Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ard Biesheuvel | 1184 | 39.35% | 37 | 48.68% |
Arvind Sankar | 869 | 28.88% | 15 | 19.74% |
Ilias Apalodimas | 381 | 12.66% | 3 | 3.95% |
Matt Fleming | 203 | 6.75% | 5 | 6.58% |
Jeffrey Hugo | 113 | 3.76% | 1 | 1.32% |
Roy Franz | 106 | 3.52% | 2 | 2.63% |
Lukas Wunner | 61 | 2.03% | 1 | 1.32% |
Matthew Garrett | 33 | 1.10% | 2 | 2.63% |
Dan J Williams | 16 | 0.53% | 1 | 1.32% |
H. Peter Anvin | 13 | 0.43% | 1 | 1.32% |
Linn Crosetto | 11 | 0.37% | 1 | 1.32% |
Jian-Hong Pan | 5 | 0.17% | 1 | 1.32% |
Mark Salter | 4 | 0.13% | 1 | 1.32% |
Hans de Goede | 3 | 0.10% | 1 | 1.32% |
Heinrich Schuchardt | 3 | 0.10% | 1 | 1.32% |
Will Deacon | 2 | 0.07% | 1 | 1.32% |
Jialin Zhang | 1 | 0.03% | 1 | 1.32% |
Alexey Dobriyan | 1 | 0.03% | 1 | 1.32% |
Total | 3009 | 76 |
// SPDX-License-Identifier: GPL-2.0 /* * Helper functions used by the EFI stub on multiple * architectures. This should be #included by the EFI stub * implementation files. * * Copyright 2011 Intel Corporation; author Matt Fleming */ #include <linux/stdarg.h> #include <linux/efi.h> #include <linux/kernel.h> #include <linux/overflow.h> #include <asm/efi.h> #include <asm/setup.h> #include "efistub.h" bool efi_nochunk; bool efi_nokaslr = !IS_ENABLED(CONFIG_RANDOMIZE_BASE); bool efi_novamap; static bool efi_noinitrd; static bool efi_nosoftreserve; static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA); int efi_mem_encrypt; bool __pure __efi_soft_reserve_enabled(void) { return !efi_nosoftreserve; } /** * efi_parse_options() - Parse EFI command line options * @cmdline: kernel command line * * Parse the ASCII string @cmdline for EFI options, denoted by the efi= * option, e.g. efi=nochunk. * * It should be noted that efi= is parsed in two very different * environments, first in the early boot environment of the EFI boot * stub, and subsequently during the kernel boot. * * Return: status code */ efi_status_t efi_parse_options(char const *cmdline) { size_t len; efi_status_t status; char *str, *buf; if (!cmdline) return EFI_SUCCESS; len = strnlen(cmdline, COMMAND_LINE_SIZE - 1) + 1; status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf); if (status != EFI_SUCCESS) return status; memcpy(buf, cmdline, len - 1); buf[len - 1] = '\0'; str = skip_spaces(buf); while (*str) { char *param, *val; str = next_arg(str, ¶m, &val); if (!val && !strcmp(param, "--")) break; if (!strcmp(param, "nokaslr")) { efi_nokaslr = true; } else if (!strcmp(param, "quiet")) { efi_loglevel = CONSOLE_LOGLEVEL_QUIET; } else if (!strcmp(param, "noinitrd")) { efi_noinitrd = true; } else if (IS_ENABLED(CONFIG_X86_64) && !strcmp(param, "no5lvl")) { efi_no5lvl = true; } else if (IS_ENABLED(CONFIG_ARCH_HAS_MEM_ENCRYPT) && !strcmp(param, "mem_encrypt") && val) { if (parse_option_str(val, "on")) efi_mem_encrypt = 1; else if (parse_option_str(val, "off")) efi_mem_encrypt = -1; } else if (!strcmp(param, "efi") && val) { efi_nochunk = parse_option_str(val, "nochunk"); efi_novamap |= parse_option_str(val, "novamap"); efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) && parse_option_str(val, "nosoftreserve"); if (parse_option_str(val, "disable_early_pci_dma")) efi_disable_pci_dma = true; if (parse_option_str(val, "no_disable_early_pci_dma")) efi_disable_pci_dma = false; if (parse_option_str(val, "debug")) efi_loglevel = CONSOLE_LOGLEVEL_DEBUG; } else if (!strcmp(param, "video") && val && strstarts(val, "efifb:")) { efi_parse_option_graphics(val + strlen("efifb:")); } } efi_bs_call(free_pool, buf); return EFI_SUCCESS; } /* * The EFI_LOAD_OPTION descriptor has the following layout: * u32 Attributes; * u16 FilePathListLength; * u16 Description[]; * efi_device_path_protocol_t FilePathList[]; * u8 OptionalData[]; * * This function validates and unpacks the variable-size data fields. */ static bool efi_load_option_unpack(efi_load_option_unpacked_t *dest, const efi_load_option_t *src, size_t size) { const void *pos; u16 c; efi_device_path_protocol_t header; const efi_char16_t *description; const efi_device_path_protocol_t *file_path_list; if (size < offsetof(efi_load_option_t, variable_data)) return false; pos = src->variable_data; size -= offsetof(efi_load_option_t, variable_data); if ((src->attributes & ~EFI_LOAD_OPTION_MASK) != 0) return false; /* Scan description. */ description = pos; do { if (size < sizeof(c)) return false; c = *(const u16 *)pos; pos += sizeof(c); size -= sizeof(c); } while (c != L'\0'); /* Scan file_path_list. */ file_path_list = pos; do { if (size < sizeof(header)) return false; header = *(const efi_device_path_protocol_t *)pos; if (header.length < sizeof(header)) return false; if (size < header.length) return false; pos += header.length; size -= header.length; } while ((header.type != EFI_DEV_END_PATH && header.type != EFI_DEV_END_PATH2) || (header.sub_type != EFI_DEV_END_ENTIRE)); if (pos != (const void *)file_path_list + src->file_path_list_length) return false; dest->attributes = src->attributes; dest->file_path_list_length = src->file_path_list_length; dest->description = description; dest->file_path_list = file_path_list; dest->optional_data_size = size; dest->optional_data = size ? pos : NULL; return true; } /* * At least some versions of Dell firmware pass the entire contents of the * Boot#### variable, i.e. the EFI_LOAD_OPTION descriptor, rather than just the * OptionalData field. * * Detect this case and extract OptionalData. */ void efi_apply_loadoptions_quirk(const void **load_options, u32 *load_options_size) { const efi_load_option_t *load_option = *load_options; efi_load_option_unpacked_t load_option_unpacked; if (!IS_ENABLED(CONFIG_X86)) return; if (!load_option) return; if (*load_options_size < sizeof(*load_option)) return; if ((load_option->attributes & ~EFI_LOAD_OPTION_BOOT_MASK) != 0) return; if (!efi_load_option_unpack(&load_option_unpacked, load_option, *load_options_size)) return; efi_warn_once(FW_BUG "LoadOptions is an EFI_LOAD_OPTION descriptor\n"); efi_warn_once(FW_BUG "Using OptionalData as a workaround\n"); *load_options = load_option_unpacked.optional_data; *load_options_size = load_option_unpacked.optional_data_size; } enum efistub_event_type { EFISTUB_EVT_INITRD, EFISTUB_EVT_LOAD_OPTIONS, EFISTUB_EVT_COUNT, }; #define STR_WITH_SIZE(s) sizeof(s), s static const struct { u32 pcr_index; u32 event_id; u32 event_data_len; u8 event_data[52]; } events[] = { [EFISTUB_EVT_INITRD] = { 9, INITRD_EVENT_TAG_ID, STR_WITH_SIZE("Linux initrd") }, [EFISTUB_EVT_LOAD_OPTIONS] = { 9, LOAD_OPTIONS_EVENT_TAG_ID, STR_WITH_SIZE("LOADED_IMAGE::LoadOptions") }, }; static_assert(sizeof(efi_tcg2_event_t) == sizeof(efi_cc_event_t)); union efistub_event { efi_tcg2_event_t tcg2_data; efi_cc_event_t cc_data; }; struct efistub_measured_event { union efistub_event event_data; TCG_PCClientTaggedEvent tagged_event __packed; }; static efi_status_t efi_measure_tagged_event(unsigned long load_addr, unsigned long load_size, enum efistub_event_type event) { union { efi_status_t (__efiapi *hash_log_extend_event)(void *, u64, efi_physical_addr_t, u64, const union efistub_event *); struct { u32 hash_log_extend_event; } mixed_mode; } method; struct efistub_measured_event *evt; int size = struct_size(evt, tagged_event.tagged_event_data, events[event].event_data_len); efi_guid_t tcg2_guid = EFI_TCG2_PROTOCOL_GUID; efi_tcg2_protocol_t *tcg2 = NULL; union efistub_event ev; efi_status_t status; void *protocol; efi_bs_call(locate_protocol, &tcg2_guid, NULL, (void **)&tcg2); if (tcg2) { ev.tcg2_data = (struct efi_tcg2_event){ .event_size = size, .event_header.header_size = sizeof(ev.tcg2_data.event_header), .event_header.header_version = EFI_TCG2_EVENT_HEADER_VERSION, .event_header.pcr_index = events[event].pcr_index, .event_header.event_type = EV_EVENT_TAG, }; protocol = tcg2; method.hash_log_extend_event = (void *)efi_table_attr(tcg2, hash_log_extend_event); } else { efi_guid_t cc_guid = EFI_CC_MEASUREMENT_PROTOCOL_GUID; efi_cc_protocol_t *cc = NULL; efi_bs_call(locate_protocol, &cc_guid, NULL, (void **)&cc); if (!cc) return EFI_UNSUPPORTED; ev.cc_data = (struct efi_cc_event){ .event_size = size, .event_header.header_size = sizeof(ev.cc_data.event_header), .event_header.header_version = EFI_CC_EVENT_HEADER_VERSION, .event_header.event_type = EV_EVENT_TAG, }; status = efi_call_proto(cc, map_pcr_to_mr_index, events[event].pcr_index, &ev.cc_data.event_header.mr_index); if (status != EFI_SUCCESS) goto fail; protocol = cc; method.hash_log_extend_event = (void *)efi_table_attr(cc, hash_log_extend_event); } status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, (void **)&evt); if (status != EFI_SUCCESS) goto fail; *evt = (struct efistub_measured_event) { .event_data = ev, .tagged_event.tagged_event_id = events[event].event_id, .tagged_event.tagged_event_data_size = events[event].event_data_len, }; memcpy(evt->tagged_event.tagged_event_data, events[event].event_data, events[event].event_data_len); status = efi_fn_call(&method, hash_log_extend_event, protocol, 0, load_addr, load_size, &evt->event_data); efi_bs_call(free_pool, evt); if (status == EFI_SUCCESS) return EFI_SUCCESS; fail: efi_warn("Failed to measure data for event %d: 0x%lx\n", event, status); return status; } /* * Convert the unicode UEFI command line to ASCII to pass to kernel. * Size of memory allocated return in *cmd_line_len. * Returns NULL on error. */ char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len) { const efi_char16_t *options = efi_table_attr(image, load_options); u32 options_size = efi_table_attr(image, load_options_size); int options_bytes = 0, safe_options_bytes = 0; /* UTF-8 bytes */ unsigned long cmdline_addr = 0; const efi_char16_t *s2; bool in_quote = false; efi_status_t status; u32 options_chars; if (options_size > 0) efi_measure_tagged_event((unsigned long)options, options_size, EFISTUB_EVT_LOAD_OPTIONS); efi_apply_loadoptions_quirk((const void **)&options, &options_size); options_chars = options_size / sizeof(efi_char16_t); if (options) { s2 = options; while (options_bytes < COMMAND_LINE_SIZE && options_chars--) { efi_char16_t c = *s2++; if (c < 0x80) { if (c == L'\0' || c == L'\n') break; if (c == L'"') in_quote = !in_quote; else if (!in_quote && isspace((char)c)) safe_options_bytes = options_bytes; options_bytes++; continue; } /* * Get the number of UTF-8 bytes corresponding to a * UTF-16 character. * The first part handles everything in the BMP. */ options_bytes += 2 + (c >= 0x800); /* * Add one more byte for valid surrogate pairs. Invalid * surrogates will be replaced with 0xfffd and take up * only 3 bytes. */ if ((c & 0xfc00) == 0xd800) { /* * If the very last word is a high surrogate, * we must ignore it since we can't access the * low surrogate. */ if (!options_chars) { options_bytes -= 3; } else if ((*s2 & 0xfc00) == 0xdc00) { options_bytes++; options_chars--; s2++; } } } if (options_bytes >= COMMAND_LINE_SIZE) { options_bytes = safe_options_bytes; efi_err("Command line is too long: truncated to %d bytes\n", options_bytes); } } options_bytes++; /* NUL termination */ status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes, (void **)&cmdline_addr); if (status != EFI_SUCCESS) return NULL; snprintf((char *)cmdline_addr, options_bytes, "%.*ls", options_bytes - 1, options); *cmd_line_len = options_bytes; return (char *)cmdline_addr; } /** * efi_exit_boot_services() - Exit boot services * @handle: handle of the exiting image * @priv: argument to be passed to @priv_func * @priv_func: function to process the memory map before exiting boot services * * Handle calling ExitBootServices according to the requirements set out by the * spec. Obtains the current memory map, and returns that info after calling * ExitBootServices. The client must specify a function to perform any * processing of the memory map data prior to ExitBootServices. A client * specific structure may be passed to the function via priv. The client * function may be called multiple times. * * Return: status code */ efi_status_t efi_exit_boot_services(void *handle, void *priv, efi_exit_boot_map_processing priv_func) { struct efi_boot_memmap *map; efi_status_t status; if (efi_disable_pci_dma) efi_pci_disable_bridge_busmaster(); status = efi_get_memory_map(&map, true); if (status != EFI_SUCCESS) return status; status = priv_func(map, priv); if (status != EFI_SUCCESS) { efi_bs_call(free_pool, map); return status; } status = efi_bs_call(exit_boot_services, handle, map->map_key); if (status == EFI_INVALID_PARAMETER) { /* * The memory map changed between efi_get_memory_map() and * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4: * EFI_BOOT_SERVICES.ExitBootServices we need to get the * updated map, and try again. The spec implies one retry * should be sufficent, which is confirmed against the EDK2 * implementation. Per the spec, we can only invoke * get_memory_map() and exit_boot_services() - we cannot alloc * so efi_get_memory_map() cannot be used, and we must reuse * the buffer. For all practical purposes, the headroom in the * buffer should account for any changes in the map so the call * to get_memory_map() is expected to succeed here. */ map->map_size = map->buff_size; status = efi_bs_call(get_memory_map, &map->map_size, &map->map, &map->map_key, &map->desc_size, &map->desc_ver); /* exit_boot_services() was called, thus cannot free */ if (status != EFI_SUCCESS) return status; status = priv_func(map, priv); /* exit_boot_services() was called, thus cannot free */ if (status != EFI_SUCCESS) return status; status = efi_bs_call(exit_boot_services, handle, map->map_key); } return status; } /** * get_efi_config_table() - retrieve UEFI configuration table * @guid: GUID of the configuration table to be retrieved * Return: pointer to the configuration table or NULL */ void *get_efi_config_table(efi_guid_t guid) { unsigned long tables = efi_table_attr(efi_system_table, tables); int nr_tables = efi_table_attr(efi_system_table, nr_tables); int i; for (i = 0; i < nr_tables; i++) { efi_config_table_t *t = (void *)tables; if (efi_guidcmp(t->guid, guid) == 0) return efi_table_attr(t, table); tables += efi_is_native() ? sizeof(efi_config_table_t) : sizeof(efi_config_table_32_t); } return NULL; } /* * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way * for the firmware or bootloader to expose the initrd data directly to the stub * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is * very easy to implement. It is a simple Linux initrd specific conduit between * kernel and firmware, allowing us to put the EFI stub (being part of the * kernel) in charge of where and when to load the initrd, while leaving it up * to the firmware to decide whether it needs to expose its filesystem hierarchy * via EFI protocols. */ static const struct { struct efi_vendor_dev_path vendor; struct efi_generic_dev_path end; } __packed initrd_dev_path = { { { EFI_DEV_MEDIA, EFI_DEV_MEDIA_VENDOR, sizeof(struct efi_vendor_dev_path), }, LINUX_EFI_INITRD_MEDIA_GUID }, { EFI_DEV_END_PATH, EFI_DEV_END_ENTIRE, sizeof(struct efi_generic_dev_path) } }; /** * efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path * @initrd: pointer of struct to store the address where the initrd was loaded * and the size of the loaded initrd * @max: upper limit for the initrd memory allocation * * Return: * * %EFI_SUCCESS if the initrd was loaded successfully, in which * case @load_addr and @load_size are assigned accordingly * * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path * * %EFI_OUT_OF_RESOURCES if memory allocation failed * * %EFI_LOAD_ERROR in all other cases */ static efi_status_t efi_load_initrd_dev_path(struct linux_efi_initrd *initrd, unsigned long max) { efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID; efi_device_path_protocol_t *dp; efi_load_file2_protocol_t *lf2; efi_handle_t handle; efi_status_t status; dp = (efi_device_path_protocol_t *)&initrd_dev_path; status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle); if (status != EFI_SUCCESS) return status; status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid, (void **)&lf2); if (status != EFI_SUCCESS) return status; initrd->size = 0; status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, NULL); if (status != EFI_BUFFER_TOO_SMALL) return EFI_LOAD_ERROR; status = efi_allocate_pages(initrd->size, &initrd->base, max); if (status != EFI_SUCCESS) return status; status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, (void *)initrd->base); if (status != EFI_SUCCESS) { efi_free(initrd->size, initrd->base); return EFI_LOAD_ERROR; } return EFI_SUCCESS; } static efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image, struct linux_efi_initrd *initrd, unsigned long soft_limit, unsigned long hard_limit) { if (image == NULL) return EFI_UNSUPPORTED; return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2, soft_limit, hard_limit, &initrd->base, &initrd->size); } /** * efi_load_initrd() - Load initial RAM disk * @image: EFI loaded image protocol * @soft_limit: preferred address for loading the initrd * @hard_limit: upper limit address for loading the initrd * * Return: status code */ efi_status_t efi_load_initrd(efi_loaded_image_t *image, unsigned long soft_limit, unsigned long hard_limit, const struct linux_efi_initrd **out) { efi_guid_t tbl_guid = LINUX_EFI_INITRD_MEDIA_GUID; efi_status_t status = EFI_SUCCESS; struct linux_efi_initrd initrd, *tbl; if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD) || efi_noinitrd) return EFI_SUCCESS; status = efi_load_initrd_dev_path(&initrd, hard_limit); if (status == EFI_SUCCESS) { efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n"); if (initrd.size > 0 && efi_measure_tagged_event(initrd.base, initrd.size, EFISTUB_EVT_INITRD) == EFI_SUCCESS) efi_info("Measured initrd data into PCR 9\n"); } else if (status == EFI_NOT_FOUND) { status = efi_load_initrd_cmdline(image, &initrd, soft_limit, hard_limit); /* command line loader disabled or no initrd= passed? */ if (status == EFI_UNSUPPORTED || status == EFI_NOT_READY) return EFI_SUCCESS; if (status == EFI_SUCCESS) efi_info("Loaded initrd from command line option\n"); } if (status != EFI_SUCCESS) goto failed; status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(initrd), (void **)&tbl); if (status != EFI_SUCCESS) goto free_initrd; *tbl = initrd; status = efi_bs_call(install_configuration_table, &tbl_guid, tbl); if (status != EFI_SUCCESS) goto free_tbl; if (out) *out = tbl; return EFI_SUCCESS; free_tbl: efi_bs_call(free_pool, tbl); free_initrd: efi_free(initrd.size, initrd.base); failed: efi_err("Failed to load initrd: 0x%lx\n", status); return status; } /** * efi_wait_for_key() - Wait for key stroke * @usec: number of microseconds to wait for key stroke * @key: key entered * * Wait for up to @usec microseconds for a key stroke. * * Return: status code, EFI_SUCCESS if key received */ efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key) { efi_event_t events[2], timer; unsigned long index; efi_simple_text_input_protocol_t *con_in; efi_status_t status; con_in = efi_table_attr(efi_system_table, con_in); if (!con_in) return EFI_UNSUPPORTED; efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key)); status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer); if (status != EFI_SUCCESS) return status; status = efi_bs_call(set_timer, timer, EfiTimerRelative, EFI_100NSEC_PER_USEC * usec); if (status != EFI_SUCCESS) return status; efi_set_event_at(events, 1, timer); status = efi_bs_call(wait_for_event, 2, events, &index); if (status == EFI_SUCCESS) { if (index == 0) status = efi_call_proto(con_in, read_keystroke, key); else status = EFI_TIMEOUT; } efi_bs_call(close_event, timer); return status; } /** * efi_remap_image - Remap a loaded image with the appropriate permissions * for code and data * * @image_base: the base of the image in memory * @alloc_size: the size of the area in memory occupied by the image * @code_size: the size of the leading part of the image containing code * and read-only data * * efi_remap_image() uses the EFI memory attribute protocol to remap the code * region of the loaded image read-only/executable, and the remainder * read-write/non-executable. The code region is assumed to start at the base * of the image, and will therefore cover the PE/COFF header as well. */ void efi_remap_image(unsigned long image_base, unsigned alloc_size, unsigned long code_size) { efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID; efi_memory_attribute_protocol_t *memattr; efi_status_t status; u64 attr; /* * If the firmware implements the EFI_MEMORY_ATTRIBUTE_PROTOCOL, let's * invoke it to remap the text/rodata region of the decompressed image * as read-only and the data/bss region as non-executable. */ status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr); if (status != EFI_SUCCESS) return; // Get the current attributes for the entire region status = memattr->get_memory_attributes(memattr, image_base, alloc_size, &attr); if (status != EFI_SUCCESS) { efi_warn("Failed to retrieve memory attributes for image region: 0x%lx\n", status); return; } // Mark the code region as read-only status = memattr->set_memory_attributes(memattr, image_base, code_size, EFI_MEMORY_RO); if (status != EFI_SUCCESS) { efi_warn("Failed to remap code region read-only\n"); return; } // If the entire region was already mapped as non-exec, clear the // attribute from the code region. Otherwise, set it on the data // region. if (attr & EFI_MEMORY_XP) { status = memattr->clear_memory_attributes(memattr, image_base, code_size, EFI_MEMORY_XP); if (status != EFI_SUCCESS) efi_warn("Failed to remap code region executable\n"); } else { status = memattr->set_memory_attributes(memattr, image_base + code_size, alloc_size - code_size, EFI_MEMORY_XP); if (status != EFI_SUCCESS) efi_warn("Failed to remap data region non-executable\n"); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1