Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
J Keerthy | 12017 | 90.90% | 3 | 11.11% |
Peter Ujfalusi | 785 | 5.94% | 3 | 11.11% |
Herbert Xu | 213 | 1.61% | 1 | 3.70% |
Suman Anna | 65 | 0.49% | 5 | 18.52% |
Andrew F. Davis | 39 | 0.30% | 2 | 7.41% |
Tero Kristo | 37 | 0.28% | 1 | 3.70% |
Geert Uytterhoeven | 24 | 0.18% | 1 | 3.70% |
Colin Ian King | 14 | 0.11% | 1 | 3.70% |
Krzysztof Kozlowski | 6 | 0.05% | 1 | 3.70% |
Jayesh Choudhary | 5 | 0.04% | 1 | 3.70% |
Eric Biggers | 4 | 0.03% | 1 | 3.70% |
Kim Phillips | 3 | 0.02% | 1 | 3.70% |
Dan Carpenter | 2 | 0.02% | 1 | 3.70% |
Uwe Kleine-König | 2 | 0.02% | 1 | 3.70% |
Chen Ni | 1 | 0.01% | 1 | 3.70% |
Yue haibing | 1 | 0.01% | 1 | 3.70% |
Rob Herring | 1 | 0.01% | 1 | 3.70% |
Liu Shixin | 1 | 0.01% | 1 | 3.70% |
Total | 13220 | 27 |
// SPDX-License-Identifier: GPL-2.0 /* * K3 SA2UL crypto accelerator driver * * Copyright (C) 2018-2020 Texas Instruments Incorporated - http://www.ti.com * * Authors: Keerthy * Vitaly Andrianov * Tero Kristo */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/dmapool.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <crypto/aes.h> #include <crypto/authenc.h> #include <crypto/des.h> #include <crypto/internal/aead.h> #include <crypto/internal/hash.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include "sa2ul.h" /* Byte offset for key in encryption security context */ #define SC_ENC_KEY_OFFSET (1 + 27 + 4) /* Byte offset for Aux-1 in encryption security context */ #define SC_ENC_AUX1_OFFSET (1 + 27 + 4 + 32) #define SA_CMDL_UPD_ENC 0x0001 #define SA_CMDL_UPD_AUTH 0x0002 #define SA_CMDL_UPD_ENC_IV 0x0004 #define SA_CMDL_UPD_AUTH_IV 0x0008 #define SA_CMDL_UPD_AUX_KEY 0x0010 #define SA_AUTH_SUBKEY_LEN 16 #define SA_CMDL_PAYLOAD_LENGTH_MASK 0xFFFF #define SA_CMDL_SOP_BYPASS_LEN_MASK 0xFF000000 #define MODE_CONTROL_BYTES 27 #define SA_HASH_PROCESSING 0 #define SA_CRYPTO_PROCESSING 0 #define SA_UPLOAD_HASH_TO_TLR BIT(6) #define SA_SW0_FLAGS_MASK 0xF0000 #define SA_SW0_CMDL_INFO_MASK 0x1F00000 #define SA_SW0_CMDL_PRESENT BIT(4) #define SA_SW0_ENG_ID_MASK 0x3E000000 #define SA_SW0_DEST_INFO_PRESENT BIT(30) #define SA_SW2_EGRESS_LENGTH 0xFF000000 #define SA_BASIC_HASH 0x10 #define SHA256_DIGEST_WORDS 8 /* Make 32-bit word from 4 bytes */ #define SA_MK_U32(b0, b1, b2, b3) (((b0) << 24) | ((b1) << 16) | \ ((b2) << 8) | (b3)) /* size of SCCTL structure in bytes */ #define SA_SCCTL_SZ 16 /* Max Authentication tag size */ #define SA_MAX_AUTH_TAG_SZ 64 enum sa_algo_id { SA_ALG_CBC_AES = 0, SA_ALG_EBC_AES, SA_ALG_CBC_DES3, SA_ALG_ECB_DES3, SA_ALG_SHA1, SA_ALG_SHA256, SA_ALG_SHA512, SA_ALG_AUTHENC_SHA1_AES, SA_ALG_AUTHENC_SHA256_AES, }; struct sa_match_data { u8 priv; u8 priv_id; u32 supported_algos; }; static struct device *sa_k3_dev; /** * struct sa_cmdl_cfg - Command label configuration descriptor * @aalg: authentication algorithm ID * @enc_eng_id: Encryption Engine ID supported by the SA hardware * @auth_eng_id: Authentication Engine ID * @iv_size: Initialization Vector size * @akey: Authentication key * @akey_len: Authentication key length * @enc: True, if this is an encode request */ struct sa_cmdl_cfg { int aalg; u8 enc_eng_id; u8 auth_eng_id; u8 iv_size; const u8 *akey; u16 akey_len; bool enc; }; /** * struct algo_data - Crypto algorithm specific data * @enc_eng: Encryption engine info structure * @auth_eng: Authentication engine info structure * @auth_ctrl: Authentication control word * @hash_size: Size of digest * @iv_idx: iv index in psdata * @iv_out_size: iv out size * @ealg_id: Encryption Algorithm ID * @aalg_id: Authentication algorithm ID * @mci_enc: Mode Control Instruction for Encryption algorithm * @mci_dec: Mode Control Instruction for Decryption * @inv_key: Whether the encryption algorithm demands key inversion * @ctx: Pointer to the algorithm context * @keyed_mac: Whether the authentication algorithm has key * @prep_iopad: Function pointer to generate intermediate ipad/opad */ struct algo_data { struct sa_eng_info enc_eng; struct sa_eng_info auth_eng; u8 auth_ctrl; u8 hash_size; u8 iv_idx; u8 iv_out_size; u8 ealg_id; u8 aalg_id; u8 *mci_enc; u8 *mci_dec; bool inv_key; struct sa_tfm_ctx *ctx; bool keyed_mac; void (*prep_iopad)(struct algo_data *algo, const u8 *key, u16 key_sz, __be32 *ipad, __be32 *opad); }; /** * struct sa_alg_tmpl: A generic template encompassing crypto/aead algorithms * @type: Type of the crypto algorithm. * @alg: Union of crypto algorithm definitions. * @registered: Flag indicating if the crypto algorithm is already registered */ struct sa_alg_tmpl { u32 type; /* CRYPTO_ALG_TYPE from <linux/crypto.h> */ union { struct skcipher_alg skcipher; struct ahash_alg ahash; struct aead_alg aead; } alg; bool registered; }; /** * struct sa_mapped_sg: scatterlist information for tx and rx * @mapped: Set to true if the @sgt is mapped * @dir: mapping direction used for @sgt * @split_sg: Set if the sg is split and needs to be freed up * @static_sg: Static scatterlist entry for overriding data * @sgt: scatterlist table for DMA API use */ struct sa_mapped_sg { bool mapped; enum dma_data_direction dir; struct scatterlist static_sg; struct scatterlist *split_sg; struct sg_table sgt; }; /** * struct sa_rx_data: RX Packet miscellaneous data place holder * @req: crypto request data pointer * @ddev: pointer to the DMA device * @tx_in: dma_async_tx_descriptor pointer for rx channel * @mapped_sg: Information on tx (0) and rx (1) scatterlist DMA mapping * @enc: Flag indicating either encryption or decryption * @enc_iv_size: Initialisation vector size * @iv_idx: Initialisation vector index */ struct sa_rx_data { void *req; struct device *ddev; struct dma_async_tx_descriptor *tx_in; struct sa_mapped_sg mapped_sg[2]; u8 enc; u8 enc_iv_size; u8 iv_idx; }; /** * struct sa_req: SA request definition * @dev: device for the request * @size: total data to the xmitted via DMA * @enc_offset: offset of cipher data * @enc_size: data to be passed to cipher engine * @enc_iv: cipher IV * @auth_offset: offset of the authentication data * @auth_size: size of the authentication data * @auth_iv: authentication IV * @type: algorithm type for the request * @cmdl: command label pointer * @base: pointer to the base request * @ctx: pointer to the algorithm context data * @enc: true if this is an encode request * @src: source data * @dst: destination data * @callback: DMA callback for the request * @mdata_size: metadata size passed to DMA */ struct sa_req { struct device *dev; u16 size; u8 enc_offset; u16 enc_size; u8 *enc_iv; u8 auth_offset; u16 auth_size; u8 *auth_iv; u32 type; u32 *cmdl; struct crypto_async_request *base; struct sa_tfm_ctx *ctx; bool enc; struct scatterlist *src; struct scatterlist *dst; dma_async_tx_callback callback; u16 mdata_size; }; /* * Mode Control Instructions for various Key lengths 128, 192, 256 * For CBC (Cipher Block Chaining) mode for encryption */ static u8 mci_cbc_enc_array[3][MODE_CONTROL_BYTES] = { { 0x61, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x61, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x61, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, }; /* * Mode Control Instructions for various Key lengths 128, 192, 256 * For CBC (Cipher Block Chaining) mode for decryption */ static u8 mci_cbc_dec_array[3][MODE_CONTROL_BYTES] = { { 0x71, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x71, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x71, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, }; /* * Mode Control Instructions for various Key lengths 128, 192, 256 * For CBC (Cipher Block Chaining) mode for encryption */ static u8 mci_cbc_enc_no_iv_array[3][MODE_CONTROL_BYTES] = { { 0x21, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x21, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x21, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, }; /* * Mode Control Instructions for various Key lengths 128, 192, 256 * For CBC (Cipher Block Chaining) mode for decryption */ static u8 mci_cbc_dec_no_iv_array[3][MODE_CONTROL_BYTES] = { { 0x31, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x31, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x31, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, }; /* * Mode Control Instructions for various Key lengths 128, 192, 256 * For ECB (Electronic Code Book) mode for encryption */ static u8 mci_ecb_enc_array[3][27] = { { 0x21, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x21, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x21, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, }; /* * Mode Control Instructions for various Key lengths 128, 192, 256 * For ECB (Electronic Code Book) mode for decryption */ static u8 mci_ecb_dec_array[3][27] = { { 0x31, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x31, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x31, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, }; /* * Mode Control Instructions for DES algorithm * For CBC (Cipher Block Chaining) mode and ECB mode * encryption and for decryption respectively */ static u8 mci_cbc_3des_enc_array[MODE_CONTROL_BYTES] = { 0x60, 0x00, 0x00, 0x18, 0x88, 0x52, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; static u8 mci_cbc_3des_dec_array[MODE_CONTROL_BYTES] = { 0x70, 0x00, 0x00, 0x85, 0x0a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; static u8 mci_ecb_3des_enc_array[MODE_CONTROL_BYTES] = { 0x20, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; static u8 mci_ecb_3des_dec_array[MODE_CONTROL_BYTES] = { 0x30, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; /* * Perform 16 byte or 128 bit swizzling * The SA2UL Expects the security context to * be in little Endian and the bus width is 128 bits or 16 bytes * Hence swap 16 bytes at a time from higher to lower address */ static void sa_swiz_128(u8 *in, u16 len) { u8 data[16]; int i, j; for (i = 0; i < len; i += 16) { memcpy(data, &in[i], 16); for (j = 0; j < 16; j++) in[i + j] = data[15 - j]; } } /* Prepare the ipad and opad from key as per SHA algorithm step 1*/ static void prepare_kipad(u8 *k_ipad, const u8 *key, u16 key_sz) { int i; for (i = 0; i < key_sz; i++) k_ipad[i] = key[i] ^ 0x36; /* Instead of XOR with 0 */ for (; i < SHA1_BLOCK_SIZE; i++) k_ipad[i] = 0x36; } static void prepare_kopad(u8 *k_opad, const u8 *key, u16 key_sz) { int i; for (i = 0; i < key_sz; i++) k_opad[i] = key[i] ^ 0x5c; /* Instead of XOR with 0 */ for (; i < SHA1_BLOCK_SIZE; i++) k_opad[i] = 0x5c; } static void sa_export_shash(void *state, struct shash_desc *hash, int digest_size, __be32 *out) { struct sha1_state *sha1; struct sha256_state *sha256; u32 *result; switch (digest_size) { case SHA1_DIGEST_SIZE: sha1 = state; result = sha1->state; break; case SHA256_DIGEST_SIZE: sha256 = state; result = sha256->state; break; default: dev_err(sa_k3_dev, "%s: bad digest_size=%d\n", __func__, digest_size); return; } crypto_shash_export(hash, state); cpu_to_be32_array(out, result, digest_size / 4); } static void sa_prepare_iopads(struct algo_data *data, const u8 *key, u16 key_sz, __be32 *ipad, __be32 *opad) { SHASH_DESC_ON_STACK(shash, data->ctx->shash); int block_size = crypto_shash_blocksize(data->ctx->shash); int digest_size = crypto_shash_digestsize(data->ctx->shash); union { struct sha1_state sha1; struct sha256_state sha256; u8 k_pad[SHA1_BLOCK_SIZE]; } sha; shash->tfm = data->ctx->shash; prepare_kipad(sha.k_pad, key, key_sz); crypto_shash_init(shash); crypto_shash_update(shash, sha.k_pad, block_size); sa_export_shash(&sha, shash, digest_size, ipad); prepare_kopad(sha.k_pad, key, key_sz); crypto_shash_init(shash); crypto_shash_update(shash, sha.k_pad, block_size); sa_export_shash(&sha, shash, digest_size, opad); memzero_explicit(&sha, sizeof(sha)); } /* Derive the inverse key used in AES-CBC decryption operation */ static inline int sa_aes_inv_key(u8 *inv_key, const u8 *key, u16 key_sz) { struct crypto_aes_ctx ctx; int key_pos; if (aes_expandkey(&ctx, key, key_sz)) { dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz); return -EINVAL; } /* work around to get the right inverse for AES_KEYSIZE_192 size keys */ if (key_sz == AES_KEYSIZE_192) { ctx.key_enc[52] = ctx.key_enc[51] ^ ctx.key_enc[46]; ctx.key_enc[53] = ctx.key_enc[52] ^ ctx.key_enc[47]; } /* Based crypto_aes_expand_key logic */ switch (key_sz) { case AES_KEYSIZE_128: case AES_KEYSIZE_192: key_pos = key_sz + 24; break; case AES_KEYSIZE_256: key_pos = key_sz + 24 - 4; break; default: dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz); return -EINVAL; } memcpy(inv_key, &ctx.key_enc[key_pos], key_sz); return 0; } /* Set Security context for the encryption engine */ static int sa_set_sc_enc(struct algo_data *ad, const u8 *key, u16 key_sz, u8 enc, u8 *sc_buf) { const u8 *mci = NULL; /* Set Encryption mode selector to crypto processing */ sc_buf[0] = SA_CRYPTO_PROCESSING; if (enc) mci = ad->mci_enc; else mci = ad->mci_dec; /* Set the mode control instructions in security context */ if (mci) memcpy(&sc_buf[1], mci, MODE_CONTROL_BYTES); /* For AES-CBC decryption get the inverse key */ if (ad->inv_key && !enc) { if (sa_aes_inv_key(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz)) return -EINVAL; /* For all other cases: key is used */ } else { memcpy(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz); } return 0; } /* Set Security context for the authentication engine */ static void sa_set_sc_auth(struct algo_data *ad, const u8 *key, u16 key_sz, u8 *sc_buf) { __be32 *ipad = (void *)(sc_buf + 32); __be32 *opad = (void *)(sc_buf + 64); /* Set Authentication mode selector to hash processing */ sc_buf[0] = SA_HASH_PROCESSING; /* Auth SW ctrl word: bit[6]=1 (upload computed hash to TLR section) */ sc_buf[1] = SA_UPLOAD_HASH_TO_TLR; sc_buf[1] |= ad->auth_ctrl; /* Copy the keys or ipad/opad */ if (ad->keyed_mac) ad->prep_iopad(ad, key, key_sz, ipad, opad); else { /* basic hash */ sc_buf[1] |= SA_BASIC_HASH; } } static inline void sa_copy_iv(__be32 *out, const u8 *iv, bool size16) { int j; for (j = 0; j < ((size16) ? 4 : 2); j++) { *out = cpu_to_be32(*((u32 *)iv)); iv += 4; out++; } } /* Format general command label */ static int sa_format_cmdl_gen(struct sa_cmdl_cfg *cfg, u8 *cmdl, struct sa_cmdl_upd_info *upd_info) { u8 enc_offset = 0, auth_offset = 0, total = 0; u8 enc_next_eng = SA_ENG_ID_OUTPORT2; u8 auth_next_eng = SA_ENG_ID_OUTPORT2; u32 *word_ptr = (u32 *)cmdl; int i; /* Clear the command label */ memzero_explicit(cmdl, (SA_MAX_CMDL_WORDS * sizeof(u32))); /* Iniialize the command update structure */ memzero_explicit(upd_info, sizeof(*upd_info)); if (cfg->enc_eng_id && cfg->auth_eng_id) { if (cfg->enc) { auth_offset = SA_CMDL_HEADER_SIZE_BYTES; enc_next_eng = cfg->auth_eng_id; if (cfg->iv_size) auth_offset += cfg->iv_size; } else { enc_offset = SA_CMDL_HEADER_SIZE_BYTES; auth_next_eng = cfg->enc_eng_id; } } if (cfg->enc_eng_id) { upd_info->flags |= SA_CMDL_UPD_ENC; upd_info->enc_size.index = enc_offset >> 2; upd_info->enc_offset.index = upd_info->enc_size.index + 1; /* Encryption command label */ cmdl[enc_offset + SA_CMDL_OFFSET_NESC] = enc_next_eng; /* Encryption modes requiring IV */ if (cfg->iv_size) { upd_info->flags |= SA_CMDL_UPD_ENC_IV; upd_info->enc_iv.index = (enc_offset + SA_CMDL_HEADER_SIZE_BYTES) >> 2; upd_info->enc_iv.size = cfg->iv_size; cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] = SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size; cmdl[enc_offset + SA_CMDL_OFFSET_OPTION_CTRL1] = (SA_CTX_ENC_AUX2_OFFSET | (cfg->iv_size >> 3)); total += SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size; } else { cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] = SA_CMDL_HEADER_SIZE_BYTES; total += SA_CMDL_HEADER_SIZE_BYTES; } } if (cfg->auth_eng_id) { upd_info->flags |= SA_CMDL_UPD_AUTH; upd_info->auth_size.index = auth_offset >> 2; upd_info->auth_offset.index = upd_info->auth_size.index + 1; cmdl[auth_offset + SA_CMDL_OFFSET_NESC] = auth_next_eng; cmdl[auth_offset + SA_CMDL_OFFSET_LABEL_LEN] = SA_CMDL_HEADER_SIZE_BYTES; total += SA_CMDL_HEADER_SIZE_BYTES; } total = roundup(total, 8); for (i = 0; i < total / 4; i++) word_ptr[i] = swab32(word_ptr[i]); return total; } /* Update Command label */ static inline void sa_update_cmdl(struct sa_req *req, u32 *cmdl, struct sa_cmdl_upd_info *upd_info) { int i = 0, j; if (likely(upd_info->flags & SA_CMDL_UPD_ENC)) { cmdl[upd_info->enc_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK; cmdl[upd_info->enc_size.index] |= req->enc_size; cmdl[upd_info->enc_offset.index] &= ~SA_CMDL_SOP_BYPASS_LEN_MASK; cmdl[upd_info->enc_offset.index] |= FIELD_PREP(SA_CMDL_SOP_BYPASS_LEN_MASK, req->enc_offset); if (likely(upd_info->flags & SA_CMDL_UPD_ENC_IV)) { __be32 *data = (__be32 *)&cmdl[upd_info->enc_iv.index]; u32 *enc_iv = (u32 *)req->enc_iv; for (j = 0; i < upd_info->enc_iv.size; i += 4, j++) { data[j] = cpu_to_be32(*enc_iv); enc_iv++; } } } if (likely(upd_info->flags & SA_CMDL_UPD_AUTH)) { cmdl[upd_info->auth_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK; cmdl[upd_info->auth_size.index] |= req->auth_size; cmdl[upd_info->auth_offset.index] &= ~SA_CMDL_SOP_BYPASS_LEN_MASK; cmdl[upd_info->auth_offset.index] |= FIELD_PREP(SA_CMDL_SOP_BYPASS_LEN_MASK, req->auth_offset); if (upd_info->flags & SA_CMDL_UPD_AUTH_IV) { sa_copy_iv((void *)&cmdl[upd_info->auth_iv.index], req->auth_iv, (upd_info->auth_iv.size > 8)); } if (upd_info->flags & SA_CMDL_UPD_AUX_KEY) { int offset = (req->auth_size & 0xF) ? 4 : 0; memcpy(&cmdl[upd_info->aux_key_info.index], &upd_info->aux_key[offset], 16); } } } /* Format SWINFO words to be sent to SA */ static void sa_set_swinfo(u8 eng_id, u16 sc_id, dma_addr_t sc_phys, u8 cmdl_present, u8 cmdl_offset, u8 flags, u8 hash_size, u32 *swinfo) { swinfo[0] = sc_id; swinfo[0] |= FIELD_PREP(SA_SW0_FLAGS_MASK, flags); if (likely(cmdl_present)) swinfo[0] |= FIELD_PREP(SA_SW0_CMDL_INFO_MASK, cmdl_offset | SA_SW0_CMDL_PRESENT); swinfo[0] |= FIELD_PREP(SA_SW0_ENG_ID_MASK, eng_id); swinfo[0] |= SA_SW0_DEST_INFO_PRESENT; swinfo[1] = (u32)(sc_phys & 0xFFFFFFFFULL); swinfo[2] = (u32)((sc_phys & 0xFFFFFFFF00000000ULL) >> 32); swinfo[2] |= FIELD_PREP(SA_SW2_EGRESS_LENGTH, hash_size); } /* Dump the security context */ static void sa_dump_sc(u8 *buf, dma_addr_t dma_addr) { #ifdef DEBUG dev_info(sa_k3_dev, "Security context dump:: 0x%pad\n", &dma_addr); print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, 16, 1, buf, SA_CTX_MAX_SZ, false); #endif } static int sa_init_sc(struct sa_ctx_info *ctx, const struct sa_match_data *match_data, const u8 *enc_key, u16 enc_key_sz, const u8 *auth_key, u16 auth_key_sz, struct algo_data *ad, u8 enc, u32 *swinfo) { int enc_sc_offset = 0; int auth_sc_offset = 0; u8 *sc_buf = ctx->sc; u16 sc_id = ctx->sc_id; u8 first_engine = 0; memzero_explicit(sc_buf, SA_CTX_MAX_SZ); if (ad->auth_eng.eng_id) { if (enc) first_engine = ad->enc_eng.eng_id; else first_engine = ad->auth_eng.eng_id; enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ; auth_sc_offset = enc_sc_offset + ad->enc_eng.sc_size; sc_buf[1] = SA_SCCTL_FE_AUTH_ENC; if (!ad->hash_size) return -EINVAL; ad->hash_size = roundup(ad->hash_size, 8); } else if (ad->enc_eng.eng_id && !ad->auth_eng.eng_id) { enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ; first_engine = ad->enc_eng.eng_id; sc_buf[1] = SA_SCCTL_FE_ENC; ad->hash_size = ad->iv_out_size; } /* SCCTL Owner info: 0=host, 1=CP_ACE */ sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0; memcpy(&sc_buf[2], &sc_id, 2); sc_buf[4] = 0x0; sc_buf[5] = match_data->priv_id; sc_buf[6] = match_data->priv; sc_buf[7] = 0x0; /* Prepare context for encryption engine */ if (ad->enc_eng.sc_size) { if (sa_set_sc_enc(ad, enc_key, enc_key_sz, enc, &sc_buf[enc_sc_offset])) return -EINVAL; } /* Prepare context for authentication engine */ if (ad->auth_eng.sc_size) sa_set_sc_auth(ad, auth_key, auth_key_sz, &sc_buf[auth_sc_offset]); /* Set the ownership of context to CP_ACE */ sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0x80; /* swizzle the security context */ sa_swiz_128(sc_buf, SA_CTX_MAX_SZ); sa_set_swinfo(first_engine, ctx->sc_id, ctx->sc_phys, 1, 0, SA_SW_INFO_FLAG_EVICT, ad->hash_size, swinfo); sa_dump_sc(sc_buf, ctx->sc_phys); return 0; } /* Free the per direction context memory */ static void sa_free_ctx_info(struct sa_ctx_info *ctx, struct sa_crypto_data *data) { unsigned long bn; bn = ctx->sc_id - data->sc_id_start; spin_lock(&data->scid_lock); __clear_bit(bn, data->ctx_bm); data->sc_id--; spin_unlock(&data->scid_lock); if (ctx->sc) { dma_pool_free(data->sc_pool, ctx->sc, ctx->sc_phys); ctx->sc = NULL; } } static int sa_init_ctx_info(struct sa_ctx_info *ctx, struct sa_crypto_data *data) { unsigned long bn; int err; spin_lock(&data->scid_lock); bn = find_first_zero_bit(data->ctx_bm, SA_MAX_NUM_CTX); __set_bit(bn, data->ctx_bm); data->sc_id++; spin_unlock(&data->scid_lock); ctx->sc_id = (u16)(data->sc_id_start + bn); ctx->sc = dma_pool_alloc(data->sc_pool, GFP_KERNEL, &ctx->sc_phys); if (!ctx->sc) { dev_err(&data->pdev->dev, "Failed to allocate SC memory\n"); err = -ENOMEM; goto scid_rollback; } return 0; scid_rollback: spin_lock(&data->scid_lock); __clear_bit(bn, data->ctx_bm); data->sc_id--; spin_unlock(&data->scid_lock); return err; } static void sa_cipher_cra_exit(struct crypto_skcipher *tfm) { struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, ctx->dec.sc_id, &ctx->dec.sc_phys); sa_free_ctx_info(&ctx->enc, data); sa_free_ctx_info(&ctx->dec, data); crypto_free_skcipher(ctx->fallback.skcipher); } static int sa_cipher_cra_init(struct crypto_skcipher *tfm) { struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); const char *name = crypto_tfm_alg_name(&tfm->base); struct crypto_skcipher *child; int ret; memzero_explicit(ctx, sizeof(*ctx)); ctx->dev_data = data; ret = sa_init_ctx_info(&ctx->enc, data); if (ret) return ret; ret = sa_init_ctx_info(&ctx->dec, data); if (ret) { sa_free_ctx_info(&ctx->enc, data); return ret; } child = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(child)) { dev_err(sa_k3_dev, "Error allocating fallback algo %s\n", name); return PTR_ERR(child); } ctx->fallback.skcipher = child; crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) + sizeof(struct skcipher_request)); dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, ctx->dec.sc_id, &ctx->dec.sc_phys); return 0; } static int sa_cipher_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen, struct algo_data *ad) { struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_skcipher *child = ctx->fallback.skcipher; int cmdl_len; struct sa_cmdl_cfg cfg; int ret; if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256) return -EINVAL; ad->enc_eng.eng_id = SA_ENG_ID_EM1; ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ; memzero_explicit(&cfg, sizeof(cfg)); cfg.enc_eng_id = ad->enc_eng.eng_id; cfg.iv_size = crypto_skcipher_ivsize(tfm); crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(child, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK); ret = crypto_skcipher_setkey(child, key, keylen); if (ret) return ret; /* Setup Encryption Security Context & Command label template */ if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, key, keylen, NULL, 0, ad, 1, &ctx->enc.epib[1])) goto badkey; cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->enc.cmdl, &ctx->enc.cmdl_upd_info); if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) goto badkey; ctx->enc.cmdl_size = cmdl_len; /* Setup Decryption Security Context & Command label template */ if (sa_init_sc(&ctx->dec, ctx->dev_data->match_data, key, keylen, NULL, 0, ad, 0, &ctx->dec.epib[1])) goto badkey; cfg.enc_eng_id = ad->enc_eng.eng_id; cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl, &ctx->dec.cmdl_upd_info); if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) goto badkey; ctx->dec.cmdl_size = cmdl_len; ctx->iv_idx = ad->iv_idx; return 0; badkey: dev_err(sa_k3_dev, "%s: badkey\n", __func__); return -EINVAL; } static int sa_aes_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct algo_data ad = { 0 }; /* Convert the key size (16/24/32) to the key size index (0/1/2) */ int key_idx = (keylen >> 3) - 2; if (key_idx >= 3) return -EINVAL; ad.mci_enc = mci_cbc_enc_array[key_idx]; ad.mci_dec = mci_cbc_dec_array[key_idx]; ad.inv_key = true; ad.ealg_id = SA_EALG_ID_AES_CBC; ad.iv_idx = 4; ad.iv_out_size = 16; return sa_cipher_setkey(tfm, key, keylen, &ad); } static int sa_aes_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct algo_data ad = { 0 }; /* Convert the key size (16/24/32) to the key size index (0/1/2) */ int key_idx = (keylen >> 3) - 2; if (key_idx >= 3) return -EINVAL; ad.mci_enc = mci_ecb_enc_array[key_idx]; ad.mci_dec = mci_ecb_dec_array[key_idx]; ad.inv_key = true; ad.ealg_id = SA_EALG_ID_AES_ECB; return sa_cipher_setkey(tfm, key, keylen, &ad); } static int sa_3des_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct algo_data ad = { 0 }; ad.mci_enc = mci_cbc_3des_enc_array; ad.mci_dec = mci_cbc_3des_dec_array; ad.ealg_id = SA_EALG_ID_3DES_CBC; ad.iv_idx = 6; ad.iv_out_size = 8; return sa_cipher_setkey(tfm, key, keylen, &ad); } static int sa_3des_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct algo_data ad = { 0 }; ad.mci_enc = mci_ecb_3des_enc_array; ad.mci_dec = mci_ecb_3des_dec_array; return sa_cipher_setkey(tfm, key, keylen, &ad); } static void sa_sync_from_device(struct sa_rx_data *rxd) { struct sg_table *sgt; if (rxd->mapped_sg[0].dir == DMA_BIDIRECTIONAL) sgt = &rxd->mapped_sg[0].sgt; else sgt = &rxd->mapped_sg[1].sgt; dma_sync_sgtable_for_cpu(rxd->ddev, sgt, DMA_FROM_DEVICE); } static void sa_free_sa_rx_data(struct sa_rx_data *rxd) { int i; for (i = 0; i < ARRAY_SIZE(rxd->mapped_sg); i++) { struct sa_mapped_sg *mapped_sg = &rxd->mapped_sg[i]; if (mapped_sg->mapped) { dma_unmap_sgtable(rxd->ddev, &mapped_sg->sgt, mapped_sg->dir, 0); kfree(mapped_sg->split_sg); } } kfree(rxd); } static void sa_aes_dma_in_callback(void *data) { struct sa_rx_data *rxd = data; struct skcipher_request *req; u32 *result; __be32 *mdptr; size_t ml, pl; int i; sa_sync_from_device(rxd); req = container_of(rxd->req, struct skcipher_request, base); if (req->iv) { mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml); result = (u32 *)req->iv; for (i = 0; i < (rxd->enc_iv_size / 4); i++) result[i] = be32_to_cpu(mdptr[i + rxd->iv_idx]); } sa_free_sa_rx_data(rxd); skcipher_request_complete(req, 0); } static void sa_prepare_tx_desc(u32 *mdptr, u32 pslen, u32 *psdata, u32 epiblen, u32 *epib) { u32 *out, *in; int i; for (out = mdptr, in = epib, i = 0; i < epiblen / sizeof(u32); i++) *out++ = *in++; mdptr[4] = (0xFFFF << 16); for (out = &mdptr[5], in = psdata, i = 0; i < pslen / sizeof(u32); i++) *out++ = *in++; } static int sa_run(struct sa_req *req) { struct sa_rx_data *rxd; gfp_t gfp_flags; u32 cmdl[SA_MAX_CMDL_WORDS]; struct sa_crypto_data *pdata = dev_get_drvdata(sa_k3_dev); struct device *ddev; struct dma_chan *dma_rx; int sg_nents, src_nents, dst_nents; struct scatterlist *src, *dst; size_t pl, ml, split_size; struct sa_ctx_info *sa_ctx = req->enc ? &req->ctx->enc : &req->ctx->dec; int ret; struct dma_async_tx_descriptor *tx_out; u32 *mdptr; bool diff_dst; enum dma_data_direction dir_src; struct sa_mapped_sg *mapped_sg; gfp_flags = req->base->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; rxd = kzalloc(sizeof(*rxd), gfp_flags); if (!rxd) return -ENOMEM; if (req->src != req->dst) { diff_dst = true; dir_src = DMA_TO_DEVICE; } else { diff_dst = false; dir_src = DMA_BIDIRECTIONAL; } /* * SA2UL has an interesting feature where the receive DMA channel * is selected based on the data passed to the engine. Within the * transition range, there is also a space where it is impossible * to determine where the data will end up, and this should be * avoided. This will be handled by the SW fallback mechanism by * the individual algorithm implementations. */ if (req->size >= 256) dma_rx = pdata->dma_rx2; else dma_rx = pdata->dma_rx1; ddev = dmaengine_get_dma_device(pdata->dma_tx); rxd->ddev = ddev; memcpy(cmdl, sa_ctx->cmdl, sa_ctx->cmdl_size); sa_update_cmdl(req, cmdl, &sa_ctx->cmdl_upd_info); if (req->type != CRYPTO_ALG_TYPE_AHASH) { if (req->enc) req->type |= (SA_REQ_SUBTYPE_ENC << SA_REQ_SUBTYPE_SHIFT); else req->type |= (SA_REQ_SUBTYPE_DEC << SA_REQ_SUBTYPE_SHIFT); } cmdl[sa_ctx->cmdl_size / sizeof(u32)] = req->type; /* * Map the packets, first we check if the data fits into a single * sg entry and use that if possible. If it does not fit, we check * if we need to do sg_split to align the scatterlist data on the * actual data size being processed by the crypto engine. */ src = req->src; sg_nents = sg_nents_for_len(src, req->size); split_size = req->size; mapped_sg = &rxd->mapped_sg[0]; if (sg_nents == 1 && split_size <= req->src->length) { src = &mapped_sg->static_sg; src_nents = 1; sg_init_table(src, 1); sg_set_page(src, sg_page(req->src), split_size, req->src->offset); mapped_sg->sgt.sgl = src; mapped_sg->sgt.orig_nents = src_nents; ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0); if (ret) { kfree(rxd); return ret; } mapped_sg->dir = dir_src; mapped_sg->mapped = true; } else { mapped_sg->sgt.sgl = req->src; mapped_sg->sgt.orig_nents = sg_nents; ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0); if (ret) { kfree(rxd); return ret; } mapped_sg->dir = dir_src; mapped_sg->mapped = true; ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents, 0, 1, &split_size, &src, &src_nents, gfp_flags); if (ret) { src_nents = mapped_sg->sgt.nents; src = mapped_sg->sgt.sgl; } else { mapped_sg->split_sg = src; } } dma_sync_sgtable_for_device(ddev, &mapped_sg->sgt, DMA_TO_DEVICE); if (!diff_dst) { dst_nents = src_nents; dst = src; } else { dst_nents = sg_nents_for_len(req->dst, req->size); mapped_sg = &rxd->mapped_sg[1]; if (dst_nents == 1 && split_size <= req->dst->length) { dst = &mapped_sg->static_sg; dst_nents = 1; sg_init_table(dst, 1); sg_set_page(dst, sg_page(req->dst), split_size, req->dst->offset); mapped_sg->sgt.sgl = dst; mapped_sg->sgt.orig_nents = dst_nents; ret = dma_map_sgtable(ddev, &mapped_sg->sgt, DMA_FROM_DEVICE, 0); if (ret) goto err_cleanup; mapped_sg->dir = DMA_FROM_DEVICE; mapped_sg->mapped = true; } else { mapped_sg->sgt.sgl = req->dst; mapped_sg->sgt.orig_nents = dst_nents; ret = dma_map_sgtable(ddev, &mapped_sg->sgt, DMA_FROM_DEVICE, 0); if (ret) goto err_cleanup; mapped_sg->dir = DMA_FROM_DEVICE; mapped_sg->mapped = true; ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents, 0, 1, &split_size, &dst, &dst_nents, gfp_flags); if (ret) { dst_nents = mapped_sg->sgt.nents; dst = mapped_sg->sgt.sgl; } else { mapped_sg->split_sg = dst; } } } rxd->tx_in = dmaengine_prep_slave_sg(dma_rx, dst, dst_nents, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!rxd->tx_in) { dev_err(pdata->dev, "IN prep_slave_sg() failed\n"); ret = -EINVAL; goto err_cleanup; } rxd->req = (void *)req->base; rxd->enc = req->enc; rxd->iv_idx = req->ctx->iv_idx; rxd->enc_iv_size = sa_ctx->cmdl_upd_info.enc_iv.size; rxd->tx_in->callback = req->callback; rxd->tx_in->callback_param = rxd; tx_out = dmaengine_prep_slave_sg(pdata->dma_tx, src, src_nents, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tx_out) { dev_err(pdata->dev, "OUT prep_slave_sg() failed\n"); ret = -EINVAL; goto err_cleanup; } /* * Prepare metadata for DMA engine. This essentially describes the * crypto algorithm to be used, data sizes, different keys etc. */ mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(tx_out, &pl, &ml); sa_prepare_tx_desc(mdptr, (sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * sizeof(u32))), cmdl, sizeof(sa_ctx->epib), sa_ctx->epib); ml = sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * sizeof(u32)); dmaengine_desc_set_metadata_len(tx_out, req->mdata_size); dmaengine_submit(tx_out); dmaengine_submit(rxd->tx_in); dma_async_issue_pending(dma_rx); dma_async_issue_pending(pdata->dma_tx); return -EINPROGRESS; err_cleanup: sa_free_sa_rx_data(rxd); return ret; } static int sa_cipher_run(struct skcipher_request *req, u8 *iv, int enc) { struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); struct crypto_alg *alg = req->base.tfm->__crt_alg; struct sa_req sa_req = { 0 }; if (!req->cryptlen) return 0; if (req->cryptlen % alg->cra_blocksize) return -EINVAL; /* Use SW fallback if the data size is not supported */ if (req->cryptlen > SA_MAX_DATA_SZ || (req->cryptlen >= SA_UNSAFE_DATA_SZ_MIN && req->cryptlen <= SA_UNSAFE_DATA_SZ_MAX)) { struct skcipher_request *subreq = skcipher_request_ctx(req); skcipher_request_set_tfm(subreq, ctx->fallback.skcipher); skcipher_request_set_callback(subreq, req->base.flags, req->base.complete, req->base.data); skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); if (enc) return crypto_skcipher_encrypt(subreq); else return crypto_skcipher_decrypt(subreq); } sa_req.size = req->cryptlen; sa_req.enc_size = req->cryptlen; sa_req.src = req->src; sa_req.dst = req->dst; sa_req.enc_iv = iv; sa_req.type = CRYPTO_ALG_TYPE_SKCIPHER; sa_req.enc = enc; sa_req.callback = sa_aes_dma_in_callback; sa_req.mdata_size = 44; sa_req.base = &req->base; sa_req.ctx = ctx; return sa_run(&sa_req); } static int sa_encrypt(struct skcipher_request *req) { return sa_cipher_run(req, req->iv, 1); } static int sa_decrypt(struct skcipher_request *req) { return sa_cipher_run(req, req->iv, 0); } static void sa_sha_dma_in_callback(void *data) { struct sa_rx_data *rxd = data; struct ahash_request *req; struct crypto_ahash *tfm; unsigned int authsize; int i; size_t ml, pl; u32 *result; __be32 *mdptr; sa_sync_from_device(rxd); req = container_of(rxd->req, struct ahash_request, base); tfm = crypto_ahash_reqtfm(req); authsize = crypto_ahash_digestsize(tfm); mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml); result = (u32 *)req->result; for (i = 0; i < (authsize / 4); i++) result[i] = be32_to_cpu(mdptr[i + 4]); sa_free_sa_rx_data(rxd); ahash_request_complete(req, 0); } static int zero_message_process(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); int sa_digest_size = crypto_ahash_digestsize(tfm); switch (sa_digest_size) { case SHA1_DIGEST_SIZE: memcpy(req->result, sha1_zero_message_hash, sa_digest_size); break; case SHA256_DIGEST_SIZE: memcpy(req->result, sha256_zero_message_hash, sa_digest_size); break; case SHA512_DIGEST_SIZE: memcpy(req->result, sha512_zero_message_hash, sa_digest_size); break; default: return -EINVAL; } return 0; } static int sa_sha_run(struct ahash_request *req) { struct sa_tfm_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); struct sa_req sa_req = { 0 }; size_t auth_len; auth_len = req->nbytes; if (!auth_len) return zero_message_process(req); if (auth_len > SA_MAX_DATA_SZ || (auth_len >= SA_UNSAFE_DATA_SZ_MIN && auth_len <= SA_UNSAFE_DATA_SZ_MAX)) { struct ahash_request *subreq = &rctx->fallback_req; int ret = 0; ahash_request_set_tfm(subreq, ctx->fallback.ahash); subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; crypto_ahash_init(subreq); subreq->nbytes = auth_len; subreq->src = req->src; subreq->result = req->result; ret |= crypto_ahash_update(subreq); subreq->nbytes = 0; ret |= crypto_ahash_final(subreq); return ret; } sa_req.size = auth_len; sa_req.auth_size = auth_len; sa_req.src = req->src; sa_req.dst = req->src; sa_req.enc = true; sa_req.type = CRYPTO_ALG_TYPE_AHASH; sa_req.callback = sa_sha_dma_in_callback; sa_req.mdata_size = 28; sa_req.ctx = ctx; sa_req.base = &req->base; return sa_run(&sa_req); } static int sa_sha_setup(struct sa_tfm_ctx *ctx, struct algo_data *ad) { int bs = crypto_shash_blocksize(ctx->shash); int cmdl_len; struct sa_cmdl_cfg cfg; ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ; ad->auth_eng.eng_id = SA_ENG_ID_AM1; ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ; memset(ctx->authkey, 0, bs); memset(&cfg, 0, sizeof(cfg)); cfg.aalg = ad->aalg_id; cfg.enc_eng_id = ad->enc_eng.eng_id; cfg.auth_eng_id = ad->auth_eng.eng_id; cfg.iv_size = 0; cfg.akey = NULL; cfg.akey_len = 0; ctx->dev_data = dev_get_drvdata(sa_k3_dev); /* Setup Encryption Security Context & Command label template */ if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, NULL, 0, NULL, 0, ad, 0, &ctx->enc.epib[1])) goto badkey; cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->enc.cmdl, &ctx->enc.cmdl_upd_info); if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) goto badkey; ctx->enc.cmdl_size = cmdl_len; return 0; badkey: dev_err(sa_k3_dev, "%s: badkey\n", __func__); return -EINVAL; } static int sa_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base) { struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); int ret; memset(ctx, 0, sizeof(*ctx)); ctx->dev_data = data; ret = sa_init_ctx_info(&ctx->enc, data); if (ret) return ret; if (alg_base) { ctx->shash = crypto_alloc_shash(alg_base, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->shash)) { dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n", alg_base); return PTR_ERR(ctx->shash); } /* for fallback */ ctx->fallback.ahash = crypto_alloc_ahash(alg_base, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fallback.ahash)) { dev_err(ctx->dev_data->dev, "Could not load fallback driver\n"); return PTR_ERR(ctx->fallback.ahash); } } dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, ctx->dec.sc_id, &ctx->dec.sc_phys); crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct sa_sha_req_ctx) + crypto_ahash_reqsize(ctx->fallback.ahash)); return 0; } static int sa_sha_digest(struct ahash_request *req) { return sa_sha_run(req); } static int sa_sha_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); dev_dbg(sa_k3_dev, "init: digest size: %u, rctx=%p\n", crypto_ahash_digestsize(tfm), rctx); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; return crypto_ahash_init(&rctx->fallback_req); } static int sa_sha_update(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; rctx->fallback_req.nbytes = req->nbytes; rctx->fallback_req.src = req->src; return crypto_ahash_update(&rctx->fallback_req); } static int sa_sha_final(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; rctx->fallback_req.result = req->result; return crypto_ahash_final(&rctx->fallback_req); } static int sa_sha_finup(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; rctx->fallback_req.nbytes = req->nbytes; rctx->fallback_req.src = req->src; rctx->fallback_req.result = req->result; return crypto_ahash_finup(&rctx->fallback_req); } static int sa_sha_import(struct ahash_request *req, const void *in) { struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; return crypto_ahash_import(&rctx->fallback_req, in); } static int sa_sha_export(struct ahash_request *req, void *out) { struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = &rctx->fallback_req; ahash_request_set_tfm(subreq, ctx->fallback.ahash); subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; return crypto_ahash_export(subreq, out); } static int sa_sha1_cra_init(struct crypto_tfm *tfm) { struct algo_data ad = { 0 }; struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); sa_sha_cra_init_alg(tfm, "sha1"); ad.aalg_id = SA_AALG_ID_SHA1; ad.hash_size = SHA1_DIGEST_SIZE; ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1; sa_sha_setup(ctx, &ad); return 0; } static int sa_sha256_cra_init(struct crypto_tfm *tfm) { struct algo_data ad = { 0 }; struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); sa_sha_cra_init_alg(tfm, "sha256"); ad.aalg_id = SA_AALG_ID_SHA2_256; ad.hash_size = SHA256_DIGEST_SIZE; ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256; sa_sha_setup(ctx, &ad); return 0; } static int sa_sha512_cra_init(struct crypto_tfm *tfm) { struct algo_data ad = { 0 }; struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); sa_sha_cra_init_alg(tfm, "sha512"); ad.aalg_id = SA_AALG_ID_SHA2_512; ad.hash_size = SHA512_DIGEST_SIZE; ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA512; sa_sha_setup(ctx, &ad); return 0; } static void sa_sha_cra_exit(struct crypto_tfm *tfm) { struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, ctx->dec.sc_id, &ctx->dec.sc_phys); if (crypto_tfm_alg_type(tfm) == CRYPTO_ALG_TYPE_AHASH) sa_free_ctx_info(&ctx->enc, data); crypto_free_shash(ctx->shash); crypto_free_ahash(ctx->fallback.ahash); } static void sa_aead_dma_in_callback(void *data) { struct sa_rx_data *rxd = data; struct aead_request *req; struct crypto_aead *tfm; unsigned int start; unsigned int authsize; u8 auth_tag[SA_MAX_AUTH_TAG_SZ]; size_t pl, ml; int i; int err = 0; u32 *mdptr; sa_sync_from_device(rxd); req = container_of(rxd->req, struct aead_request, base); tfm = crypto_aead_reqtfm(req); start = req->assoclen + req->cryptlen; authsize = crypto_aead_authsize(tfm); mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml); for (i = 0; i < (authsize / 4); i++) mdptr[i + 4] = swab32(mdptr[i + 4]); if (rxd->enc) { scatterwalk_map_and_copy(&mdptr[4], req->dst, start, authsize, 1); } else { start -= authsize; scatterwalk_map_and_copy(auth_tag, req->src, start, authsize, 0); err = memcmp(&mdptr[4], auth_tag, authsize) ? -EBADMSG : 0; } sa_free_sa_rx_data(rxd); aead_request_complete(req, err); } static int sa_cra_init_aead(struct crypto_aead *tfm, const char *hash, const char *fallback) { struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm); struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); int ret; memzero_explicit(ctx, sizeof(*ctx)); ctx->dev_data = data; ctx->shash = crypto_alloc_shash(hash, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->shash)) { dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n", hash); return PTR_ERR(ctx->shash); } ctx->fallback.aead = crypto_alloc_aead(fallback, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fallback.aead)) { dev_err(sa_k3_dev, "fallback driver %s couldn't be loaded\n", fallback); return PTR_ERR(ctx->fallback.aead); } crypto_aead_set_reqsize(tfm, sizeof(struct aead_request) + crypto_aead_reqsize(ctx->fallback.aead)); ret = sa_init_ctx_info(&ctx->enc, data); if (ret) return ret; ret = sa_init_ctx_info(&ctx->dec, data); if (ret) { sa_free_ctx_info(&ctx->enc, data); return ret; } dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, ctx->dec.sc_id, &ctx->dec.sc_phys); return ret; } static int sa_cra_init_aead_sha1(struct crypto_aead *tfm) { return sa_cra_init_aead(tfm, "sha1", "authenc(hmac(sha1-ce),cbc(aes-ce))"); } static int sa_cra_init_aead_sha256(struct crypto_aead *tfm) { return sa_cra_init_aead(tfm, "sha256", "authenc(hmac(sha256-ce),cbc(aes-ce))"); } static void sa_exit_tfm_aead(struct crypto_aead *tfm) { struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm); struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); crypto_free_shash(ctx->shash); crypto_free_aead(ctx->fallback.aead); sa_free_ctx_info(&ctx->enc, data); sa_free_ctx_info(&ctx->dec, data); } /* AEAD algorithm configuration interface function */ static int sa_aead_setkey(struct crypto_aead *authenc, const u8 *key, unsigned int keylen, struct algo_data *ad) { struct sa_tfm_ctx *ctx = crypto_aead_ctx(authenc); struct crypto_authenc_keys keys; int cmdl_len; struct sa_cmdl_cfg cfg; int key_idx; if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) return -EINVAL; /* Convert the key size (16/24/32) to the key size index (0/1/2) */ key_idx = (keys.enckeylen >> 3) - 2; if (key_idx >= 3) return -EINVAL; ad->ctx = ctx; ad->enc_eng.eng_id = SA_ENG_ID_EM1; ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ; ad->auth_eng.eng_id = SA_ENG_ID_AM1; ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ; ad->mci_enc = mci_cbc_enc_no_iv_array[key_idx]; ad->mci_dec = mci_cbc_dec_no_iv_array[key_idx]; ad->inv_key = true; ad->keyed_mac = true; ad->ealg_id = SA_EALG_ID_AES_CBC; ad->prep_iopad = sa_prepare_iopads; memset(&cfg, 0, sizeof(cfg)); cfg.enc = true; cfg.aalg = ad->aalg_id; cfg.enc_eng_id = ad->enc_eng.eng_id; cfg.auth_eng_id = ad->auth_eng.eng_id; cfg.iv_size = crypto_aead_ivsize(authenc); cfg.akey = keys.authkey; cfg.akey_len = keys.authkeylen; /* Setup Encryption Security Context & Command label template */ if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, keys.enckey, keys.enckeylen, keys.authkey, keys.authkeylen, ad, 1, &ctx->enc.epib[1])) return -EINVAL; cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->enc.cmdl, &ctx->enc.cmdl_upd_info); if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) return -EINVAL; ctx->enc.cmdl_size = cmdl_len; /* Setup Decryption Security Context & Command label template */ if (sa_init_sc(&ctx->dec, ctx->dev_data->match_data, keys.enckey, keys.enckeylen, keys.authkey, keys.authkeylen, ad, 0, &ctx->dec.epib[1])) return -EINVAL; cfg.enc = false; cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl, &ctx->dec.cmdl_upd_info); if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) return -EINVAL; ctx->dec.cmdl_size = cmdl_len; crypto_aead_clear_flags(ctx->fallback.aead, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(ctx->fallback.aead, crypto_aead_get_flags(authenc) & CRYPTO_TFM_REQ_MASK); return crypto_aead_setkey(ctx->fallback.aead, key, keylen); } static int sa_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { struct sa_tfm_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm)); return crypto_aead_setauthsize(ctx->fallback.aead, authsize); } static int sa_aead_cbc_sha1_setkey(struct crypto_aead *authenc, const u8 *key, unsigned int keylen) { struct algo_data ad = { 0 }; ad.ealg_id = SA_EALG_ID_AES_CBC; ad.aalg_id = SA_AALG_ID_HMAC_SHA1; ad.hash_size = SHA1_DIGEST_SIZE; ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1; return sa_aead_setkey(authenc, key, keylen, &ad); } static int sa_aead_cbc_sha256_setkey(struct crypto_aead *authenc, const u8 *key, unsigned int keylen) { struct algo_data ad = { 0 }; ad.ealg_id = SA_EALG_ID_AES_CBC; ad.aalg_id = SA_AALG_ID_HMAC_SHA2_256; ad.hash_size = SHA256_DIGEST_SIZE; ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256; return sa_aead_setkey(authenc, key, keylen, &ad); } static int sa_aead_run(struct aead_request *req, u8 *iv, int enc) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm); struct sa_req sa_req = { 0 }; size_t auth_size, enc_size; enc_size = req->cryptlen; auth_size = req->assoclen + req->cryptlen; if (!enc) { enc_size -= crypto_aead_authsize(tfm); auth_size -= crypto_aead_authsize(tfm); } if (auth_size > SA_MAX_DATA_SZ || (auth_size >= SA_UNSAFE_DATA_SZ_MIN && auth_size <= SA_UNSAFE_DATA_SZ_MAX)) { struct aead_request *subreq = aead_request_ctx(req); int ret; aead_request_set_tfm(subreq, ctx->fallback.aead); aead_request_set_callback(subreq, req->base.flags, req->base.complete, req->base.data); aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_ad(subreq, req->assoclen); ret = enc ? crypto_aead_encrypt(subreq) : crypto_aead_decrypt(subreq); return ret; } sa_req.enc_offset = req->assoclen; sa_req.enc_size = enc_size; sa_req.auth_size = auth_size; sa_req.size = auth_size; sa_req.enc_iv = iv; sa_req.type = CRYPTO_ALG_TYPE_AEAD; sa_req.enc = enc; sa_req.callback = sa_aead_dma_in_callback; sa_req.mdata_size = 52; sa_req.base = &req->base; sa_req.ctx = ctx; sa_req.src = req->src; sa_req.dst = req->dst; return sa_run(&sa_req); } /* AEAD algorithm encrypt interface function */ static int sa_aead_encrypt(struct aead_request *req) { return sa_aead_run(req, req->iv, 1); } /* AEAD algorithm decrypt interface function */ static int sa_aead_decrypt(struct aead_request *req) { return sa_aead_run(req, req->iv, 0); } static struct sa_alg_tmpl sa_algs[] = { [SA_ALG_CBC_AES] = { .type = CRYPTO_ALG_TYPE_SKCIPHER, .alg.skcipher = { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "cbc-aes-sa2ul", .base.cra_priority = 30000, .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct sa_tfm_ctx), .base.cra_module = THIS_MODULE, .init = sa_cipher_cra_init, .exit = sa_cipher_cra_exit, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = sa_aes_cbc_setkey, .encrypt = sa_encrypt, .decrypt = sa_decrypt, } }, [SA_ALG_EBC_AES] = { .type = CRYPTO_ALG_TYPE_SKCIPHER, .alg.skcipher = { .base.cra_name = "ecb(aes)", .base.cra_driver_name = "ecb-aes-sa2ul", .base.cra_priority = 30000, .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct sa_tfm_ctx), .base.cra_module = THIS_MODULE, .init = sa_cipher_cra_init, .exit = sa_cipher_cra_exit, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = sa_aes_ecb_setkey, .encrypt = sa_encrypt, .decrypt = sa_decrypt, } }, [SA_ALG_CBC_DES3] = { .type = CRYPTO_ALG_TYPE_SKCIPHER, .alg.skcipher = { .base.cra_name = "cbc(des3_ede)", .base.cra_driver_name = "cbc-des3-sa2ul", .base.cra_priority = 30000, .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = DES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct sa_tfm_ctx), .base.cra_module = THIS_MODULE, .init = sa_cipher_cra_init, .exit = sa_cipher_cra_exit, .min_keysize = 3 * DES_KEY_SIZE, .max_keysize = 3 * DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, .setkey = sa_3des_cbc_setkey, .encrypt = sa_encrypt, .decrypt = sa_decrypt, } }, [SA_ALG_ECB_DES3] = { .type = CRYPTO_ALG_TYPE_SKCIPHER, .alg.skcipher = { .base.cra_name = "ecb(des3_ede)", .base.cra_driver_name = "ecb-des3-sa2ul", .base.cra_priority = 30000, .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = DES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct sa_tfm_ctx), .base.cra_module = THIS_MODULE, .init = sa_cipher_cra_init, .exit = sa_cipher_cra_exit, .min_keysize = 3 * DES_KEY_SIZE, .max_keysize = 3 * DES_KEY_SIZE, .setkey = sa_3des_ecb_setkey, .encrypt = sa_encrypt, .decrypt = sa_decrypt, } }, [SA_ALG_SHA1] = { .type = CRYPTO_ALG_TYPE_AHASH, .alg.ahash = { .halg.base = { .cra_name = "sha1", .cra_driver_name = "sha1-sa2ul", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sa_tfm_ctx), .cra_module = THIS_MODULE, .cra_init = sa_sha1_cra_init, .cra_exit = sa_sha_cra_exit, }, .halg.digestsize = SHA1_DIGEST_SIZE, .halg.statesize = sizeof(struct sa_sha_req_ctx) + sizeof(struct sha1_state), .init = sa_sha_init, .update = sa_sha_update, .final = sa_sha_final, .finup = sa_sha_finup, .digest = sa_sha_digest, .export = sa_sha_export, .import = sa_sha_import, }, }, [SA_ALG_SHA256] = { .type = CRYPTO_ALG_TYPE_AHASH, .alg.ahash = { .halg.base = { .cra_name = "sha256", .cra_driver_name = "sha256-sa2ul", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sa_tfm_ctx), .cra_module = THIS_MODULE, .cra_init = sa_sha256_cra_init, .cra_exit = sa_sha_cra_exit, }, .halg.digestsize = SHA256_DIGEST_SIZE, .halg.statesize = sizeof(struct sa_sha_req_ctx) + sizeof(struct sha256_state), .init = sa_sha_init, .update = sa_sha_update, .final = sa_sha_final, .finup = sa_sha_finup, .digest = sa_sha_digest, .export = sa_sha_export, .import = sa_sha_import, }, }, [SA_ALG_SHA512] = { .type = CRYPTO_ALG_TYPE_AHASH, .alg.ahash = { .halg.base = { .cra_name = "sha512", .cra_driver_name = "sha512-sa2ul", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sa_tfm_ctx), .cra_module = THIS_MODULE, .cra_init = sa_sha512_cra_init, .cra_exit = sa_sha_cra_exit, }, .halg.digestsize = SHA512_DIGEST_SIZE, .halg.statesize = sizeof(struct sa_sha_req_ctx) + sizeof(struct sha512_state), .init = sa_sha_init, .update = sa_sha_update, .final = sa_sha_final, .finup = sa_sha_finup, .digest = sa_sha_digest, .export = sa_sha_export, .import = sa_sha_import, }, }, [SA_ALG_AUTHENC_SHA1_AES] = { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "authenc(hmac(sha1),cbc(aes))-sa2ul", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct sa_tfm_ctx), .cra_module = THIS_MODULE, .cra_priority = 3000, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .init = sa_cra_init_aead_sha1, .exit = sa_exit_tfm_aead, .setkey = sa_aead_cbc_sha1_setkey, .setauthsize = sa_aead_setauthsize, .encrypt = sa_aead_encrypt, .decrypt = sa_aead_decrypt, }, }, [SA_ALG_AUTHENC_SHA256_AES] = { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "authenc(hmac(sha256),cbc(aes))-sa2ul", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct sa_tfm_ctx), .cra_module = THIS_MODULE, .cra_alignmask = 0, .cra_priority = 3000, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, .init = sa_cra_init_aead_sha256, .exit = sa_exit_tfm_aead, .setkey = sa_aead_cbc_sha256_setkey, .setauthsize = sa_aead_setauthsize, .encrypt = sa_aead_encrypt, .decrypt = sa_aead_decrypt, }, }, }; /* Register the algorithms in crypto framework */ static void sa_register_algos(struct sa_crypto_data *dev_data) { const struct sa_match_data *match_data = dev_data->match_data; struct device *dev = dev_data->dev; char *alg_name; u32 type; int i, err; for (i = 0; i < ARRAY_SIZE(sa_algs); i++) { /* Skip unsupported algos */ if (!(match_data->supported_algos & BIT(i))) continue; type = sa_algs[i].type; if (type == CRYPTO_ALG_TYPE_SKCIPHER) { alg_name = sa_algs[i].alg.skcipher.base.cra_name; err = crypto_register_skcipher(&sa_algs[i].alg.skcipher); } else if (type == CRYPTO_ALG_TYPE_AHASH) { alg_name = sa_algs[i].alg.ahash.halg.base.cra_name; err = crypto_register_ahash(&sa_algs[i].alg.ahash); } else if (type == CRYPTO_ALG_TYPE_AEAD) { alg_name = sa_algs[i].alg.aead.base.cra_name; err = crypto_register_aead(&sa_algs[i].alg.aead); } else { dev_err(dev, "un-supported crypto algorithm (%d)", sa_algs[i].type); continue; } if (err) dev_err(dev, "Failed to register '%s'\n", alg_name); else sa_algs[i].registered = true; } } /* Unregister the algorithms in crypto framework */ static void sa_unregister_algos(const struct device *dev) { u32 type; int i; for (i = 0; i < ARRAY_SIZE(sa_algs); i++) { type = sa_algs[i].type; if (!sa_algs[i].registered) continue; if (type == CRYPTO_ALG_TYPE_SKCIPHER) crypto_unregister_skcipher(&sa_algs[i].alg.skcipher); else if (type == CRYPTO_ALG_TYPE_AHASH) crypto_unregister_ahash(&sa_algs[i].alg.ahash); else if (type == CRYPTO_ALG_TYPE_AEAD) crypto_unregister_aead(&sa_algs[i].alg.aead); sa_algs[i].registered = false; } } static int sa_init_mem(struct sa_crypto_data *dev_data) { struct device *dev = &dev_data->pdev->dev; /* Setup dma pool for security context buffers */ dev_data->sc_pool = dma_pool_create("keystone-sc", dev, SA_CTX_MAX_SZ, 64, 0); if (!dev_data->sc_pool) { dev_err(dev, "Failed to create dma pool"); return -ENOMEM; } return 0; } static int sa_dma_init(struct sa_crypto_data *dd) { int ret; struct dma_slave_config cfg; dd->dma_rx1 = NULL; dd->dma_tx = NULL; dd->dma_rx2 = NULL; ret = dma_coerce_mask_and_coherent(dd->dev, DMA_BIT_MASK(48)); if (ret) return ret; dd->dma_rx1 = dma_request_chan(dd->dev, "rx1"); if (IS_ERR(dd->dma_rx1)) return dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx1), "Unable to request rx1 DMA channel\n"); dd->dma_rx2 = dma_request_chan(dd->dev, "rx2"); if (IS_ERR(dd->dma_rx2)) { ret = dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx2), "Unable to request rx2 DMA channel\n"); goto err_dma_rx2; } dd->dma_tx = dma_request_chan(dd->dev, "tx"); if (IS_ERR(dd->dma_tx)) { ret = dev_err_probe(dd->dev, PTR_ERR(dd->dma_tx), "Unable to request tx DMA channel\n"); goto err_dma_tx; } memzero_explicit(&cfg, sizeof(cfg)); cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.src_maxburst = 4; cfg.dst_maxburst = 4; ret = dmaengine_slave_config(dd->dma_rx1, &cfg); if (ret) { dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n", ret); goto err_dma_config; } ret = dmaengine_slave_config(dd->dma_rx2, &cfg); if (ret) { dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n", ret); goto err_dma_config; } ret = dmaengine_slave_config(dd->dma_tx, &cfg); if (ret) { dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n", ret); goto err_dma_config; } return 0; err_dma_config: dma_release_channel(dd->dma_tx); err_dma_tx: dma_release_channel(dd->dma_rx2); err_dma_rx2: dma_release_channel(dd->dma_rx1); return ret; } static int sa_link_child(struct device *dev, void *data) { struct device *parent = data; device_link_add(dev, parent, DL_FLAG_AUTOPROBE_CONSUMER); return 0; } static struct sa_match_data am654_match_data = { .priv = 1, .priv_id = 1, .supported_algos = BIT(SA_ALG_CBC_AES) | BIT(SA_ALG_EBC_AES) | BIT(SA_ALG_CBC_DES3) | BIT(SA_ALG_ECB_DES3) | BIT(SA_ALG_SHA1) | BIT(SA_ALG_SHA256) | BIT(SA_ALG_SHA512) | BIT(SA_ALG_AUTHENC_SHA1_AES) | BIT(SA_ALG_AUTHENC_SHA256_AES), }; static struct sa_match_data am64_match_data = { .priv = 0, .priv_id = 0, .supported_algos = BIT(SA_ALG_CBC_AES) | BIT(SA_ALG_EBC_AES) | BIT(SA_ALG_SHA256) | BIT(SA_ALG_SHA512) | BIT(SA_ALG_AUTHENC_SHA256_AES), }; static const struct of_device_id of_match[] = { { .compatible = "ti,j721e-sa2ul", .data = &am654_match_data, }, { .compatible = "ti,am654-sa2ul", .data = &am654_match_data, }, { .compatible = "ti,am64-sa2ul", .data = &am64_match_data, }, { .compatible = "ti,am62-sa3ul", .data = &am64_match_data, }, {}, }; MODULE_DEVICE_TABLE(of, of_match); static int sa_ul_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *node = dev->of_node; static void __iomem *saul_base; struct sa_crypto_data *dev_data; u32 status, val; int ret; dev_data = devm_kzalloc(dev, sizeof(*dev_data), GFP_KERNEL); if (!dev_data) return -ENOMEM; dev_data->match_data = of_device_get_match_data(dev); if (!dev_data->match_data) return -ENODEV; saul_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(saul_base)) return PTR_ERR(saul_base); sa_k3_dev = dev; dev_data->dev = dev; dev_data->pdev = pdev; dev_data->base = saul_base; platform_set_drvdata(pdev, dev_data); dev_set_drvdata(sa_k3_dev, dev_data); pm_runtime_enable(dev); ret = pm_runtime_resume_and_get(dev); if (ret < 0) { dev_err(dev, "%s: failed to get sync: %d\n", __func__, ret); pm_runtime_disable(dev); return ret; } sa_init_mem(dev_data); ret = sa_dma_init(dev_data); if (ret) goto destroy_dma_pool; spin_lock_init(&dev_data->scid_lock); val = SA_EEC_ENCSS_EN | SA_EEC_AUTHSS_EN | SA_EEC_CTXCACH_EN | SA_EEC_CPPI_PORT_IN_EN | SA_EEC_CPPI_PORT_OUT_EN | SA_EEC_TRNG_EN; status = readl_relaxed(saul_base + SA_ENGINE_STATUS); /* Only enable engines if all are not already enabled */ if (val & ~status) writel_relaxed(val, saul_base + SA_ENGINE_ENABLE_CONTROL); sa_register_algos(dev_data); ret = of_platform_populate(node, NULL, NULL, dev); if (ret) goto release_dma; device_for_each_child(dev, dev, sa_link_child); return 0; release_dma: sa_unregister_algos(dev); dma_release_channel(dev_data->dma_rx2); dma_release_channel(dev_data->dma_rx1); dma_release_channel(dev_data->dma_tx); destroy_dma_pool: dma_pool_destroy(dev_data->sc_pool); pm_runtime_put_sync(dev); pm_runtime_disable(dev); return ret; } static void sa_ul_remove(struct platform_device *pdev) { struct sa_crypto_data *dev_data = platform_get_drvdata(pdev); of_platform_depopulate(&pdev->dev); sa_unregister_algos(&pdev->dev); dma_release_channel(dev_data->dma_rx2); dma_release_channel(dev_data->dma_rx1); dma_release_channel(dev_data->dma_tx); dma_pool_destroy(dev_data->sc_pool); platform_set_drvdata(pdev, NULL); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); } static struct platform_driver sa_ul_driver = { .probe = sa_ul_probe, .remove_new = sa_ul_remove, .driver = { .name = "saul-crypto", .of_match_table = of_match, }, }; module_platform_driver(sa_ul_driver); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1