Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Qiuxu Zhuo | 4368 | 69.05% | 24 | 68.57% |
Youquan Song | 1849 | 29.23% | 3 | 8.57% |
Tony Luck | 73 | 1.15% | 3 | 8.57% |
Thomas Gleixner | 20 | 0.32% | 1 | 2.86% |
Jia He | 9 | 0.14% | 1 | 2.86% |
Yang Yingliang | 5 | 0.08% | 1 | 2.86% |
Robert Richter | 1 | 0.02% | 1 | 2.86% |
Peter Zijlstra | 1 | 0.02% | 1 | 2.86% |
Total | 6326 | 35 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for Intel(R) 10nm server memory controller. * Copyright (c) 2019, Intel Corporation. * */ #include <linux/kernel.h> #include <linux/io.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include <asm/mce.h> #include "edac_module.h" #include "skx_common.h" #define I10NM_REVISION "v0.0.6" #define EDAC_MOD_STR "i10nm_edac" /* Debug macros */ #define i10nm_printk(level, fmt, arg...) \ edac_printk(level, "i10nm", fmt, ##arg) #define I10NM_GET_SCK_BAR(d, reg) \ pci_read_config_dword((d)->uracu, 0xd0, &(reg)) #define I10NM_GET_IMC_BAR(d, i, reg) \ pci_read_config_dword((d)->uracu, \ (res_cfg->type == GNR ? 0xd4 : 0xd8) + (i) * 4, &(reg)) #define I10NM_GET_SAD(d, offset, i, reg)\ pci_read_config_dword((d)->sad_all, (offset) + (i) * \ (res_cfg->type == GNR ? 12 : 8), &(reg)) #define I10NM_GET_HBM_IMC_BAR(d, reg) \ pci_read_config_dword((d)->uracu, 0xd4, &(reg)) #define I10NM_GET_CAPID3_CFG(d, reg) \ pci_read_config_dword((d)->pcu_cr3, \ res_cfg->type == GNR ? 0x290 : 0x90, &(reg)) #define I10NM_GET_CAPID5_CFG(d, reg) \ pci_read_config_dword((d)->pcu_cr3, \ res_cfg->type == GNR ? 0x298 : 0x98, &(reg)) #define I10NM_GET_DIMMMTR(m, i, j) \ readl((m)->mbase + ((m)->hbm_mc ? 0x80c : \ (res_cfg->type == GNR ? 0xc0c : 0x2080c)) + \ (i) * (m)->chan_mmio_sz + (j) * 4) #define I10NM_GET_MCDDRTCFG(m, i) \ readl((m)->mbase + ((m)->hbm_mc ? 0x970 : 0x20970) + \ (i) * (m)->chan_mmio_sz) #define I10NM_GET_MCMTR(m, i) \ readl((m)->mbase + ((m)->hbm_mc ? 0xef8 : \ (res_cfg->type == GNR ? 0xaf8 : 0x20ef8)) + \ (i) * (m)->chan_mmio_sz) #define I10NM_GET_AMAP(m, i) \ readl((m)->mbase + ((m)->hbm_mc ? 0x814 : \ (res_cfg->type == GNR ? 0xc14 : 0x20814)) + \ (i) * (m)->chan_mmio_sz) #define I10NM_GET_REG32(m, i, offset) \ readl((m)->mbase + (i) * (m)->chan_mmio_sz + (offset)) #define I10NM_GET_REG64(m, i, offset) \ readq((m)->mbase + (i) * (m)->chan_mmio_sz + (offset)) #define I10NM_SET_REG32(m, i, offset, v) \ writel(v, (m)->mbase + (i) * (m)->chan_mmio_sz + (offset)) #define I10NM_GET_SCK_MMIO_BASE(reg) (GET_BITFIELD(reg, 0, 28) << 23) #define I10NM_GET_IMC_MMIO_OFFSET(reg) (GET_BITFIELD(reg, 0, 10) << 12) #define I10NM_GET_IMC_MMIO_SIZE(reg) ((GET_BITFIELD(reg, 13, 23) - \ GET_BITFIELD(reg, 0, 10) + 1) << 12) #define I10NM_GET_HBM_IMC_MMIO_OFFSET(reg) \ ((GET_BITFIELD(reg, 0, 10) << 12) + 0x140000) #define I10NM_GNR_IMC_MMIO_OFFSET 0x24c000 #define I10NM_GNR_IMC_MMIO_SIZE 0x4000 #define I10NM_HBM_IMC_MMIO_SIZE 0x9000 #define I10NM_DDR_IMC_CH_CNT(reg) GET_BITFIELD(reg, 21, 24) #define I10NM_IS_HBM_PRESENT(reg) GET_BITFIELD(reg, 27, 30) #define I10NM_IS_HBM_IMC(reg) GET_BITFIELD(reg, 29, 29) #define I10NM_MAX_SAD 16 #define I10NM_SAD_ENABLE(reg) GET_BITFIELD(reg, 0, 0) #define I10NM_SAD_NM_CACHEABLE(reg) GET_BITFIELD(reg, 5, 5) #define RETRY_RD_ERR_LOG_UC BIT(1) #define RETRY_RD_ERR_LOG_NOOVER BIT(14) #define RETRY_RD_ERR_LOG_EN BIT(15) #define RETRY_RD_ERR_LOG_NOOVER_UC (BIT(14) | BIT(1)) #define RETRY_RD_ERR_LOG_OVER_UC_V (BIT(2) | BIT(1) | BIT(0)) static struct list_head *i10nm_edac_list; static struct res_config *res_cfg; static int retry_rd_err_log; static int decoding_via_mca; static bool mem_cfg_2lm; static u32 offsets_scrub_icx[] = {0x22c60, 0x22c54, 0x22c5c, 0x22c58, 0x22c28, 0x20ed8}; static u32 offsets_scrub_spr[] = {0x22c60, 0x22c54, 0x22f08, 0x22c58, 0x22c28, 0x20ed8}; static u32 offsets_scrub_spr_hbm0[] = {0x2860, 0x2854, 0x2b08, 0x2858, 0x2828, 0x0ed8}; static u32 offsets_scrub_spr_hbm1[] = {0x2c60, 0x2c54, 0x2f08, 0x2c58, 0x2c28, 0x0fa8}; static u32 offsets_demand_icx[] = {0x22e54, 0x22e60, 0x22e64, 0x22e58, 0x22e5c, 0x20ee0}; static u32 offsets_demand_spr[] = {0x22e54, 0x22e60, 0x22f10, 0x22e58, 0x22e5c, 0x20ee0}; static u32 offsets_demand2_spr[] = {0x22c70, 0x22d80, 0x22f18, 0x22d58, 0x22c64, 0x20f10}; static u32 offsets_demand_spr_hbm0[] = {0x2a54, 0x2a60, 0x2b10, 0x2a58, 0x2a5c, 0x0ee0}; static u32 offsets_demand_spr_hbm1[] = {0x2e54, 0x2e60, 0x2f10, 0x2e58, 0x2e5c, 0x0fb0}; static void __enable_retry_rd_err_log(struct skx_imc *imc, int chan, bool enable, u32 *offsets_scrub, u32 *offsets_demand, u32 *offsets_demand2) { u32 s, d, d2; s = I10NM_GET_REG32(imc, chan, offsets_scrub[0]); d = I10NM_GET_REG32(imc, chan, offsets_demand[0]); if (offsets_demand2) d2 = I10NM_GET_REG32(imc, chan, offsets_demand2[0]); if (enable) { /* Save default configurations */ imc->chan[chan].retry_rd_err_log_s = s; imc->chan[chan].retry_rd_err_log_d = d; if (offsets_demand2) imc->chan[chan].retry_rd_err_log_d2 = d2; s &= ~RETRY_RD_ERR_LOG_NOOVER_UC; s |= RETRY_RD_ERR_LOG_EN; d &= ~RETRY_RD_ERR_LOG_NOOVER_UC; d |= RETRY_RD_ERR_LOG_EN; if (offsets_demand2) { d2 &= ~RETRY_RD_ERR_LOG_UC; d2 |= RETRY_RD_ERR_LOG_NOOVER; d2 |= RETRY_RD_ERR_LOG_EN; } } else { /* Restore default configurations */ if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_UC) s |= RETRY_RD_ERR_LOG_UC; if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_NOOVER) s |= RETRY_RD_ERR_LOG_NOOVER; if (!(imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_EN)) s &= ~RETRY_RD_ERR_LOG_EN; if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_UC) d |= RETRY_RD_ERR_LOG_UC; if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_NOOVER) d |= RETRY_RD_ERR_LOG_NOOVER; if (!(imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_EN)) d &= ~RETRY_RD_ERR_LOG_EN; if (offsets_demand2) { if (imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_UC) d2 |= RETRY_RD_ERR_LOG_UC; if (!(imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_NOOVER)) d2 &= ~RETRY_RD_ERR_LOG_NOOVER; if (!(imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_EN)) d2 &= ~RETRY_RD_ERR_LOG_EN; } } I10NM_SET_REG32(imc, chan, offsets_scrub[0], s); I10NM_SET_REG32(imc, chan, offsets_demand[0], d); if (offsets_demand2) I10NM_SET_REG32(imc, chan, offsets_demand2[0], d2); } static void enable_retry_rd_err_log(bool enable) { int i, j, imc_num, chan_num; struct skx_imc *imc; struct skx_dev *d; edac_dbg(2, "\n"); list_for_each_entry(d, i10nm_edac_list, list) { imc_num = res_cfg->ddr_imc_num; chan_num = res_cfg->ddr_chan_num; for (i = 0; i < imc_num; i++) { imc = &d->imc[i]; if (!imc->mbase) continue; for (j = 0; j < chan_num; j++) __enable_retry_rd_err_log(imc, j, enable, res_cfg->offsets_scrub, res_cfg->offsets_demand, res_cfg->offsets_demand2); } imc_num += res_cfg->hbm_imc_num; chan_num = res_cfg->hbm_chan_num; for (; i < imc_num; i++) { imc = &d->imc[i]; if (!imc->mbase || !imc->hbm_mc) continue; for (j = 0; j < chan_num; j++) { __enable_retry_rd_err_log(imc, j, enable, res_cfg->offsets_scrub_hbm0, res_cfg->offsets_demand_hbm0, NULL); __enable_retry_rd_err_log(imc, j, enable, res_cfg->offsets_scrub_hbm1, res_cfg->offsets_demand_hbm1, NULL); } } } } static void show_retry_rd_err_log(struct decoded_addr *res, char *msg, int len, bool scrub_err) { struct skx_imc *imc = &res->dev->imc[res->imc]; u32 log0, log1, log2, log3, log4; u32 corr0, corr1, corr2, corr3; u32 lxg0, lxg1, lxg3, lxg4; u32 *xffsets = NULL; u64 log2a, log5; u64 lxg2a, lxg5; u32 *offsets; int n, pch; if (!imc->mbase) return; if (imc->hbm_mc) { pch = res->cs & 1; if (pch) offsets = scrub_err ? res_cfg->offsets_scrub_hbm1 : res_cfg->offsets_demand_hbm1; else offsets = scrub_err ? res_cfg->offsets_scrub_hbm0 : res_cfg->offsets_demand_hbm0; } else { if (scrub_err) { offsets = res_cfg->offsets_scrub; } else { offsets = res_cfg->offsets_demand; xffsets = res_cfg->offsets_demand2; } } log0 = I10NM_GET_REG32(imc, res->channel, offsets[0]); log1 = I10NM_GET_REG32(imc, res->channel, offsets[1]); log3 = I10NM_GET_REG32(imc, res->channel, offsets[3]); log4 = I10NM_GET_REG32(imc, res->channel, offsets[4]); log5 = I10NM_GET_REG64(imc, res->channel, offsets[5]); if (xffsets) { lxg0 = I10NM_GET_REG32(imc, res->channel, xffsets[0]); lxg1 = I10NM_GET_REG32(imc, res->channel, xffsets[1]); lxg3 = I10NM_GET_REG32(imc, res->channel, xffsets[3]); lxg4 = I10NM_GET_REG32(imc, res->channel, xffsets[4]); lxg5 = I10NM_GET_REG64(imc, res->channel, xffsets[5]); } if (res_cfg->type == SPR) { log2a = I10NM_GET_REG64(imc, res->channel, offsets[2]); n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.16llx %.8x %.8x %.16llx", log0, log1, log2a, log3, log4, log5); if (len - n > 0) { if (xffsets) { lxg2a = I10NM_GET_REG64(imc, res->channel, xffsets[2]); n += snprintf(msg + n, len - n, " %.8x %.8x %.16llx %.8x %.8x %.16llx]", lxg0, lxg1, lxg2a, lxg3, lxg4, lxg5); } else { n += snprintf(msg + n, len - n, "]"); } } } else { log2 = I10NM_GET_REG32(imc, res->channel, offsets[2]); n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x %.16llx]", log0, log1, log2, log3, log4, log5); } if (imc->hbm_mc) { if (pch) { corr0 = I10NM_GET_REG32(imc, res->channel, 0x2c18); corr1 = I10NM_GET_REG32(imc, res->channel, 0x2c1c); corr2 = I10NM_GET_REG32(imc, res->channel, 0x2c20); corr3 = I10NM_GET_REG32(imc, res->channel, 0x2c24); } else { corr0 = I10NM_GET_REG32(imc, res->channel, 0x2818); corr1 = I10NM_GET_REG32(imc, res->channel, 0x281c); corr2 = I10NM_GET_REG32(imc, res->channel, 0x2820); corr3 = I10NM_GET_REG32(imc, res->channel, 0x2824); } } else { corr0 = I10NM_GET_REG32(imc, res->channel, 0x22c18); corr1 = I10NM_GET_REG32(imc, res->channel, 0x22c1c); corr2 = I10NM_GET_REG32(imc, res->channel, 0x22c20); corr3 = I10NM_GET_REG32(imc, res->channel, 0x22c24); } if (len - n > 0) snprintf(msg + n, len - n, " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]", corr0 & 0xffff, corr0 >> 16, corr1 & 0xffff, corr1 >> 16, corr2 & 0xffff, corr2 >> 16, corr3 & 0xffff, corr3 >> 16); /* Clear status bits */ if (retry_rd_err_log == 2) { if (log0 & RETRY_RD_ERR_LOG_OVER_UC_V) { log0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V; I10NM_SET_REG32(imc, res->channel, offsets[0], log0); } if (xffsets && (lxg0 & RETRY_RD_ERR_LOG_OVER_UC_V)) { lxg0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V; I10NM_SET_REG32(imc, res->channel, xffsets[0], lxg0); } } } static struct pci_dev *pci_get_dev_wrapper(int dom, unsigned int bus, unsigned int dev, unsigned int fun) { struct pci_dev *pdev; pdev = pci_get_domain_bus_and_slot(dom, bus, PCI_DEVFN(dev, fun)); if (!pdev) { edac_dbg(2, "No device %02x:%02x.%x\n", bus, dev, fun); return NULL; } if (unlikely(pci_enable_device(pdev) < 0)) { edac_dbg(2, "Failed to enable device %02x:%02x.%x\n", bus, dev, fun); pci_dev_put(pdev); return NULL; } return pdev; } /** * i10nm_get_imc_num() - Get the number of present DDR memory controllers. * * @cfg : The pointer to the structure of EDAC resource configurations. * * For Granite Rapids CPUs, the number of present DDR memory controllers read * at runtime overwrites the value statically configured in @cfg->ddr_imc_num. * For other CPUs, the number of present DDR memory controllers is statically * configured in @cfg->ddr_imc_num. * * RETURNS : 0 on success, < 0 on failure. */ static int i10nm_get_imc_num(struct res_config *cfg) { int n, imc_num, chan_num = 0; struct skx_dev *d; u32 reg; list_for_each_entry(d, i10nm_edac_list, list) { d->pcu_cr3 = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->pcu_cr3_bdf.bus], res_cfg->pcu_cr3_bdf.dev, res_cfg->pcu_cr3_bdf.fun); if (!d->pcu_cr3) continue; if (I10NM_GET_CAPID5_CFG(d, reg)) continue; n = I10NM_DDR_IMC_CH_CNT(reg); if (!chan_num) { chan_num = n; edac_dbg(2, "Get DDR CH number: %d\n", chan_num); } else if (chan_num != n) { i10nm_printk(KERN_NOTICE, "Get DDR CH numbers: %d, %d\n", chan_num, n); } } switch (cfg->type) { case GNR: /* * One channel per DDR memory controller for Granite Rapids CPUs. */ imc_num = chan_num; if (!imc_num) { i10nm_printk(KERN_ERR, "Invalid DDR MC number\n"); return -ENODEV; } if (imc_num > I10NM_NUM_DDR_IMC) { i10nm_printk(KERN_ERR, "Need to make I10NM_NUM_DDR_IMC >= %d\n", imc_num); return -EINVAL; } if (cfg->ddr_imc_num != imc_num) { /* * Store the number of present DDR memory controllers. */ cfg->ddr_imc_num = imc_num; edac_dbg(2, "Set DDR MC number: %d", imc_num); } return 0; default: /* * For other CPUs, the number of present DDR memory controllers * is statically pre-configured in cfg->ddr_imc_num. */ return 0; } } static bool i10nm_check_2lm(struct res_config *cfg) { struct skx_dev *d; u32 reg; int i; list_for_each_entry(d, i10nm_edac_list, list) { d->sad_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->sad_all_bdf.bus], res_cfg->sad_all_bdf.dev, res_cfg->sad_all_bdf.fun); if (!d->sad_all) continue; for (i = 0; i < I10NM_MAX_SAD; i++) { I10NM_GET_SAD(d, cfg->sad_all_offset, i, reg); if (I10NM_SAD_ENABLE(reg) && I10NM_SAD_NM_CACHEABLE(reg)) { edac_dbg(2, "2-level memory configuration.\n"); return true; } } } return false; } /* * Check whether the error comes from DDRT by ICX/Tremont/SPR model specific error code. * Refer to SDM vol3B 17.11.3/17.13.2 Intel IMC MC error codes for IA32_MCi_STATUS. */ static bool i10nm_mscod_is_ddrt(u32 mscod) { switch (res_cfg->type) { case I10NM: switch (mscod) { case 0x0106: case 0x0107: case 0x0800: case 0x0804: case 0x0806 ... 0x0808: case 0x080a ... 0x080e: case 0x0810: case 0x0811: case 0x0816: case 0x081e: case 0x081f: return true; } break; case SPR: switch (mscod) { case 0x0800: case 0x0804: case 0x0806 ... 0x0808: case 0x080a ... 0x080e: case 0x0810: case 0x0811: case 0x0816: case 0x081e: case 0x081f: return true; } break; default: return false; } return false; } static bool i10nm_mc_decode_available(struct mce *mce) { #define ICX_IMCx_CHy 0x06666000 u8 bank; if (!decoding_via_mca || mem_cfg_2lm) return false; if ((mce->status & (MCI_STATUS_MISCV | MCI_STATUS_ADDRV)) != (MCI_STATUS_MISCV | MCI_STATUS_ADDRV)) return false; bank = mce->bank; switch (res_cfg->type) { case I10NM: /* Check whether the bank is one of {13,14,17,18,21,22,25,26} */ if (!(ICX_IMCx_CHy & (1 << bank))) return false; break; case SPR: if (bank < 13 || bank > 20) return false; break; default: return false; } /* DDRT errors can't be decoded from MCA bank registers */ if (MCI_MISC_ECC_MODE(mce->misc) == MCI_MISC_ECC_DDRT) return false; if (i10nm_mscod_is_ddrt(MCI_STATUS_MSCOD(mce->status))) return false; return true; } static bool i10nm_mc_decode(struct decoded_addr *res) { struct mce *m = res->mce; struct skx_dev *d; u8 bank; if (!i10nm_mc_decode_available(m)) return false; list_for_each_entry(d, i10nm_edac_list, list) { if (d->imc[0].src_id == m->socketid) { res->socket = m->socketid; res->dev = d; break; } } switch (res_cfg->type) { case I10NM: bank = m->bank - 13; res->imc = bank / 4; res->channel = bank % 2; res->column = GET_BITFIELD(m->misc, 9, 18) << 2; res->row = GET_BITFIELD(m->misc, 19, 39); res->bank_group = GET_BITFIELD(m->misc, 40, 41); res->bank_address = GET_BITFIELD(m->misc, 42, 43); res->bank_group |= GET_BITFIELD(m->misc, 44, 44) << 2; res->rank = GET_BITFIELD(m->misc, 56, 58); res->dimm = res->rank >> 2; res->rank = res->rank % 4; break; case SPR: bank = m->bank - 13; res->imc = bank / 2; res->channel = bank % 2; res->column = GET_BITFIELD(m->misc, 9, 18) << 2; res->row = GET_BITFIELD(m->misc, 19, 36); res->bank_group = GET_BITFIELD(m->misc, 37, 38); res->bank_address = GET_BITFIELD(m->misc, 39, 40); res->bank_group |= GET_BITFIELD(m->misc, 41, 41) << 2; res->rank = GET_BITFIELD(m->misc, 57, 57); res->dimm = GET_BITFIELD(m->misc, 58, 58); break; default: return false; } if (!res->dev) { skx_printk(KERN_ERR, "No device for src_id %d imc %d\n", m->socketid, res->imc); return false; } return true; } /** * get_gnr_mdev() - Get the PCI device of the @logical_idx-th DDR memory controller. * * @d : The pointer to the structure of CPU socket EDAC device. * @logical_idx : The logical index of the present memory controller (0 ~ max present MC# - 1). * @physical_idx : To store the corresponding physical index of @logical_idx. * * RETURNS : The PCI device of the @logical_idx-th DDR memory controller, NULL on failure. */ static struct pci_dev *get_gnr_mdev(struct skx_dev *d, int logical_idx, int *physical_idx) { #define GNR_MAX_IMC_PCI_CNT 28 struct pci_dev *mdev; int i, logical = 0; /* * Detect present memory controllers from { PCI device: 8-5, function 7-1 } */ for (i = 0; i < GNR_MAX_IMC_PCI_CNT; i++) { mdev = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->ddr_mdev_bdf.bus], res_cfg->ddr_mdev_bdf.dev + i / 7, res_cfg->ddr_mdev_bdf.fun + i % 7); if (mdev) { if (logical == logical_idx) { *physical_idx = i; return mdev; } pci_dev_put(mdev); logical++; } } return NULL; } /** * get_ddr_munit() - Get the resource of the i-th DDR memory controller. * * @d : The pointer to the structure of CPU socket EDAC device. * @i : The index of the CPU socket relative DDR memory controller. * @offset : To store the MMIO offset of the i-th DDR memory controller. * @size : To store the MMIO size of the i-th DDR memory controller. * * RETURNS : The PCI device of the i-th DDR memory controller, NULL on failure. */ static struct pci_dev *get_ddr_munit(struct skx_dev *d, int i, u32 *offset, unsigned long *size) { struct pci_dev *mdev; int physical_idx; u32 reg; switch (res_cfg->type) { case GNR: if (I10NM_GET_IMC_BAR(d, 0, reg)) { i10nm_printk(KERN_ERR, "Failed to get mc0 bar\n"); return NULL; } mdev = get_gnr_mdev(d, i, &physical_idx); if (!mdev) return NULL; *offset = I10NM_GET_IMC_MMIO_OFFSET(reg) + I10NM_GNR_IMC_MMIO_OFFSET + physical_idx * I10NM_GNR_IMC_MMIO_SIZE; *size = I10NM_GNR_IMC_MMIO_SIZE; break; default: if (I10NM_GET_IMC_BAR(d, i, reg)) { i10nm_printk(KERN_ERR, "Failed to get mc%d bar\n", i); return NULL; } mdev = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->ddr_mdev_bdf.bus], res_cfg->ddr_mdev_bdf.dev + i, res_cfg->ddr_mdev_bdf.fun); if (!mdev) return NULL; *offset = I10NM_GET_IMC_MMIO_OFFSET(reg); *size = I10NM_GET_IMC_MMIO_SIZE(reg); } return mdev; } /** * i10nm_imc_absent() - Check whether the memory controller @imc is absent * * @imc : The pointer to the structure of memory controller EDAC device. * * RETURNS : true if the memory controller EDAC device is absent, false otherwise. */ static bool i10nm_imc_absent(struct skx_imc *imc) { u32 mcmtr; int i; switch (res_cfg->type) { case SPR: for (i = 0; i < res_cfg->ddr_chan_num; i++) { mcmtr = I10NM_GET_MCMTR(imc, i); edac_dbg(1, "ch%d mcmtr reg %x\n", i, mcmtr); if (mcmtr != ~0) return false; } /* * Some workstations' absent memory controllers still * appear as PCIe devices, misleading the EDAC driver. * By observing that the MMIO registers of these absent * memory controllers consistently hold the value of ~0. * * We identify a memory controller as absent by checking * if its MMIO register "mcmtr" == ~0 in all its channels. */ return true; default: return false; } } static int i10nm_get_ddr_munits(void) { struct pci_dev *mdev; void __iomem *mbase; unsigned long size; struct skx_dev *d; int i, lmc, j = 0; u32 reg, off; u64 base; list_for_each_entry(d, i10nm_edac_list, list) { d->util_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->util_all_bdf.bus], res_cfg->util_all_bdf.dev, res_cfg->util_all_bdf.fun); if (!d->util_all) return -ENODEV; d->uracu = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->uracu_bdf.bus], res_cfg->uracu_bdf.dev, res_cfg->uracu_bdf.fun); if (!d->uracu) return -ENODEV; if (I10NM_GET_SCK_BAR(d, reg)) { i10nm_printk(KERN_ERR, "Failed to socket bar\n"); return -ENODEV; } base = I10NM_GET_SCK_MMIO_BASE(reg); edac_dbg(2, "socket%d mmio base 0x%llx (reg 0x%x)\n", j++, base, reg); for (lmc = 0, i = 0; i < res_cfg->ddr_imc_num; i++) { mdev = get_ddr_munit(d, i, &off, &size); if (i == 0 && !mdev) { i10nm_printk(KERN_ERR, "No IMC found\n"); return -ENODEV; } if (!mdev) continue; edac_dbg(2, "mc%d mmio base 0x%llx size 0x%lx (reg 0x%x)\n", i, base + off, size, reg); mbase = ioremap(base + off, size); if (!mbase) { i10nm_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", base + off); return -ENODEV; } d->imc[lmc].mbase = mbase; if (i10nm_imc_absent(&d->imc[lmc])) { pci_dev_put(mdev); iounmap(mbase); d->imc[lmc].mbase = NULL; edac_dbg(2, "Skip absent mc%d\n", i); continue; } else { d->imc[lmc].mdev = mdev; lmc++; } } } return 0; } static bool i10nm_check_hbm_imc(struct skx_dev *d) { u32 reg; if (I10NM_GET_CAPID3_CFG(d, reg)) { i10nm_printk(KERN_ERR, "Failed to get capid3_cfg\n"); return false; } return I10NM_IS_HBM_PRESENT(reg) != 0; } static int i10nm_get_hbm_munits(void) { struct pci_dev *mdev; void __iomem *mbase; u32 reg, off, mcmtr; struct skx_dev *d; int i, lmc; u64 base; list_for_each_entry(d, i10nm_edac_list, list) { if (!d->pcu_cr3) return -ENODEV; if (!i10nm_check_hbm_imc(d)) { i10nm_printk(KERN_DEBUG, "No hbm memory\n"); return -ENODEV; } if (I10NM_GET_SCK_BAR(d, reg)) { i10nm_printk(KERN_ERR, "Failed to get socket bar\n"); return -ENODEV; } base = I10NM_GET_SCK_MMIO_BASE(reg); if (I10NM_GET_HBM_IMC_BAR(d, reg)) { i10nm_printk(KERN_ERR, "Failed to get hbm mc bar\n"); return -ENODEV; } base += I10NM_GET_HBM_IMC_MMIO_OFFSET(reg); lmc = res_cfg->ddr_imc_num; for (i = 0; i < res_cfg->hbm_imc_num; i++) { mdev = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->hbm_mdev_bdf.bus], res_cfg->hbm_mdev_bdf.dev + i / 4, res_cfg->hbm_mdev_bdf.fun + i % 4); if (i == 0 && !mdev) { i10nm_printk(KERN_ERR, "No hbm mc found\n"); return -ENODEV; } if (!mdev) continue; d->imc[lmc].mdev = mdev; off = i * I10NM_HBM_IMC_MMIO_SIZE; edac_dbg(2, "hbm mc%d mmio base 0x%llx size 0x%x\n", lmc, base + off, I10NM_HBM_IMC_MMIO_SIZE); mbase = ioremap(base + off, I10NM_HBM_IMC_MMIO_SIZE); if (!mbase) { pci_dev_put(d->imc[lmc].mdev); d->imc[lmc].mdev = NULL; i10nm_printk(KERN_ERR, "Failed to ioremap for hbm mc 0x%llx\n", base + off); return -ENOMEM; } d->imc[lmc].mbase = mbase; d->imc[lmc].hbm_mc = true; mcmtr = I10NM_GET_MCMTR(&d->imc[lmc], 0); if (!I10NM_IS_HBM_IMC(mcmtr)) { iounmap(d->imc[lmc].mbase); d->imc[lmc].mbase = NULL; d->imc[lmc].hbm_mc = false; pci_dev_put(d->imc[lmc].mdev); d->imc[lmc].mdev = NULL; i10nm_printk(KERN_ERR, "This isn't an hbm mc!\n"); return -ENODEV; } lmc++; } } return 0; } static struct res_config i10nm_cfg0 = { .type = I10NM, .decs_did = 0x3452, .busno_cfg_offset = 0xcc, .ddr_imc_num = 4, .ddr_chan_num = 2, .ddr_dimm_num = 2, .ddr_chan_mmio_sz = 0x4000, .sad_all_bdf = {1, 29, 0}, .pcu_cr3_bdf = {1, 30, 3}, .util_all_bdf = {1, 29, 1}, .uracu_bdf = {0, 0, 1}, .ddr_mdev_bdf = {0, 12, 0}, .hbm_mdev_bdf = {0, 12, 1}, .sad_all_offset = 0x108, .offsets_scrub = offsets_scrub_icx, .offsets_demand = offsets_demand_icx, }; static struct res_config i10nm_cfg1 = { .type = I10NM, .decs_did = 0x3452, .busno_cfg_offset = 0xd0, .ddr_imc_num = 4, .ddr_chan_num = 2, .ddr_dimm_num = 2, .ddr_chan_mmio_sz = 0x4000, .sad_all_bdf = {1, 29, 0}, .pcu_cr3_bdf = {1, 30, 3}, .util_all_bdf = {1, 29, 1}, .uracu_bdf = {0, 0, 1}, .ddr_mdev_bdf = {0, 12, 0}, .hbm_mdev_bdf = {0, 12, 1}, .sad_all_offset = 0x108, .offsets_scrub = offsets_scrub_icx, .offsets_demand = offsets_demand_icx, }; static struct res_config spr_cfg = { .type = SPR, .decs_did = 0x3252, .busno_cfg_offset = 0xd0, .ddr_imc_num = 4, .ddr_chan_num = 2, .ddr_dimm_num = 2, .hbm_imc_num = 16, .hbm_chan_num = 2, .hbm_dimm_num = 1, .ddr_chan_mmio_sz = 0x8000, .hbm_chan_mmio_sz = 0x4000, .support_ddr5 = true, .sad_all_bdf = {1, 10, 0}, .pcu_cr3_bdf = {1, 30, 3}, .util_all_bdf = {1, 29, 1}, .uracu_bdf = {0, 0, 1}, .ddr_mdev_bdf = {0, 12, 0}, .hbm_mdev_bdf = {0, 12, 1}, .sad_all_offset = 0x300, .offsets_scrub = offsets_scrub_spr, .offsets_scrub_hbm0 = offsets_scrub_spr_hbm0, .offsets_scrub_hbm1 = offsets_scrub_spr_hbm1, .offsets_demand = offsets_demand_spr, .offsets_demand2 = offsets_demand2_spr, .offsets_demand_hbm0 = offsets_demand_spr_hbm0, .offsets_demand_hbm1 = offsets_demand_spr_hbm1, }; static struct res_config gnr_cfg = { .type = GNR, .decs_did = 0x3252, .busno_cfg_offset = 0xd0, .ddr_imc_num = 12, .ddr_chan_num = 1, .ddr_dimm_num = 2, .ddr_chan_mmio_sz = 0x4000, .support_ddr5 = true, .sad_all_bdf = {0, 13, 0}, .pcu_cr3_bdf = {0, 5, 0}, .util_all_bdf = {0, 13, 1}, .uracu_bdf = {0, 0, 1}, .ddr_mdev_bdf = {0, 5, 1}, .sad_all_offset = 0x300, }; static const struct x86_cpu_id i10nm_cpuids[] = { X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ICELAKE_X, X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ICELAKE_X, X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ICELAKE_D, X86_STEPPINGS(0x0, 0xf), &i10nm_cfg1), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SAPPHIRERAPIDS_X, X86_STEPPINGS(0x0, 0xf), &spr_cfg), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(EMERALDRAPIDS_X, X86_STEPPINGS(0x0, 0xf), &spr_cfg), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(GRANITERAPIDS_X, X86_STEPPINGS(0x0, 0xf), &gnr_cfg), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ATOM_CRESTMONT_X, X86_STEPPINGS(0x0, 0xf), &gnr_cfg), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ATOM_CRESTMONT, X86_STEPPINGS(0x0, 0xf), &gnr_cfg), {} }; MODULE_DEVICE_TABLE(x86cpu, i10nm_cpuids); static bool i10nm_check_ecc(struct skx_imc *imc, int chan) { u32 mcmtr; mcmtr = I10NM_GET_MCMTR(imc, chan); edac_dbg(1, "ch%d mcmtr reg %x\n", chan, mcmtr); return !!GET_BITFIELD(mcmtr, 2, 2); } static int i10nm_get_dimm_config(struct mem_ctl_info *mci, struct res_config *cfg) { struct skx_pvt *pvt = mci->pvt_info; struct skx_imc *imc = pvt->imc; u32 mtr, amap, mcddrtcfg = 0; struct dimm_info *dimm; int i, j, ndimms; for (i = 0; i < imc->num_channels; i++) { if (!imc->mbase) continue; ndimms = 0; amap = I10NM_GET_AMAP(imc, i); if (res_cfg->type != GNR) mcddrtcfg = I10NM_GET_MCDDRTCFG(imc, i); for (j = 0; j < imc->num_dimms; j++) { dimm = edac_get_dimm(mci, i, j, 0); mtr = I10NM_GET_DIMMMTR(imc, i, j); edac_dbg(1, "dimmmtr 0x%x mcddrtcfg 0x%x (mc%d ch%d dimm%d)\n", mtr, mcddrtcfg, imc->mc, i, j); if (IS_DIMM_PRESENT(mtr)) ndimms += skx_get_dimm_info(mtr, 0, amap, dimm, imc, i, j, cfg); else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) ndimms += skx_get_nvdimm_info(dimm, imc, i, j, EDAC_MOD_STR); } if (ndimms && !i10nm_check_ecc(imc, i)) { i10nm_printk(KERN_ERR, "ECC is disabled on imc %d channel %d\n", imc->mc, i); return -ENODEV; } } return 0; } static struct notifier_block i10nm_mce_dec = { .notifier_call = skx_mce_check_error, .priority = MCE_PRIO_EDAC, }; #ifdef CONFIG_EDAC_DEBUG /* * Debug feature. * Exercise the address decode logic by writing an address to * /sys/kernel/debug/edac/i10nm_test/addr. */ static struct dentry *i10nm_test; static int debugfs_u64_set(void *data, u64 val) { struct mce m; pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val); memset(&m, 0, sizeof(m)); /* ADDRV + MemRd + Unknown channel */ m.status = MCI_STATUS_ADDRV + 0x90; /* One corrected error */ m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT); m.addr = val; skx_mce_check_error(NULL, 0, &m); return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); static void setup_i10nm_debug(void) { i10nm_test = edac_debugfs_create_dir("i10nm_test"); if (!i10nm_test) return; if (!edac_debugfs_create_file("addr", 0200, i10nm_test, NULL, &fops_u64_wo)) { debugfs_remove(i10nm_test); i10nm_test = NULL; } } static void teardown_i10nm_debug(void) { debugfs_remove_recursive(i10nm_test); } #else static inline void setup_i10nm_debug(void) {} static inline void teardown_i10nm_debug(void) {} #endif /*CONFIG_EDAC_DEBUG*/ static int __init i10nm_init(void) { u8 mc = 0, src_id = 0, node_id = 0; const struct x86_cpu_id *id; struct res_config *cfg; const char *owner; struct skx_dev *d; int rc, i, off[3] = {0xd0, 0xc8, 0xcc}; u64 tolm, tohm; int imc_num; edac_dbg(2, "\n"); if (ghes_get_devices()) return -EBUSY; owner = edac_get_owner(); if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) return -EBUSY; if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) return -ENODEV; id = x86_match_cpu(i10nm_cpuids); if (!id) return -ENODEV; cfg = (struct res_config *)id->driver_data; res_cfg = cfg; rc = skx_get_hi_lo(0x09a2, off, &tolm, &tohm); if (rc) return rc; rc = skx_get_all_bus_mappings(cfg, &i10nm_edac_list); if (rc < 0) goto fail; if (rc == 0) { i10nm_printk(KERN_ERR, "No memory controllers found\n"); return -ENODEV; } rc = i10nm_get_imc_num(cfg); if (rc < 0) goto fail; mem_cfg_2lm = i10nm_check_2lm(cfg); skx_set_mem_cfg(mem_cfg_2lm); rc = i10nm_get_ddr_munits(); if (i10nm_get_hbm_munits() && rc) goto fail; imc_num = res_cfg->ddr_imc_num + res_cfg->hbm_imc_num; list_for_each_entry(d, i10nm_edac_list, list) { rc = skx_get_src_id(d, 0xf8, &src_id); if (rc < 0) goto fail; rc = skx_get_node_id(d, &node_id); if (rc < 0) goto fail; edac_dbg(2, "src_id = %d node_id = %d\n", src_id, node_id); for (i = 0; i < imc_num; i++) { if (!d->imc[i].mdev) continue; d->imc[i].mc = mc++; d->imc[i].lmc = i; d->imc[i].src_id = src_id; d->imc[i].node_id = node_id; if (d->imc[i].hbm_mc) { d->imc[i].chan_mmio_sz = cfg->hbm_chan_mmio_sz; d->imc[i].num_channels = cfg->hbm_chan_num; d->imc[i].num_dimms = cfg->hbm_dimm_num; } else { d->imc[i].chan_mmio_sz = cfg->ddr_chan_mmio_sz; d->imc[i].num_channels = cfg->ddr_chan_num; d->imc[i].num_dimms = cfg->ddr_dimm_num; } rc = skx_register_mci(&d->imc[i], d->imc[i].mdev, "Intel_10nm Socket", EDAC_MOD_STR, i10nm_get_dimm_config, cfg); if (rc < 0) goto fail; } } rc = skx_adxl_get(); if (rc) goto fail; opstate_init(); mce_register_decode_chain(&i10nm_mce_dec); setup_i10nm_debug(); if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) { skx_set_decode(i10nm_mc_decode, show_retry_rd_err_log); if (retry_rd_err_log == 2) enable_retry_rd_err_log(true); } else { skx_set_decode(i10nm_mc_decode, NULL); } i10nm_printk(KERN_INFO, "%s\n", I10NM_REVISION); return 0; fail: skx_remove(); return rc; } static void __exit i10nm_exit(void) { edac_dbg(2, "\n"); if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) { skx_set_decode(NULL, NULL); if (retry_rd_err_log == 2) enable_retry_rd_err_log(false); } teardown_i10nm_debug(); mce_unregister_decode_chain(&i10nm_mce_dec); skx_adxl_put(); skx_remove(); } module_init(i10nm_init); module_exit(i10nm_exit); static int set_decoding_via_mca(const char *buf, const struct kernel_param *kp) { unsigned long val; int ret; ret = kstrtoul(buf, 0, &val); if (ret || val > 1) return -EINVAL; if (val && mem_cfg_2lm) { i10nm_printk(KERN_NOTICE, "Decoding errors via MCA banks for 2LM isn't supported yet\n"); return -EIO; } ret = param_set_int(buf, kp); return ret; } static const struct kernel_param_ops decoding_via_mca_param_ops = { .set = set_decoding_via_mca, .get = param_get_int, }; module_param_cb(decoding_via_mca, &decoding_via_mca_param_ops, &decoding_via_mca, 0644); MODULE_PARM_DESC(decoding_via_mca, "decoding_via_mca: 0=off(default), 1=enable"); module_param(retry_rd_err_log, int, 0444); MODULE_PARM_DESC(retry_rd_err_log, "retry_rd_err_log: 0=off(default), 1=bios(Linux doesn't reset any control bits, but just reports values.), 2=linux(Linux tries to take control and resets mode bits, clear valid/UC bits after reading.)"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MC Driver for Intel 10nm server processors");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1