= ADF_GEN4_ETR_MAX_BANKS; i++) ADF_CSR_WR(csr, ADF_GEN4_MSIX_RTTABLE_OFFSET(i), i); } EXPORT_SYMBOL_GPL(adf_gen4_set_msix_default_rttable); int adf_pfvf_comms_disabled(struct adf_accel_dev *accel_dev) { return 0; } EXPORT_SYMBOL_GPL(adf_pfvf_comms_disabled); static int reset_ring_pair(void __iomem *csr, u32 bank_number) { u32 status; int ret; /* Write rpresetctl register BIT(0) as 1 * Since rpresetctl registers have no RW fields, no need to preserve * values for other bits. Just write directly. */ ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETCTL(bank_number), ADF_WQM_CSR_RPRESETCTL_RESET); /* Read rpresetsts register and wait for rp reset to complete */ ret = read_poll_timeout(ADF_CSR_RD, status, status & ADF_WQM_CSR_RPRESETSTS_STATUS, ADF_RPRESET_POLL_DELAY_US, ADF_RPRESET_POLL_TIMEOUT_US, true, csr, ADF_WQM_CSR_RPRESETSTS(bank_number)); if (!ret) { /* When rp reset is done, clear rpresetsts */ ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETSTS(bank_number), ADF_WQM_CSR_RPRESETSTS_STATUS); } return ret; } int adf_gen4_ring_pair_reset(struct adf_accel_dev *accel_dev, u32 bank_number) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; void __iomem *csr = adf_get_etr_base(accel_dev); int ret; if (bank_number >= hw_data->num_banks) return -EINVAL; dev_dbg(&GET_DEV(accel_dev), "ring pair reset for bank:%d\n", bank_number); ret = reset_ring_pair(csr, bank_number); if (ret) dev_err(&GET_DEV(accel_dev), "ring pair reset failed (timeout)\n"); else dev_dbg(&GET_DEV(accel_dev), "ring pair reset successful\n"); return ret; } EXPORT_SYMBOL_GPL(adf_gen4_ring_pair_reset); static const u32 thrd_to_arb_map_dcc[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000FFFF, 0x0000FFFF, 0x0000FFFF, 0x0000FFFF, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0 }; static const u16 rp_group_to_arb_mask[] = { [RP_GROUP_0] = 0x5, [RP_GROUP_1] = 0xA, }; static bool is_single_service(int service_id) { switch (service_id) { case SVC_DC: case SVC_SYM: case SVC_ASYM: return true; case SVC_CY: case SVC_CY2: case SVC_DCC: case SVC_ASYM_DC: case SVC_DC_ASYM: case SVC_SYM_DC: case SVC_DC_SYM: default: return false; } } int adf_gen4_init_thd2arb_map(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); u32 *thd2arb_map = hw_data->thd_to_arb_map; unsigned int ae_cnt, worker_obj_cnt, i, j; unsigned long ae_mask, thds_mask; int srv_id, rp_group; u32 thd2arb_map_base; u16 arb_mask; if (!hw_data->get_rp_group || !hw_data->get_ena_thd_mask || !hw_data->get_num_aes || !hw_data->uof_get_num_objs || !hw_data->uof_get_ae_mask) return -EFAULT; srv_id = adf_get_service_enabled(accel_dev); if (srv_id < 0) return srv_id; ae_cnt = hw_data->get_num_aes(hw_data); worker_obj_cnt = hw_data->uof_get_num_objs(accel_dev) - ADF_GEN4_ADMIN_ACCELENGINES; if (srv_id == SVC_DCC) { if (ae_cnt > ICP_QAT_HW_AE_DELIMITER) return -EINVAL; memcpy(thd2arb_map, thrd_to_arb_map_dcc, array_size(sizeof(*thd2arb_map), ae_cnt)); return 0; } for (i = 0; i < worker_obj_cnt; i++) { ae_mask = hw_data->uof_get_ae_mask(accel_dev, i); rp_group = hw_data->get_rp_group(accel_dev, ae_mask); thds_mask = hw_data->get_ena_thd_mask(accel_dev, i); thd2arb_map_base = 0; if (rp_group >= RP_GROUP_COUNT || rp_group < RP_GROUP_0) return -EINVAL; if (thds_mask == ADF_GEN4_ENA_THD_MASK_ERROR) return -EINVAL; if (is_single_service(srv_id)) arb_mask = rp_group_to_arb_mask[RP_GROUP_0] | rp_group_to_arb_mask[RP_GROUP_1]; else arb_mask = rp_group_to_arb_mask[rp_group]; for_each_set_bit(j, &thds_mask, ADF_NUM_THREADS_PER_AE) thd2arb_map_base |= arb_mask << (j * 4); for_each_set_bit(j, &ae_mask, ae_cnt) thd2arb_map[j] = thd2arb_map_base; } return 0; } EXPORT_SYMBOL_GPL(adf_gen4_init_thd2arb_map); u16 adf_gen4_get_ring_to_svc_map(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); enum adf_cfg_service_type rps[RP_GROUP_COUNT] = { }; unsigned int ae_mask, start_id, worker_obj_cnt, i; u16 ring_to_svc_map; int rp_group; if (!hw_data->get_rp_group || !hw_data->uof_get_ae_mask || !hw_data->uof_get_obj_type || !hw_data->uof_get_num_objs) return 0; /* If dcc, all rings handle compression requests */ if (adf_get_service_enabled(accel_dev) == SVC_DCC) { for (i = 0; i < RP_GROUP_COUNT; i++) rps[i] = COMP; goto set_mask; } worker_obj_cnt = hw_data->uof_get_num_objs(accel_dev) - ADF_GEN4_ADMIN_ACCELENGINES; start_id = worker_obj_cnt - RP_GROUP_COUNT; for (i = start_id; i < worker_obj_cnt; i++) { ae_mask = hw_data->uof_get_ae_mask(accel_dev, i); rp_group = hw_data->get_rp_group(accel_dev, ae_mask); if (rp_group >= RP_GROUP_COUNT || rp_group < RP_GROUP_0) return 0; switch (hw_data->uof_get_obj_type(accel_dev, i)) { case ADF_FW_SYM_OBJ: rps[rp_group] = SYM; break; case ADF_FW_ASYM_OBJ: rps[rp_group] = ASYM; break; case ADF_FW_DC_OBJ: rps[rp_group] = COMP; break; default: rps[rp_group] = 0; break; } } set_mask: ring_to_svc_map = rps[RP_GROUP_0] << ADF_CFG_SERV_RING_PAIR_0_SHIFT | rps[RP_GROUP_1] << ADF_CFG_SERV_RING_PAIR_1_SHIFT | rps[RP_GROUP_0] << ADF_CFG_SERV_RING_PAIR_2_SHIFT | rps[RP_GROUP_1] << ADF_CFG_SERV_RING_PAIR_3_SHIFT; return ring_to_svc_map; } EXPORT_SYMBOL_GPL(adf_gen4_get_ring_to_svc_map); /* * adf_gen4_bank_quiesce_coal_timer() - quiesce bank coalesced interrupt timer * @accel_dev: Pointer to the device structure * @bank_idx: Offset to the bank within this device * @timeout_ms: Timeout in milliseconds for the operation * * This function tries to quiesce the coalesced interrupt timer of a bank if * it has been enabled and triggered. * * Returns 0 on success, error code otherwise * */ int adf_gen4_bank_quiesce_coal_timer(struct adf_accel_dev *accel_dev, u32 bank_idx, int timeout_ms) { struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev); void __iomem *csr_misc = adf_get_pmisc_base(accel_dev); void __iomem *csr_etr = adf_get_etr_base(accel_dev); u32 int_col_ctl, int_col_mask, int_col_en; u32 e_stat, intsrc; u64 wait_us; int ret; if (timeout_ms < 0) return -EINVAL; int_col_ctl = csr_ops->read_csr_int_col_ctl(csr_etr, bank_idx); int_col_mask = csr_ops->get_int_col_ctl_enable_mask(); if (!(int_col_ctl & int_col_mask)) return 0; int_col_en = csr_ops->read_csr_int_col_en(csr_etr, bank_idx); int_col_en &= BIT(ADF_WQM_CSR_RP_IDX_RX); e_stat = csr_ops->read_csr_e_stat(csr_etr, bank_idx); if (!(~e_stat & int_col_en)) return 0; wait_us = 2 * ((int_col_ctl & ~int_col_mask) << 8) * USEC_PER_SEC; do_div(wait_us, hw_data->clock_frequency); wait_us = min(wait_us, (u64)timeout_ms * USEC_PER_MSEC); dev_dbg(&GET_DEV(accel_dev), "wait for bank %d - coalesced timer expires in %llu us (max=%u ms estat=0x%x intcolen=0x%x)\n", bank_idx, wait_us, timeout_ms, e_stat, int_col_en); ret = read_poll_timeout(ADF_CSR_RD, intsrc, intsrc, ADF_COALESCED_POLL_DELAY_US, wait_us, true, csr_misc, ADF_WQM_CSR_RPINTSOU(bank_idx)); if (ret) dev_warn(&GET_DEV(accel_dev), "coalesced timer for bank %d expired (%llu us)\n", bank_idx, wait_us); return ret; } EXPORT_SYMBOL_GPL(adf_gen4_bank_quiesce_coal_timer); static int drain_bank(void __iomem *csr, u32 bank_number, int timeout_us) { u32 status; ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETCTL(bank_number), ADF_WQM_CSR_RPRESETCTL_DRAIN); return read_poll_timeout(ADF_CSR_RD, status, status & ADF_WQM_CSR_RPRESETSTS_STATUS, ADF_RPRESET_POLL_DELAY_US, timeout_us, true, csr, ADF_WQM_CSR_RPRESETSTS(bank_number)); } void adf_gen4_bank_drain_finish(struct adf_accel_dev *accel_dev, u32 bank_number) { void __iomem *csr = adf_get_etr_base(accel_dev); ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETSTS(bank_number), ADF_WQM_CSR_RPRESETSTS_STATUS); } int adf_gen4_bank_drain_start(struct adf_accel_dev *accel_dev, u32 bank_number, int timeout_us) { void __iomem *csr = adf_get_etr_base(accel_dev); int ret; dev_dbg(&GET_DEV(accel_dev), "Drain bank %d\n", bank_number); ret = drain_bank(csr, bank_number, timeout_us); if (ret) dev_err(&GET_DEV(accel_dev), "Bank drain failed (timeout)\n"); else dev_dbg(&GET_DEV(accel_dev), "Bank drain successful\n"); return ret; } static void bank_state_save(struct adf_hw_csr_ops *ops, void __iomem *base, u32 bank, struct bank_state *state, u32 num_rings) { u32 i; state->ringstat0 = ops->read_csr_stat(base, bank); state->ringuostat = ops->read_csr_uo_stat(base, bank); state->ringestat = ops->read_csr_e_stat(base, bank); state->ringnestat = ops->read_csr_ne_stat(base, bank); state->ringnfstat = ops->read_csr_nf_stat(base, bank); state->ringfstat = ops->read_csr_f_stat(base, bank); state->ringcstat0 = ops->read_csr_c_stat(base, bank); state->iaintflagen = ops->read_csr_int_en(base, bank); state->iaintflagreg = ops->read_csr_int_flag(base, bank); state->iaintflagsrcsel0 = ops->read_csr_int_srcsel(base, bank); state->iaintcolen = ops->read_csr_int_col_en(base, bank); state->iaintcolctl = ops->read_csr_int_col_ctl(base, bank); state->iaintflagandcolen = ops->read_csr_int_flag_and_col(base, bank); state->ringexpstat = ops->read_csr_exp_stat(base, bank); state->ringexpintenable = ops->read_csr_exp_int_en(base, bank); state->ringsrvarben = ops->read_csr_ring_srv_arb_en(base, bank); for (i = 0; i < num_rings; i++) { state->rings[i].head = ops->read_csr_ring_head(base, bank, i); state->rings[i].tail = ops->read_csr_ring_tail(base, bank, i); state->rings[i].config = ops->read_csr_ring_config(base, bank, i); state->rings[i].base = ops->read_csr_ring_base(base, bank, i); } } #define CHECK_STAT(op, expect_val, name, args...) \ ({ \ u32 __expect_val = (expect_val); \ u32 actual_val = op(args); \ (__expect_val == actual_val) ? 0 : \ (pr_err("QAT: Fail to restore %s register. Expected 0x%x, actual 0x%x\n", \ name, __expect_val, actual_val), -EINVAL); \ }) static int bank_state_restore(struct adf_hw_csr_ops *ops, void __iomem *base, u32 bank, struct bank_state *state, u32 num_rings, int tx_rx_gap) { u32 val, tmp_val, i; int ret; for (i = 0; i < num_rings; i++) ops->write_csr_ring_base(base, bank, i, state->rings[i].base); for (i = 0; i < num_rings; i++) ops->write_csr_ring_config(base, bank, i, state->rings[i].config); for (i = 0; i < num_rings / 2; i++) { int tx = i * (tx_rx_gap + 1); int rx = tx + tx_rx_gap; ops->write_csr_ring_head(base, bank, tx, state->rings[tx].head); ops->write_csr_ring_tail(base, bank, tx, state->rings[tx].tail); /* * The TX ring head needs to be updated again to make sure that * the HW will not consider the ring as full when it is empty * and the correct state flags are set to match the recovered state. */ if (state->ringestat & BIT(tx)) { val = ops->read_csr_int_srcsel(base, bank); val |= ADF_RP_INT_SRC_SEL_F_RISE_MASK; ops->write_csr_int_srcsel_w_val(base, bank, val); ops->write_csr_ring_head(base, bank, tx, state->rings[tx].head); } ops->write_csr_ring_tail(base, bank, rx, state->rings[rx].tail); val = ops->read_csr_int_srcsel(base, bank); val |= ADF_RP_INT_SRC_SEL_F_RISE_MASK << ADF_RP_INT_SRC_SEL_RANGE_WIDTH; ops->write_csr_int_srcsel_w_val(base, bank, val); ops->write_csr_ring_head(base, bank, rx, state->rings[rx].head); val = ops->read_csr_int_srcsel(base, bank); val |= ADF_RP_INT_SRC_SEL_F_FALL_MASK << ADF_RP_INT_SRC_SEL_RANGE_WIDTH; ops->write_csr_int_srcsel_w_val(base, bank, val); /* * The RX ring tail needs to be updated again to make sure that * the HW will not consider the ring as empty when it is full * and the correct state flags are set to match the recovered state. */ if (state->ringfstat & BIT(rx)) ops->write_csr_ring_tail(base, bank, rx, state->rings[rx].tail); } ops->write_csr_int_flag_and_col(base, bank, state->iaintflagandcolen); ops->write_csr_int_en(base, bank, state->iaintflagen); ops->write_csr_int_col_en(base, bank, state->iaintcolen); ops->write_csr_int_srcsel_w_val(base, bank, state->iaintflagsrcsel0); ops->write_csr_exp_int_en(base, bank, state->ringexpintenable); ops->write_csr_int_col_ctl(base, bank, state->iaintcolctl); ops->write_csr_ring_srv_arb_en(base, bank, state->ringsrvarben); /* Check that all ring statuses match the saved state. */ ret = CHECK_STAT(ops->read_csr_stat, state->ringstat0, "ringstat", base, bank); if (ret) return ret; ret = CHECK_STAT(ops->read_csr_e_stat, state->ringestat, "ringestat", base, bank); if (ret) return ret; ret = CHECK_STAT(ops->read_csr_ne_stat, state->ringnestat, "ringnestat", base, bank); if (ret) return ret; ret = CHECK_STAT(ops->read_csr_nf_stat, state->ringnfstat, "ringnfstat", base, bank); if (ret) return ret; ret = CHECK_STAT(ops->read_csr_f_stat, state->ringfstat, "ringfstat", base, bank); if (ret) return ret; ret = CHECK_STAT(ops->read_csr_c_stat, state->ringcstat0, "ringcstat", base, bank); if (ret) return ret; tmp_val = ops->read_csr_exp_stat(base, bank); val = state->ringexpstat; if (tmp_val && !val) { pr_err("QAT: Bank was restored with exception: 0x%x\n", val); return -EINVAL; } return 0; } int adf_gen4_bank_state_save(struct adf_accel_dev *accel_dev, u32 bank_number, struct bank_state *state) { struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev); void __iomem *csr_base = adf_get_etr_base(accel_dev); if (bank_number >= hw_data->num_banks || !state) return -EINVAL; dev_dbg(&GET_DEV(accel_dev), "Saving state of bank %d\n", bank_number); bank_state_save(csr_ops, csr_base, bank_number, state, hw_data->num_rings_per_bank); return 0; } EXPORT_SYMBOL_GPL(adf_gen4_bank_state_save); int adf_gen4_bank_state_restore(struct adf_accel_dev *accel_dev, u32 bank_number, struct bank_state *state) { struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev); void __iomem *csr_base = adf_get_etr_base(accel_dev); int ret; if (bank_number >= hw_data->num_banks || !state) return -EINVAL; dev_dbg(&GET_DEV(accel_dev), "Restoring state of bank %d\n", bank_number); ret = bank_state_restore(csr_ops, csr_base, bank_number, state, hw_data->num_rings_per_bank, hw_data->tx_rx_gap); if (ret) dev_err(&GET_DEV(accel_dev), "Unable to restore state of bank %d\n", bank_number); return ret; } EXPORT_SYMBOL_GPL(adf_gen4_bank_state_restore);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1