Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stanimir Varbanov | 2087 | 63.01% | 2 | 15.38% |
Thara Gopinath | 773 | 23.34% | 6 | 46.15% |
Eneas U de Queiroz | 431 | 13.01% | 1 | 7.69% |
Ard Biesheuvel | 13 | 0.39% | 1 | 7.69% |
Eric Biggers | 4 | 0.12% | 1 | 7.69% |
Herbert Xu | 2 | 0.06% | 1 | 7.69% |
Thomas Gleixner | 2 | 0.06% | 1 | 7.69% |
Total | 3312 | 13 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved. */ #include <crypto/internal/hash.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/types.h> #include <crypto/scatterwalk.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include "cipher.h" #include "common.h" #include "core.h" #include "regs-v5.h" #include "sha.h" #include "aead.h" static inline u32 qce_read(struct qce_device *qce, u32 offset) { return readl(qce->base + offset); } static inline void qce_write(struct qce_device *qce, u32 offset, u32 val) { writel(val, qce->base + offset); } static inline void qce_write_array(struct qce_device *qce, u32 offset, const u32 *val, unsigned int len) { int i; for (i = 0; i < len; i++) qce_write(qce, offset + i * sizeof(u32), val[i]); } static inline void qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len) { int i; for (i = 0; i < len; i++) qce_write(qce, offset + i * sizeof(u32), 0); } static u32 qce_config_reg(struct qce_device *qce, int little) { u32 beats = (qce->burst_size >> 3) - 1; u32 pipe_pair = qce->pipe_pair_id; u32 config; config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK; config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) | BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT); config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK; config &= ~HIGH_SPD_EN_N_SHIFT; if (little) config |= BIT(LITTLE_ENDIAN_MODE_SHIFT); return config; } void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len) { __be32 *d = dst; const u8 *s = src; unsigned int n; n = len / sizeof(u32); for (; n > 0; n--) { *d = cpu_to_be32p((const __u32 *) s); s += sizeof(__u32); d++; } } static void qce_setup_config(struct qce_device *qce) { u32 config; /* get big endianness */ config = qce_config_reg(qce, 0); /* clear status */ qce_write(qce, REG_STATUS, 0); qce_write(qce, REG_CONFIG, config); } static inline void qce_crypto_go(struct qce_device *qce, bool result_dump) { if (result_dump) qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT)); else qce_write(qce, REG_GOPROC, BIT(GO_SHIFT)); } #if defined(CONFIG_CRYPTO_DEV_QCE_SHA) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD) static u32 qce_auth_cfg(unsigned long flags, u32 key_size, u32 auth_size) { u32 cfg = 0; if (IS_CCM(flags) || IS_CMAC(flags)) cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT; else cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT; if (IS_CCM(flags) || IS_CMAC(flags)) { if (key_size == AES_KEYSIZE_128) cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT; else if (key_size == AES_KEYSIZE_256) cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT; } if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT; else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT; else if (IS_CMAC(flags)) cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT; else if (IS_CCM(flags)) cfg |= (auth_size - 1) << AUTH_SIZE_SHIFT; if (IS_SHA1(flags) || IS_SHA256(flags)) cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT; else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags)) cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT; else if (IS_CCM(flags)) cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT; else if (IS_CMAC(flags)) cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT; if (IS_SHA(flags) || IS_SHA_HMAC(flags)) cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT; if (IS_CCM(flags)) cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT; return cfg; } #endif #ifdef CONFIG_CRYPTO_DEV_QCE_SHA static int qce_setup_regs_ahash(struct crypto_async_request *async_req) { struct ahash_request *req = ahash_request_cast(async_req); struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm); struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req); struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm); struct qce_device *qce = tmpl->qce; unsigned int digestsize = crypto_ahash_digestsize(ahash); unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm); __be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0}; __be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0}; u32 auth_cfg = 0, config; unsigned int iv_words; /* if not the last, the size has to be on the block boundary */ if (!rctx->last_blk && req->nbytes % blocksize) return -EINVAL; qce_setup_config(qce); if (IS_CMAC(rctx->flags)) { qce_write(qce, REG_AUTH_SEG_CFG, 0); qce_write(qce, REG_ENCR_SEG_CFG, 0); qce_write(qce, REG_ENCR_SEG_SIZE, 0); qce_clear_array(qce, REG_AUTH_IV0, 16); qce_clear_array(qce, REG_AUTH_KEY0, 16); qce_clear_array(qce, REG_AUTH_BYTECNT0, 4); auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen, digestsize); } if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) { u32 authkey_words = rctx->authklen / sizeof(u32); qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen); qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey, authkey_words); } if (IS_CMAC(rctx->flags)) goto go_proc; if (rctx->first_blk) memcpy(auth, rctx->digest, digestsize); else qce_cpu_to_be32p_array(auth, rctx->digest, digestsize); iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8; qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words); if (rctx->first_blk) qce_clear_array(qce, REG_AUTH_BYTECNT0, 4); else qce_write_array(qce, REG_AUTH_BYTECNT0, (u32 *)rctx->byte_count, 2); auth_cfg = qce_auth_cfg(rctx->flags, 0, digestsize); if (rctx->last_blk) auth_cfg |= BIT(AUTH_LAST_SHIFT); else auth_cfg &= ~BIT(AUTH_LAST_SHIFT); if (rctx->first_blk) auth_cfg |= BIT(AUTH_FIRST_SHIFT); else auth_cfg &= ~BIT(AUTH_FIRST_SHIFT); go_proc: qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg); qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes); qce_write(qce, REG_AUTH_SEG_START, 0); qce_write(qce, REG_ENCR_SEG_CFG, 0); qce_write(qce, REG_SEG_SIZE, req->nbytes); /* get little endianness */ config = qce_config_reg(qce, 1); qce_write(qce, REG_CONFIG, config); qce_crypto_go(qce, true); return 0; } #endif #if defined(CONFIG_CRYPTO_DEV_QCE_SKCIPHER) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD) static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size) { u32 cfg = 0; if (IS_AES(flags)) { if (aes_key_size == AES_KEYSIZE_128) cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT; else if (aes_key_size == AES_KEYSIZE_256) cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT; } if (IS_AES(flags)) cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT; else if (IS_DES(flags) || IS_3DES(flags)) cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT; if (IS_DES(flags)) cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT; if (IS_3DES(flags)) cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT; switch (flags & QCE_MODE_MASK) { case QCE_MODE_ECB: cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT; break; case QCE_MODE_CBC: cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT; break; case QCE_MODE_CTR: cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT; break; case QCE_MODE_XTS: cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT; break; case QCE_MODE_CCM: cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT; cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT; break; default: return ~0; } return cfg; } #endif #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize) { u8 swap[QCE_AES_IV_LENGTH]; u32 i, j; if (ivsize > QCE_AES_IV_LENGTH) return; memset(swap, 0, QCE_AES_IV_LENGTH); for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1; i < QCE_AES_IV_LENGTH; i++, j--) swap[i] = src[j]; qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH); } static void qce_xtskey(struct qce_device *qce, const u8 *enckey, unsigned int enckeylen, unsigned int cryptlen) { u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0}; unsigned int xtsklen = enckeylen / (2 * sizeof(u32)); qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2, enckeylen / 2); qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen); /* Set data unit size to cryptlen. Anything else causes * crypto engine to return back incorrect results. */ qce_write(qce, REG_ENCR_XTS_DU_SIZE, cryptlen); } static int qce_setup_regs_skcipher(struct crypto_async_request *async_req) { struct skcipher_request *req = skcipher_request_cast(async_req); struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req); struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm); struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req)); struct qce_device *qce = tmpl->qce; __be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0}; __be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0}; unsigned int enckey_words, enciv_words; unsigned int keylen; u32 encr_cfg = 0, auth_cfg = 0, config; unsigned int ivsize = rctx->ivsize; unsigned long flags = rctx->flags; qce_setup_config(qce); if (IS_XTS(flags)) keylen = ctx->enc_keylen / 2; else keylen = ctx->enc_keylen; qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen); enckey_words = keylen / sizeof(u32); qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg); encr_cfg = qce_encr_cfg(flags, keylen); if (IS_DES(flags)) { enciv_words = 2; enckey_words = 2; } else if (IS_3DES(flags)) { enciv_words = 2; enckey_words = 6; } else if (IS_AES(flags)) { if (IS_XTS(flags)) qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen, rctx->cryptlen); enciv_words = 4; } else { return -EINVAL; } qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words); if (!IS_ECB(flags)) { if (IS_XTS(flags)) qce_xts_swapiv(enciv, rctx->iv, ivsize); else qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize); qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words); } if (IS_ENCRYPT(flags)) encr_cfg |= BIT(ENCODE_SHIFT); qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg); qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen); qce_write(qce, REG_ENCR_SEG_START, 0); if (IS_CTR(flags)) { qce_write(qce, REG_CNTR_MASK, ~0); qce_write(qce, REG_CNTR_MASK0, ~0); qce_write(qce, REG_CNTR_MASK1, ~0); qce_write(qce, REG_CNTR_MASK2, ~0); } qce_write(qce, REG_SEG_SIZE, rctx->cryptlen); /* get little endianness */ config = qce_config_reg(qce, 1); qce_write(qce, REG_CONFIG, config); qce_crypto_go(qce, true); return 0; } #endif #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0 }; static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7 }; static unsigned int qce_be32_to_cpu_array(u32 *dst, const u8 *src, unsigned int len) { u32 *d = dst; const u8 *s = src; unsigned int n; n = len / sizeof(u32); for (; n > 0; n--) { *d = be32_to_cpup((const __be32 *)s); s += sizeof(u32); d++; } return DIV_ROUND_UP(len, sizeof(u32)); } static int qce_setup_regs_aead(struct crypto_async_request *async_req) { struct aead_request *req = aead_request_cast(async_req); struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req); struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm); struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req)); struct qce_device *qce = tmpl->qce; u32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0}; u32 enciv[QCE_MAX_IV_SIZE / sizeof(u32)] = {0}; u32 authkey[QCE_SHA_HMAC_KEY_SIZE / sizeof(u32)] = {0}; u32 authiv[SHA256_DIGEST_SIZE / sizeof(u32)] = {0}; u32 authnonce[QCE_MAX_NONCE / sizeof(u32)] = {0}; unsigned int enc_keylen = ctx->enc_keylen; unsigned int auth_keylen = ctx->auth_keylen; unsigned int enc_ivsize = rctx->ivsize; unsigned int auth_ivsize = 0; unsigned int enckey_words, enciv_words; unsigned int authkey_words, authiv_words, authnonce_words; unsigned long flags = rctx->flags; u32 encr_cfg, auth_cfg, config, totallen; u32 iv_last_word; qce_setup_config(qce); /* Write encryption key */ enckey_words = qce_be32_to_cpu_array(enckey, ctx->enc_key, enc_keylen); qce_write_array(qce, REG_ENCR_KEY0, enckey, enckey_words); /* Write encryption iv */ enciv_words = qce_be32_to_cpu_array(enciv, rctx->iv, enc_ivsize); qce_write_array(qce, REG_CNTR0_IV0, enciv, enciv_words); if (IS_CCM(rctx->flags)) { iv_last_word = enciv[enciv_words - 1]; qce_write(qce, REG_CNTR3_IV3, iv_last_word + 1); qce_write_array(qce, REG_ENCR_CCM_INT_CNTR0, (u32 *)enciv, enciv_words); qce_write(qce, REG_CNTR_MASK, ~0); qce_write(qce, REG_CNTR_MASK0, ~0); qce_write(qce, REG_CNTR_MASK1, ~0); qce_write(qce, REG_CNTR_MASK2, ~0); } /* Clear authentication IV and KEY registers of previous values */ qce_clear_array(qce, REG_AUTH_IV0, 16); qce_clear_array(qce, REG_AUTH_KEY0, 16); /* Clear byte count */ qce_clear_array(qce, REG_AUTH_BYTECNT0, 4); /* Write authentication key */ authkey_words = qce_be32_to_cpu_array(authkey, ctx->auth_key, auth_keylen); qce_write_array(qce, REG_AUTH_KEY0, (u32 *)authkey, authkey_words); /* Write initial authentication IV only for HMAC algorithms */ if (IS_SHA_HMAC(rctx->flags)) { /* Write default authentication iv */ if (IS_SHA1_HMAC(rctx->flags)) { auth_ivsize = SHA1_DIGEST_SIZE; memcpy(authiv, std_iv_sha1, auth_ivsize); } else if (IS_SHA256_HMAC(rctx->flags)) { auth_ivsize = SHA256_DIGEST_SIZE; memcpy(authiv, std_iv_sha256, auth_ivsize); } authiv_words = auth_ivsize / sizeof(u32); qce_write_array(qce, REG_AUTH_IV0, (u32 *)authiv, authiv_words); } else if (IS_CCM(rctx->flags)) { /* Write nonce for CCM algorithms */ authnonce_words = qce_be32_to_cpu_array(authnonce, rctx->ccm_nonce, QCE_MAX_NONCE); qce_write_array(qce, REG_AUTH_INFO_NONCE0, authnonce, authnonce_words); } /* Set up ENCR_SEG_CFG */ encr_cfg = qce_encr_cfg(flags, enc_keylen); if (IS_ENCRYPT(flags)) encr_cfg |= BIT(ENCODE_SHIFT); qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg); /* Set up AUTH_SEG_CFG */ auth_cfg = qce_auth_cfg(rctx->flags, auth_keylen, ctx->authsize); auth_cfg |= BIT(AUTH_LAST_SHIFT); auth_cfg |= BIT(AUTH_FIRST_SHIFT); if (IS_ENCRYPT(flags)) { if (IS_CCM(rctx->flags)) auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT; else auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT; } else { if (IS_CCM(rctx->flags)) auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT; else auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT; } qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg); totallen = rctx->cryptlen + rctx->assoclen; /* Set the encryption size and start offset */ if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags)) qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen + ctx->authsize); else qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen); qce_write(qce, REG_ENCR_SEG_START, rctx->assoclen & 0xffff); /* Set the authentication size and start offset */ qce_write(qce, REG_AUTH_SEG_SIZE, totallen); qce_write(qce, REG_AUTH_SEG_START, 0); /* Write total length */ if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags)) qce_write(qce, REG_SEG_SIZE, totallen + ctx->authsize); else qce_write(qce, REG_SEG_SIZE, totallen); /* get little endianness */ config = qce_config_reg(qce, 1); qce_write(qce, REG_CONFIG, config); /* Start the process */ qce_crypto_go(qce, !IS_CCM(flags)); return 0; } #endif int qce_start(struct crypto_async_request *async_req, u32 type) { switch (type) { #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER case CRYPTO_ALG_TYPE_SKCIPHER: return qce_setup_regs_skcipher(async_req); #endif #ifdef CONFIG_CRYPTO_DEV_QCE_SHA case CRYPTO_ALG_TYPE_AHASH: return qce_setup_regs_ahash(async_req); #endif #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD case CRYPTO_ALG_TYPE_AEAD: return qce_setup_regs_aead(async_req); #endif default: return -EINVAL; } } #define STATUS_ERRORS \ (BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT)) int qce_check_status(struct qce_device *qce, u32 *status) { int ret = 0; *status = qce_read(qce, REG_STATUS); /* * Don't use result dump status. The operation may not be complete. * Instead, use the status we just read from device. In case, we need to * use result_status from result dump the result_status needs to be byte * swapped, since we set the device to little endian. */ if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT))) ret = -ENXIO; else if (*status & BIT(MAC_FAILED_SHIFT)) ret = -EBADMSG; return ret; } void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step) { u32 val; val = qce_read(qce, REG_VERSION); *major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT; *minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT; *step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1