Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mike Waychison | 3456 | 88.71% | 1 | 4.00% |
Furquan Shaikh | 253 | 6.49% | 2 | 8.00% |
Arthur Heymans | 50 | 1.28% | 2 | 8.00% |
Duncan Laurie | 40 | 1.03% | 3 | 12.00% |
Russell King | 26 | 0.67% | 1 | 4.00% |
Axel Lin | 20 | 0.51% | 1 | 4.00% |
Guilherme G. Piccoli | 14 | 0.36% | 1 | 4.00% |
Matt Fleming | 6 | 0.15% | 2 | 8.00% |
Maxin B. John | 5 | 0.13% | 1 | 4.00% |
Ard Biesheuvel | 4 | 0.10% | 1 | 4.00% |
Khazhismel Kumykov | 4 | 0.10% | 1 | 4.00% |
Evan Green | 3 | 0.08% | 1 | 4.00% |
Matthew Garrett | 3 | 0.08% | 1 | 4.00% |
Andy Shevchenko | 3 | 0.08% | 1 | 4.00% |
Paul Gortmaker | 3 | 0.08% | 1 | 4.00% |
Christoph Hellwig | 2 | 0.05% | 1 | 4.00% |
Colin Ian King | 1 | 0.03% | 1 | 4.00% |
Jingoo Han | 1 | 0.03% | 1 | 4.00% |
Thomas Gleixner | 1 | 0.03% | 1 | 4.00% |
Randy Dunlap | 1 | 0.03% | 1 | 4.00% |
Total | 3896 | 25 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2010 Google Inc. All Rights Reserved. * Author: dlaurie@google.com (Duncan Laurie) * * Re-worked to expose sysfs APIs by mikew@google.com (Mike Waychison) * * EFI SMI interface for Google platforms */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/types.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/spinlock.h> #include <linux/dma-mapping.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/panic_notifier.h> #include <linux/ioctl.h> #include <linux/acpi.h> #include <linux/io.h> #include <linux/uaccess.h> #include <linux/dmi.h> #include <linux/kdebug.h> #include <linux/reboot.h> #include <linux/efi.h> #include <linux/module.h> #include <linux/ucs2_string.h> #include <linux/suspend.h> #define GSMI_SHUTDOWN_CLEAN 0 /* Clean Shutdown */ /* TODO(mikew@google.com): Tie in HARDLOCKUP_DETECTOR with NMIWDT */ #define GSMI_SHUTDOWN_NMIWDT 1 /* NMI Watchdog */ #define GSMI_SHUTDOWN_PANIC 2 /* Panic */ #define GSMI_SHUTDOWN_OOPS 3 /* Oops */ #define GSMI_SHUTDOWN_DIE 4 /* Die -- No longer meaningful */ #define GSMI_SHUTDOWN_MCE 5 /* Machine Check */ #define GSMI_SHUTDOWN_SOFTWDT 6 /* Software Watchdog */ #define GSMI_SHUTDOWN_MBE 7 /* Uncorrected ECC */ #define GSMI_SHUTDOWN_TRIPLE 8 /* Triple Fault */ #define DRIVER_VERSION "1.0" #define GSMI_GUID_SIZE 16 #define GSMI_BUF_SIZE 1024 #define GSMI_BUF_ALIGN sizeof(u64) #define GSMI_CALLBACK 0xef /* SMI return codes */ #define GSMI_SUCCESS 0x00 #define GSMI_UNSUPPORTED2 0x03 #define GSMI_LOG_FULL 0x0b #define GSMI_VAR_NOT_FOUND 0x0e #define GSMI_HANDSHAKE_SPIN 0x7d #define GSMI_HANDSHAKE_CF 0x7e #define GSMI_HANDSHAKE_NONE 0x7f #define GSMI_INVALID_PARAMETER 0x82 #define GSMI_UNSUPPORTED 0x83 #define GSMI_BUFFER_TOO_SMALL 0x85 #define GSMI_NOT_READY 0x86 #define GSMI_DEVICE_ERROR 0x87 #define GSMI_NOT_FOUND 0x8e #define QUIRKY_BOARD_HASH 0x78a30a50 /* Internally used commands passed to the firmware */ #define GSMI_CMD_GET_NVRAM_VAR 0x01 #define GSMI_CMD_GET_NEXT_VAR 0x02 #define GSMI_CMD_SET_NVRAM_VAR 0x03 #define GSMI_CMD_SET_EVENT_LOG 0x08 #define GSMI_CMD_CLEAR_EVENT_LOG 0x09 #define GSMI_CMD_LOG_S0IX_SUSPEND 0x0a #define GSMI_CMD_LOG_S0IX_RESUME 0x0b #define GSMI_CMD_CLEAR_CONFIG 0x20 #define GSMI_CMD_HANDSHAKE_TYPE 0xC1 #define GSMI_CMD_RESERVED 0xff /* Magic entry type for kernel events */ #define GSMI_LOG_ENTRY_TYPE_KERNEL 0xDEAD /* SMI buffers must be in 32bit physical address space */ struct gsmi_buf { u8 *start; /* start of buffer */ size_t length; /* length of buffer */ u32 address; /* physical address of buffer */ }; static struct gsmi_device { struct platform_device *pdev; /* platform device */ struct gsmi_buf *name_buf; /* variable name buffer */ struct gsmi_buf *data_buf; /* generic data buffer */ struct gsmi_buf *param_buf; /* parameter buffer */ spinlock_t lock; /* serialize access to SMIs */ u16 smi_cmd; /* SMI command port */ int handshake_type; /* firmware handler interlock type */ struct kmem_cache *mem_pool; /* kmem cache for gsmi_buf allocations */ } gsmi_dev; /* Packed structures for communicating with the firmware */ struct gsmi_nvram_var_param { efi_guid_t guid; u32 name_ptr; u32 attributes; u32 data_len; u32 data_ptr; } __packed; struct gsmi_get_next_var_param { u8 guid[GSMI_GUID_SIZE]; u32 name_ptr; u32 name_len; } __packed; struct gsmi_set_eventlog_param { u32 data_ptr; u32 data_len; u32 type; } __packed; /* Event log formats */ struct gsmi_log_entry_type_1 { u16 type; u32 instance; } __packed; /* * Some platforms don't have explicit SMI handshake * and need to wait for SMI to complete. */ #define GSMI_DEFAULT_SPINCOUNT 0x10000 static unsigned int spincount = GSMI_DEFAULT_SPINCOUNT; module_param(spincount, uint, 0600); MODULE_PARM_DESC(spincount, "The number of loop iterations to use when using the spin handshake."); /* * Some older platforms with Apollo Lake chipsets do not support S0ix logging * in their GSMI handlers, and behaved poorly when resuming via power button * press if the logging was attempted. Updated firmware with proper behavior * has long since shipped, removing the need for this opt-in parameter. It * now exists as an opt-out parameter for folks defiantly running old * firmware, or unforeseen circumstances. After the change from opt-in to * opt-out has baked sufficiently, this parameter should probably be removed * entirely. */ static bool s0ix_logging_enable = true; module_param(s0ix_logging_enable, bool, 0600); static struct gsmi_buf *gsmi_buf_alloc(void) { struct gsmi_buf *smibuf; smibuf = kzalloc(sizeof(*smibuf), GFP_KERNEL); if (!smibuf) { printk(KERN_ERR "gsmi: out of memory\n"); return NULL; } /* allocate buffer in 32bit address space */ smibuf->start = kmem_cache_alloc(gsmi_dev.mem_pool, GFP_KERNEL); if (!smibuf->start) { printk(KERN_ERR "gsmi: failed to allocate name buffer\n"); kfree(smibuf); return NULL; } /* fill in the buffer handle */ smibuf->length = GSMI_BUF_SIZE; smibuf->address = (u32)virt_to_phys(smibuf->start); return smibuf; } static void gsmi_buf_free(struct gsmi_buf *smibuf) { if (smibuf) { if (smibuf->start) kmem_cache_free(gsmi_dev.mem_pool, smibuf->start); kfree(smibuf); } } /* * Make a call to gsmi func(sub). GSMI error codes are translated to * in-kernel errnos (0 on success, -ERRNO on error). */ static int gsmi_exec(u8 func, u8 sub) { u16 cmd = (sub << 8) | func; u16 result = 0; int rc = 0; /* * AH : Subfunction number * AL : Function number * EBX : Parameter block address * DX : SMI command port * * Three protocols here. See also the comment in gsmi_init(). */ if (gsmi_dev.handshake_type == GSMI_HANDSHAKE_CF) { /* * If handshake_type == HANDSHAKE_CF then set CF on the * way in and wait for the handler to clear it; this avoids * corrupting register state on those chipsets which have * a delay between writing the SMI trigger register and * entering SMM. */ asm volatile ( "stc\n" "outb %%al, %%dx\n" "1: jc 1b\n" : "=a" (result) : "0" (cmd), "d" (gsmi_dev.smi_cmd), "b" (gsmi_dev.param_buf->address) : "memory", "cc" ); } else if (gsmi_dev.handshake_type == GSMI_HANDSHAKE_SPIN) { /* * If handshake_type == HANDSHAKE_SPIN we spin a * hundred-ish usecs to ensure the SMI has triggered. */ asm volatile ( "outb %%al, %%dx\n" "1: loop 1b\n" : "=a" (result) : "0" (cmd), "d" (gsmi_dev.smi_cmd), "b" (gsmi_dev.param_buf->address), "c" (spincount) : "memory", "cc" ); } else { /* * If handshake_type == HANDSHAKE_NONE we do nothing; * either we don't need to or it's legacy firmware that * doesn't understand the CF protocol. */ asm volatile ( "outb %%al, %%dx\n\t" : "=a" (result) : "0" (cmd), "d" (gsmi_dev.smi_cmd), "b" (gsmi_dev.param_buf->address) : "memory", "cc" ); } /* check return code from SMI handler */ switch (result) { case GSMI_SUCCESS: break; case GSMI_VAR_NOT_FOUND: /* not really an error, but let the caller know */ rc = 1; break; case GSMI_INVALID_PARAMETER: printk(KERN_ERR "gsmi: exec 0x%04x: Invalid parameter\n", cmd); rc = -EINVAL; break; case GSMI_BUFFER_TOO_SMALL: printk(KERN_ERR "gsmi: exec 0x%04x: Buffer too small\n", cmd); rc = -ENOMEM; break; case GSMI_UNSUPPORTED: case GSMI_UNSUPPORTED2: if (sub != GSMI_CMD_HANDSHAKE_TYPE) printk(KERN_ERR "gsmi: exec 0x%04x: Not supported\n", cmd); rc = -ENOSYS; break; case GSMI_NOT_READY: printk(KERN_ERR "gsmi: exec 0x%04x: Not ready\n", cmd); rc = -EBUSY; break; case GSMI_DEVICE_ERROR: printk(KERN_ERR "gsmi: exec 0x%04x: Device error\n", cmd); rc = -EFAULT; break; case GSMI_NOT_FOUND: printk(KERN_ERR "gsmi: exec 0x%04x: Data not found\n", cmd); rc = -ENOENT; break; case GSMI_LOG_FULL: printk(KERN_ERR "gsmi: exec 0x%04x: Log full\n", cmd); rc = -ENOSPC; break; case GSMI_HANDSHAKE_CF: case GSMI_HANDSHAKE_SPIN: case GSMI_HANDSHAKE_NONE: rc = result; break; default: printk(KERN_ERR "gsmi: exec 0x%04x: Unknown error 0x%04x\n", cmd, result); rc = -ENXIO; } return rc; } #ifdef CONFIG_EFI static struct efivars efivars; static efi_status_t gsmi_get_variable(efi_char16_t *name, efi_guid_t *vendor, u32 *attr, unsigned long *data_size, void *data) { struct gsmi_nvram_var_param param = { .name_ptr = gsmi_dev.name_buf->address, .data_ptr = gsmi_dev.data_buf->address, .data_len = (u32)*data_size, }; efi_status_t ret = EFI_SUCCESS; unsigned long flags; size_t name_len = ucs2_strnlen(name, GSMI_BUF_SIZE / 2); int rc; if (name_len >= GSMI_BUF_SIZE / 2) return EFI_BAD_BUFFER_SIZE; spin_lock_irqsave(&gsmi_dev.lock, flags); /* Vendor guid */ memcpy(¶m.guid, vendor, sizeof(param.guid)); /* variable name, already in UTF-16 */ memset(gsmi_dev.name_buf->start, 0, gsmi_dev.name_buf->length); memcpy(gsmi_dev.name_buf->start, name, name_len * 2); /* data pointer */ memset(gsmi_dev.data_buf->start, 0, gsmi_dev.data_buf->length); /* parameter buffer */ memset(gsmi_dev.param_buf->start, 0, gsmi_dev.param_buf->length); memcpy(gsmi_dev.param_buf->start, ¶m, sizeof(param)); rc = gsmi_exec(GSMI_CALLBACK, GSMI_CMD_GET_NVRAM_VAR); if (rc < 0) { printk(KERN_ERR "gsmi: Get Variable failed\n"); ret = EFI_LOAD_ERROR; } else if (rc == 1) { /* variable was not found */ ret = EFI_NOT_FOUND; } else { /* Get the arguments back */ memcpy(¶m, gsmi_dev.param_buf->start, sizeof(param)); /* The size reported is the min of all of our buffers */ *data_size = min_t(unsigned long, *data_size, gsmi_dev.data_buf->length); *data_size = min_t(unsigned long, *data_size, param.data_len); /* Copy data back to return buffer. */ memcpy(data, gsmi_dev.data_buf->start, *data_size); /* All variables are have the following attributes */ if (attr) *attr = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS; } spin_unlock_irqrestore(&gsmi_dev.lock, flags); return ret; } static efi_status_t gsmi_get_next_variable(unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) { struct gsmi_get_next_var_param param = { .name_ptr = gsmi_dev.name_buf->address, .name_len = gsmi_dev.name_buf->length, }; efi_status_t ret = EFI_SUCCESS; int rc; unsigned long flags; /* For the moment, only support buffers that exactly match in size */ if (*name_size != GSMI_BUF_SIZE) return EFI_BAD_BUFFER_SIZE; /* Let's make sure the thing is at least null-terminated */ if (ucs2_strnlen(name, GSMI_BUF_SIZE / 2) == GSMI_BUF_SIZE / 2) return EFI_INVALID_PARAMETER; spin_lock_irqsave(&gsmi_dev.lock, flags); /* guid */ memcpy(¶m.guid, vendor, sizeof(param.guid)); /* variable name, already in UTF-16 */ memcpy(gsmi_dev.name_buf->start, name, *name_size); /* parameter buffer */ memset(gsmi_dev.param_buf->start, 0, gsmi_dev.param_buf->length); memcpy(gsmi_dev.param_buf->start, ¶m, sizeof(param)); rc = gsmi_exec(GSMI_CALLBACK, GSMI_CMD_GET_NEXT_VAR); if (rc < 0) { printk(KERN_ERR "gsmi: Get Next Variable Name failed\n"); ret = EFI_LOAD_ERROR; } else if (rc == 1) { /* variable not found -- end of list */ ret = EFI_NOT_FOUND; } else { /* copy variable data back to return buffer */ memcpy(¶m, gsmi_dev.param_buf->start, sizeof(param)); /* Copy the name back */ memcpy(name, gsmi_dev.name_buf->start, GSMI_BUF_SIZE); *name_size = ucs2_strnlen(name, GSMI_BUF_SIZE / 2) * 2; /* copy guid to return buffer */ memcpy(vendor, ¶m.guid, sizeof(param.guid)); ret = EFI_SUCCESS; } spin_unlock_irqrestore(&gsmi_dev.lock, flags); return ret; } static efi_status_t gsmi_set_variable(efi_char16_t *name, efi_guid_t *vendor, u32 attr, unsigned long data_size, void *data) { struct gsmi_nvram_var_param param = { .name_ptr = gsmi_dev.name_buf->address, .data_ptr = gsmi_dev.data_buf->address, .data_len = (u32)data_size, .attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, }; size_t name_len = ucs2_strnlen(name, GSMI_BUF_SIZE / 2); efi_status_t ret = EFI_SUCCESS; int rc; unsigned long flags; if (name_len >= GSMI_BUF_SIZE / 2) return EFI_BAD_BUFFER_SIZE; spin_lock_irqsave(&gsmi_dev.lock, flags); /* guid */ memcpy(¶m.guid, vendor, sizeof(param.guid)); /* variable name, already in UTF-16 */ memset(gsmi_dev.name_buf->start, 0, gsmi_dev.name_buf->length); memcpy(gsmi_dev.name_buf->start, name, name_len * 2); /* data pointer */ memset(gsmi_dev.data_buf->start, 0, gsmi_dev.data_buf->length); memcpy(gsmi_dev.data_buf->start, data, data_size); /* parameter buffer */ memset(gsmi_dev.param_buf->start, 0, gsmi_dev.param_buf->length); memcpy(gsmi_dev.param_buf->start, ¶m, sizeof(param)); rc = gsmi_exec(GSMI_CALLBACK, GSMI_CMD_SET_NVRAM_VAR); if (rc < 0) { printk(KERN_ERR "gsmi: Set Variable failed\n"); ret = EFI_INVALID_PARAMETER; } spin_unlock_irqrestore(&gsmi_dev.lock, flags); return ret; } static const struct efivar_operations efivar_ops = { .get_variable = gsmi_get_variable, .set_variable = gsmi_set_variable, .get_next_variable = gsmi_get_next_variable, }; #endif /* CONFIG_EFI */ static ssize_t eventlog_write(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t pos, size_t count) { struct gsmi_set_eventlog_param param = { .data_ptr = gsmi_dev.data_buf->address, }; int rc = 0; unsigned long flags; /* Pull the type out */ if (count < sizeof(u32)) return -EINVAL; param.type = *(u32 *)buf; buf += sizeof(u32); /* The remaining buffer is the data payload */ if ((count - sizeof(u32)) > gsmi_dev.data_buf->length) return -EINVAL; param.data_len = count - sizeof(u32); spin_lock_irqsave(&gsmi_dev.lock, flags); /* data pointer */ memset(gsmi_dev.data_buf->start, 0, gsmi_dev.data_buf->length); memcpy(gsmi_dev.data_buf->start, buf, param.data_len); /* parameter buffer */ memset(gsmi_dev.param_buf->start, 0, gsmi_dev.param_buf->length); memcpy(gsmi_dev.param_buf->start, ¶m, sizeof(param)); rc = gsmi_exec(GSMI_CALLBACK, GSMI_CMD_SET_EVENT_LOG); if (rc < 0) printk(KERN_ERR "gsmi: Set Event Log failed\n"); spin_unlock_irqrestore(&gsmi_dev.lock, flags); return (rc == 0) ? count : rc; } static struct bin_attribute eventlog_bin_attr = { .attr = {.name = "append_to_eventlog", .mode = 0200}, .write = eventlog_write, }; static ssize_t gsmi_clear_eventlog_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int rc; unsigned long flags; unsigned long val; struct { u32 percentage; u32 data_type; } param; rc = kstrtoul(buf, 0, &val); if (rc) return rc; /* * Value entered is a percentage, 0 through 100, anything else * is invalid. */ if (val > 100) return -EINVAL; /* data_type here selects the smbios event log. */ param.percentage = val; param.data_type = 0; spin_lock_irqsave(&gsmi_dev.lock, flags); /* parameter buffer */ memset(gsmi_dev.param_buf->start, 0, gsmi_dev.param_buf->length); memcpy(gsmi_dev.param_buf->start, ¶m, sizeof(param)); rc = gsmi_exec(GSMI_CALLBACK, GSMI_CMD_CLEAR_EVENT_LOG); spin_unlock_irqrestore(&gsmi_dev.lock, flags); if (rc) return rc; return count; } static struct kobj_attribute gsmi_clear_eventlog_attr = { .attr = {.name = "clear_eventlog", .mode = 0200}, .store = gsmi_clear_eventlog_store, }; static ssize_t gsmi_clear_config_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int rc; unsigned long flags; spin_lock_irqsave(&gsmi_dev.lock, flags); /* clear parameter buffer */ memset(gsmi_dev.param_buf->start, 0, gsmi_dev.param_buf->length); rc = gsmi_exec(GSMI_CALLBACK, GSMI_CMD_CLEAR_CONFIG); spin_unlock_irqrestore(&gsmi_dev.lock, flags); if (rc) return rc; return count; } static struct kobj_attribute gsmi_clear_config_attr = { .attr = {.name = "clear_config", .mode = 0200}, .store = gsmi_clear_config_store, }; static const struct attribute *gsmi_attrs[] = { &gsmi_clear_config_attr.attr, &gsmi_clear_eventlog_attr.attr, NULL, }; static int gsmi_shutdown_reason(int reason) { struct gsmi_log_entry_type_1 entry = { .type = GSMI_LOG_ENTRY_TYPE_KERNEL, .instance = reason, }; struct gsmi_set_eventlog_param param = { .data_len = sizeof(entry), .type = 1, }; static int saved_reason; int rc = 0; unsigned long flags; /* avoid duplicate entries in the log */ if (saved_reason & (1 << reason)) return 0; spin_lock_irqsave(&gsmi_dev.lock, flags); saved_reason |= (1 << reason); /* data pointer */ memset(gsmi_dev.data_buf->start, 0, gsmi_dev.data_buf->length); memcpy(gsmi_dev.data_buf->start, &entry, sizeof(entry)); /* parameter buffer */ param.data_ptr = gsmi_dev.data_buf->address; memset(gsmi_dev.param_buf->start, 0, gsmi_dev.param_buf->length); memcpy(gsmi_dev.param_buf->start, ¶m, sizeof(param)); rc = gsmi_exec(GSMI_CALLBACK, GSMI_CMD_SET_EVENT_LOG); spin_unlock_irqrestore(&gsmi_dev.lock, flags); if (rc < 0) printk(KERN_ERR "gsmi: Log Shutdown Reason failed\n"); else printk(KERN_EMERG "gsmi: Log Shutdown Reason 0x%02x\n", reason); return rc; } static int gsmi_reboot_callback(struct notifier_block *nb, unsigned long reason, void *arg) { gsmi_shutdown_reason(GSMI_SHUTDOWN_CLEAN); return NOTIFY_DONE; } static struct notifier_block gsmi_reboot_notifier = { .notifier_call = gsmi_reboot_callback }; static int gsmi_die_callback(struct notifier_block *nb, unsigned long reason, void *arg) { if (reason == DIE_OOPS) gsmi_shutdown_reason(GSMI_SHUTDOWN_OOPS); return NOTIFY_DONE; } static struct notifier_block gsmi_die_notifier = { .notifier_call = gsmi_die_callback }; static int gsmi_panic_callback(struct notifier_block *nb, unsigned long reason, void *arg) { /* * Panic callbacks are executed with all other CPUs stopped, * so we must not attempt to spin waiting for gsmi_dev.lock * to be released. */ if (spin_is_locked(&gsmi_dev.lock)) return NOTIFY_DONE; gsmi_shutdown_reason(GSMI_SHUTDOWN_PANIC); return NOTIFY_DONE; } static struct notifier_block gsmi_panic_notifier = { .notifier_call = gsmi_panic_callback, }; /* * This hash function was blatantly copied from include/linux/hash.h. * It is used by this driver to obfuscate a board name that requires a * quirk within this driver. * * Please do not remove this copy of the function as any changes to the * global utility hash_64() function would break this driver's ability * to identify a board and provide the appropriate quirk -- mikew@google.com */ static u64 __init local_hash_64(u64 val, unsigned bits) { u64 hash = val; /* Sigh, gcc can't optimise this alone like it does for 32 bits. */ u64 n = hash; n <<= 18; hash -= n; n <<= 33; hash -= n; n <<= 3; hash += n; n <<= 3; hash -= n; n <<= 4; hash += n; n <<= 2; hash += n; /* High bits are more random, so use them. */ return hash >> (64 - bits); } static u32 __init hash_oem_table_id(char s[8]) { u64 input; memcpy(&input, s, 8); return local_hash_64(input, 32); } static const struct dmi_system_id gsmi_dmi_table[] __initconst = { { .ident = "Google Board", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "Google, Inc."), }, }, { .ident = "Coreboot Firmware", .matches = { DMI_MATCH(DMI_BIOS_VENDOR, "coreboot"), }, }, {} }; MODULE_DEVICE_TABLE(dmi, gsmi_dmi_table); static __init int gsmi_system_valid(void) { u32 hash; u16 cmd, result; if (!dmi_check_system(gsmi_dmi_table)) return -ENODEV; /* * Only newer firmware supports the gsmi interface. All older * firmware that didn't support this interface used to plug the * table name in the first four bytes of the oem_table_id field. * Newer firmware doesn't do that though, so use that as the * discriminant factor. We have to do this in order to * whitewash our board names out of the public driver. */ if (!strncmp(acpi_gbl_FADT.header.oem_table_id, "FACP", 4)) { printk(KERN_INFO "gsmi: Board is too old\n"); return -ENODEV; } /* Disable on board with 1.0 BIOS due to Google bug 2602657 */ hash = hash_oem_table_id(acpi_gbl_FADT.header.oem_table_id); if (hash == QUIRKY_BOARD_HASH) { const char *bios_ver = dmi_get_system_info(DMI_BIOS_VERSION); if (strncmp(bios_ver, "1.0", 3) == 0) { pr_info("gsmi: disabled on this board's BIOS %s\n", bios_ver); return -ENODEV; } } /* check for valid SMI command port in ACPI FADT */ if (acpi_gbl_FADT.smi_command == 0) { pr_info("gsmi: missing smi_command\n"); return -ENODEV; } /* Test the smihandler with a bogus command. If it leaves the * calling argument in %ax untouched, there is no handler for * GSMI commands. */ cmd = GSMI_CALLBACK | GSMI_CMD_RESERVED << 8; asm volatile ( "outb %%al, %%dx\n\t" : "=a" (result) : "0" (cmd), "d" (acpi_gbl_FADT.smi_command) : "memory", "cc" ); if (cmd == result) { pr_info("gsmi: no gsmi handler in firmware\n"); return -ENODEV; } /* Found */ return 0; } static struct kobject *gsmi_kobj; static const struct platform_device_info gsmi_dev_info = { .name = "gsmi", .id = -1, /* SMI callbacks require 32bit addresses */ .dma_mask = DMA_BIT_MASK(32), }; #ifdef CONFIG_PM static void gsmi_log_s0ix_info(u8 cmd) { unsigned long flags; /* * If platform has not enabled S0ix logging, then no action is * necessary. */ if (!s0ix_logging_enable) return; spin_lock_irqsave(&gsmi_dev.lock, flags); memset(gsmi_dev.param_buf->start, 0, gsmi_dev.param_buf->length); gsmi_exec(GSMI_CALLBACK, cmd); spin_unlock_irqrestore(&gsmi_dev.lock, flags); } static int gsmi_log_s0ix_suspend(struct device *dev) { /* * If system is not suspending via firmware using the standard ACPI Sx * types, then make a GSMI call to log the suspend info. */ if (!pm_suspend_via_firmware()) gsmi_log_s0ix_info(GSMI_CMD_LOG_S0IX_SUSPEND); /* * Always return success, since we do not want suspend * to fail just because of logging failure. */ return 0; } static int gsmi_log_s0ix_resume(struct device *dev) { /* * If system did not resume via firmware, then make a GSMI call to log * the resume info and wake source. */ if (!pm_resume_via_firmware()) gsmi_log_s0ix_info(GSMI_CMD_LOG_S0IX_RESUME); /* * Always return success, since we do not want resume * to fail just because of logging failure. */ return 0; } static const struct dev_pm_ops gsmi_pm_ops = { .suspend_noirq = gsmi_log_s0ix_suspend, .resume_noirq = gsmi_log_s0ix_resume, }; static int gsmi_platform_driver_probe(struct platform_device *dev) { return 0; } static struct platform_driver gsmi_driver_info = { .driver = { .name = "gsmi", .pm = &gsmi_pm_ops, }, .probe = gsmi_platform_driver_probe, }; #endif static __init int gsmi_init(void) { unsigned long flags; int ret; ret = gsmi_system_valid(); if (ret) return ret; gsmi_dev.smi_cmd = acpi_gbl_FADT.smi_command; #ifdef CONFIG_PM ret = platform_driver_register(&gsmi_driver_info); if (unlikely(ret)) { printk(KERN_ERR "gsmi: unable to register platform driver\n"); return ret; } #endif /* register device */ gsmi_dev.pdev = platform_device_register_full(&gsmi_dev_info); if (IS_ERR(gsmi_dev.pdev)) { printk(KERN_ERR "gsmi: unable to register platform device\n"); return PTR_ERR(gsmi_dev.pdev); } /* SMI access needs to be serialized */ spin_lock_init(&gsmi_dev.lock); ret = -ENOMEM; /* * SLAB cache is created using SLAB_CACHE_DMA32 to ensure that the * allocations for gsmi_buf come from the DMA32 memory zone. These * buffers have nothing to do with DMA. They are required for * communication with firmware executing in SMI mode which can only * access the bottom 4GiB of physical memory. Since DMA32 memory zone * guarantees allocation under the 4GiB boundary, this driver creates * a SLAB cache with SLAB_CACHE_DMA32 flag. */ gsmi_dev.mem_pool = kmem_cache_create("gsmi", GSMI_BUF_SIZE, GSMI_BUF_ALIGN, SLAB_CACHE_DMA32, NULL); if (!gsmi_dev.mem_pool) goto out_err; /* * pre-allocate buffers because sometimes we are called when * this is not feasible: oops, panic, die, mce, etc */ gsmi_dev.name_buf = gsmi_buf_alloc(); if (!gsmi_dev.name_buf) { printk(KERN_ERR "gsmi: failed to allocate name buffer\n"); goto out_err; } gsmi_dev.data_buf = gsmi_buf_alloc(); if (!gsmi_dev.data_buf) { printk(KERN_ERR "gsmi: failed to allocate data buffer\n"); goto out_err; } gsmi_dev.param_buf = gsmi_buf_alloc(); if (!gsmi_dev.param_buf) { printk(KERN_ERR "gsmi: failed to allocate param buffer\n"); goto out_err; } /* * Determine type of handshake used to serialize the SMI * entry. See also gsmi_exec(). * * There's a "behavior" present on some chipsets where writing the * SMI trigger register in the southbridge doesn't result in an * immediate SMI. Rather, the processor can execute "a few" more * instructions before the SMI takes effect. To ensure synchronous * behavior, implement a handshake between the kernel driver and the * firmware handler to spin until released. This ioctl determines * the type of handshake. * * NONE: The firmware handler does not implement any * handshake. Either it doesn't need to, or it's legacy firmware * that doesn't know it needs to and never will. * * CF: The firmware handler will clear the CF in the saved * state before returning. The driver may set the CF and test for * it to clear before proceeding. * * SPIN: The firmware handler does not implement any handshake * but the driver should spin for a hundred or so microseconds * to ensure the SMI has triggered. * * Finally, the handler will return -ENOSYS if * GSMI_CMD_HANDSHAKE_TYPE is unimplemented, which implies * HANDSHAKE_NONE. */ spin_lock_irqsave(&gsmi_dev.lock, flags); gsmi_dev.handshake_type = GSMI_HANDSHAKE_SPIN; gsmi_dev.handshake_type = gsmi_exec(GSMI_CALLBACK, GSMI_CMD_HANDSHAKE_TYPE); if (gsmi_dev.handshake_type == -ENOSYS) gsmi_dev.handshake_type = GSMI_HANDSHAKE_NONE; spin_unlock_irqrestore(&gsmi_dev.lock, flags); /* Remove and clean up gsmi if the handshake could not complete. */ if (gsmi_dev.handshake_type == -ENXIO) { printk(KERN_INFO "gsmi version " DRIVER_VERSION " failed to load\n"); ret = -ENODEV; goto out_err; } /* Register in the firmware directory */ ret = -ENOMEM; gsmi_kobj = kobject_create_and_add("gsmi", firmware_kobj); if (!gsmi_kobj) { printk(KERN_INFO "gsmi: Failed to create firmware kobj\n"); goto out_err; } /* Setup eventlog access */ ret = sysfs_create_bin_file(gsmi_kobj, &eventlog_bin_attr); if (ret) { printk(KERN_INFO "gsmi: Failed to setup eventlog"); goto out_err; } /* Other attributes */ ret = sysfs_create_files(gsmi_kobj, gsmi_attrs); if (ret) { printk(KERN_INFO "gsmi: Failed to add attrs"); goto out_remove_bin_file; } #ifdef CONFIG_EFI ret = efivars_register(&efivars, &efivar_ops); if (ret) { printk(KERN_INFO "gsmi: Failed to register efivars\n"); sysfs_remove_files(gsmi_kobj, gsmi_attrs); goto out_remove_bin_file; } #endif register_reboot_notifier(&gsmi_reboot_notifier); register_die_notifier(&gsmi_die_notifier); atomic_notifier_chain_register(&panic_notifier_list, &gsmi_panic_notifier); printk(KERN_INFO "gsmi version " DRIVER_VERSION " loaded\n"); return 0; out_remove_bin_file: sysfs_remove_bin_file(gsmi_kobj, &eventlog_bin_attr); out_err: kobject_put(gsmi_kobj); gsmi_buf_free(gsmi_dev.param_buf); gsmi_buf_free(gsmi_dev.data_buf); gsmi_buf_free(gsmi_dev.name_buf); kmem_cache_destroy(gsmi_dev.mem_pool); platform_device_unregister(gsmi_dev.pdev); pr_info("gsmi: failed to load: %d\n", ret); #ifdef CONFIG_PM platform_driver_unregister(&gsmi_driver_info); #endif return ret; } static void __exit gsmi_exit(void) { unregister_reboot_notifier(&gsmi_reboot_notifier); unregister_die_notifier(&gsmi_die_notifier); atomic_notifier_chain_unregister(&panic_notifier_list, &gsmi_panic_notifier); #ifdef CONFIG_EFI efivars_unregister(&efivars); #endif sysfs_remove_files(gsmi_kobj, gsmi_attrs); sysfs_remove_bin_file(gsmi_kobj, &eventlog_bin_attr); kobject_put(gsmi_kobj); gsmi_buf_free(gsmi_dev.param_buf); gsmi_buf_free(gsmi_dev.data_buf); gsmi_buf_free(gsmi_dev.name_buf); kmem_cache_destroy(gsmi_dev.mem_pool); platform_device_unregister(gsmi_dev.pdev); #ifdef CONFIG_PM platform_driver_unregister(&gsmi_driver_info); #endif } module_init(gsmi_init); module_exit(gsmi_exit); MODULE_AUTHOR("Google, Inc."); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1