Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Benjamin Herrenschmidt | 6567 | 99.55% | 4 | 36.36% |
Gustavo A. R. Silva | 8 | 0.12% | 1 | 9.09% |
Edward A. James | 8 | 0.12% | 2 | 18.18% |
Zou Wei | 7 | 0.11% | 1 | 9.09% |
Juerg Haefliger | 5 | 0.08% | 1 | 9.09% |
Yu Zhe | 1 | 0.02% | 1 | 9.09% |
Colin Ian King | 1 | 0.02% | 1 | 9.09% |
Total | 6597 | 11 |
// SPDX-License-Identifier: GPL-2.0+ // Copyright 2018 IBM Corp /* * A FSI master controller, using a simple GPIO bit-banging interface */ #include <linux/crc4.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/fsi.h> #include <linux/gpio/consumer.h> #include <linux/io.h> #include <linux/irqflags.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/regmap.h> #include <linux/firmware.h> #include <linux/gpio/aspeed.h> #include <linux/mfd/syscon.h> #include <linux/of_address.h> #include <linux/genalloc.h> #include "fsi-master.h" #include "cf-fsi-fw.h" #define FW_FILE_NAME "cf-fsi-fw.bin" /* Common SCU based coprocessor control registers */ #define SCU_COPRO_CTRL 0x100 #define SCU_COPRO_RESET 0x00000002 #define SCU_COPRO_CLK_EN 0x00000001 /* AST2500 specific ones */ #define SCU_2500_COPRO_SEG0 0x104 #define SCU_2500_COPRO_SEG1 0x108 #define SCU_2500_COPRO_SEG2 0x10c #define SCU_2500_COPRO_SEG3 0x110 #define SCU_2500_COPRO_SEG4 0x114 #define SCU_2500_COPRO_SEG5 0x118 #define SCU_2500_COPRO_SEG6 0x11c #define SCU_2500_COPRO_SEG7 0x120 #define SCU_2500_COPRO_SEG8 0x124 #define SCU_2500_COPRO_SEG_SWAP 0x00000001 #define SCU_2500_COPRO_CACHE_CTL 0x128 #define SCU_2500_COPRO_CACHE_EN 0x00000001 #define SCU_2500_COPRO_SEG0_CACHE_EN 0x00000002 #define SCU_2500_COPRO_SEG1_CACHE_EN 0x00000004 #define SCU_2500_COPRO_SEG2_CACHE_EN 0x00000008 #define SCU_2500_COPRO_SEG3_CACHE_EN 0x00000010 #define SCU_2500_COPRO_SEG4_CACHE_EN 0x00000020 #define SCU_2500_COPRO_SEG5_CACHE_EN 0x00000040 #define SCU_2500_COPRO_SEG6_CACHE_EN 0x00000080 #define SCU_2500_COPRO_SEG7_CACHE_EN 0x00000100 #define SCU_2500_COPRO_SEG8_CACHE_EN 0x00000200 #define SCU_2400_COPRO_SEG0 0x104 #define SCU_2400_COPRO_SEG2 0x108 #define SCU_2400_COPRO_SEG4 0x10c #define SCU_2400_COPRO_SEG6 0x110 #define SCU_2400_COPRO_SEG8 0x114 #define SCU_2400_COPRO_SEG_SWAP 0x80000000 #define SCU_2400_COPRO_CACHE_CTL 0x118 #define SCU_2400_COPRO_CACHE_EN 0x00000001 #define SCU_2400_COPRO_SEG0_CACHE_EN 0x00000002 #define SCU_2400_COPRO_SEG2_CACHE_EN 0x00000004 #define SCU_2400_COPRO_SEG4_CACHE_EN 0x00000008 #define SCU_2400_COPRO_SEG6_CACHE_EN 0x00000010 #define SCU_2400_COPRO_SEG8_CACHE_EN 0x00000020 /* CVIC registers */ #define CVIC_EN_REG 0x10 #define CVIC_TRIG_REG 0x18 /* * System register base address (needed for configuring the * coldfire maps) */ #define SYSREG_BASE 0x1e600000 /* Amount of SRAM required */ #define SRAM_SIZE 0x1000 #define LAST_ADDR_INVALID 0x1 struct fsi_master_acf { struct fsi_master master; struct device *dev; struct regmap *scu; struct mutex lock; /* mutex for command ordering */ struct gpio_desc *gpio_clk; struct gpio_desc *gpio_data; struct gpio_desc *gpio_trans; /* Voltage translator */ struct gpio_desc *gpio_enable; /* FSI enable */ struct gpio_desc *gpio_mux; /* Mux control */ uint16_t gpio_clk_vreg; uint16_t gpio_clk_dreg; uint16_t gpio_dat_vreg; uint16_t gpio_dat_dreg; uint16_t gpio_tra_vreg; uint16_t gpio_tra_dreg; uint8_t gpio_clk_bit; uint8_t gpio_dat_bit; uint8_t gpio_tra_bit; uint32_t cf_mem_addr; size_t cf_mem_size; void __iomem *cf_mem; void __iomem *cvic; struct gen_pool *sram_pool; void __iomem *sram; bool is_ast2500; bool external_mode; bool trace_enabled; uint32_t last_addr; uint8_t t_send_delay; uint8_t t_echo_delay; uint32_t cvic_sw_irq; }; #define to_fsi_master_acf(m) container_of(m, struct fsi_master_acf, master) struct fsi_msg { uint64_t msg; uint8_t bits; }; #define CREATE_TRACE_POINTS #include <trace/events/fsi_master_ast_cf.h> static void msg_push_bits(struct fsi_msg *msg, uint64_t data, int bits) { msg->msg <<= bits; msg->msg |= data & ((1ull << bits) - 1); msg->bits += bits; } static void msg_push_crc(struct fsi_msg *msg) { uint8_t crc; int top; top = msg->bits & 0x3; /* start bit, and any non-aligned top bits */ crc = crc4(0, 1 << top | msg->msg >> (msg->bits - top), top + 1); /* aligned bits */ crc = crc4(crc, msg->msg, msg->bits - top); msg_push_bits(msg, crc, 4); } static void msg_finish_cmd(struct fsi_msg *cmd) { /* Left align message */ cmd->msg <<= (64 - cmd->bits); } static bool check_same_address(struct fsi_master_acf *master, int id, uint32_t addr) { /* this will also handle LAST_ADDR_INVALID */ return master->last_addr == (((id & 0x3) << 21) | (addr & ~0x3)); } static bool check_relative_address(struct fsi_master_acf *master, int id, uint32_t addr, uint32_t *rel_addrp) { uint32_t last_addr = master->last_addr; int32_t rel_addr; if (last_addr == LAST_ADDR_INVALID) return false; /* We may be in 23-bit addressing mode, which uses the id as the * top two address bits. So, if we're referencing a different ID, * use absolute addresses. */ if (((last_addr >> 21) & 0x3) != id) return false; /* remove the top two bits from any 23-bit addressing */ last_addr &= (1 << 21) - 1; /* We know that the addresses are limited to 21 bits, so this won't * overflow the signed rel_addr */ rel_addr = addr - last_addr; if (rel_addr > 255 || rel_addr < -256) return false; *rel_addrp = (uint32_t)rel_addr; return true; } static void last_address_update(struct fsi_master_acf *master, int id, bool valid, uint32_t addr) { if (!valid) master->last_addr = LAST_ADDR_INVALID; else master->last_addr = ((id & 0x3) << 21) | (addr & ~0x3); } /* * Encode an Absolute/Relative/Same Address command */ static void build_ar_command(struct fsi_master_acf *master, struct fsi_msg *cmd, uint8_t id, uint32_t addr, size_t size, const void *data) { int i, addr_bits, opcode_bits; bool write = !!data; uint8_t ds, opcode; uint32_t rel_addr; cmd->bits = 0; cmd->msg = 0; /* we have 21 bits of address max */ addr &= ((1 << 21) - 1); /* cmd opcodes are variable length - SAME_AR is only two bits */ opcode_bits = 3; if (check_same_address(master, id, addr)) { /* we still address the byte offset within the word */ addr_bits = 2; opcode_bits = 2; opcode = FSI_CMD_SAME_AR; trace_fsi_master_acf_cmd_same_addr(master); } else if (check_relative_address(master, id, addr, &rel_addr)) { /* 8 bits plus sign */ addr_bits = 9; addr = rel_addr; opcode = FSI_CMD_REL_AR; trace_fsi_master_acf_cmd_rel_addr(master, rel_addr); } else { addr_bits = 21; opcode = FSI_CMD_ABS_AR; trace_fsi_master_acf_cmd_abs_addr(master, addr); } /* * The read/write size is encoded in the lower bits of the address * (as it must be naturally-aligned), and the following ds bit. * * size addr:1 addr:0 ds * 1 x x 0 * 2 x 0 1 * 4 0 1 1 * */ ds = size > 1 ? 1 : 0; addr &= ~(size - 1); if (size == 4) addr |= 1; msg_push_bits(cmd, id, 2); msg_push_bits(cmd, opcode, opcode_bits); msg_push_bits(cmd, write ? 0 : 1, 1); msg_push_bits(cmd, addr, addr_bits); msg_push_bits(cmd, ds, 1); for (i = 0; write && i < size; i++) msg_push_bits(cmd, ((uint8_t *)data)[i], 8); msg_push_crc(cmd); msg_finish_cmd(cmd); } static void build_dpoll_command(struct fsi_msg *cmd, uint8_t slave_id) { cmd->bits = 0; cmd->msg = 0; msg_push_bits(cmd, slave_id, 2); msg_push_bits(cmd, FSI_CMD_DPOLL, 3); msg_push_crc(cmd); msg_finish_cmd(cmd); } static void build_epoll_command(struct fsi_msg *cmd, uint8_t slave_id) { cmd->bits = 0; cmd->msg = 0; msg_push_bits(cmd, slave_id, 2); msg_push_bits(cmd, FSI_CMD_EPOLL, 3); msg_push_crc(cmd); msg_finish_cmd(cmd); } static void build_term_command(struct fsi_msg *cmd, uint8_t slave_id) { cmd->bits = 0; cmd->msg = 0; msg_push_bits(cmd, slave_id, 2); msg_push_bits(cmd, FSI_CMD_TERM, 6); msg_push_crc(cmd); msg_finish_cmd(cmd); } static int do_copro_command(struct fsi_master_acf *master, uint32_t op) { uint32_t timeout = 10000000; uint8_t stat; trace_fsi_master_acf_copro_command(master, op); /* Send command */ iowrite32be(op, master->sram + CMD_STAT_REG); /* Ring doorbell if any */ if (master->cvic) iowrite32(0x2, master->cvic + CVIC_TRIG_REG); /* Wait for status to indicate completion (or error) */ do { if (timeout-- == 0) { dev_warn(master->dev, "Timeout waiting for coprocessor completion\n"); return -ETIMEDOUT; } stat = ioread8(master->sram + CMD_STAT_REG); } while(stat < STAT_COMPLETE || stat == 0xff); if (stat == STAT_COMPLETE) return 0; switch(stat) { case STAT_ERR_INVAL_CMD: return -EINVAL; case STAT_ERR_INVAL_IRQ: return -EIO; case STAT_ERR_MTOE: return -ESHUTDOWN; } return -ENXIO; } static int clock_zeros(struct fsi_master_acf *master, int count) { while (count) { int rc, lcnt = min(count, 255); rc = do_copro_command(master, CMD_IDLE_CLOCKS | (lcnt << CMD_REG_CLEN_SHIFT)); if (rc) return rc; count -= lcnt; } return 0; } static int send_request(struct fsi_master_acf *master, struct fsi_msg *cmd, unsigned int resp_bits) { uint32_t op; trace_fsi_master_acf_send_request(master, cmd, resp_bits); /* Store message into SRAM */ iowrite32be((cmd->msg >> 32), master->sram + CMD_DATA); iowrite32be((cmd->msg & 0xffffffff), master->sram + CMD_DATA + 4); op = CMD_COMMAND; op |= cmd->bits << CMD_REG_CLEN_SHIFT; if (resp_bits) op |= resp_bits << CMD_REG_RLEN_SHIFT; return do_copro_command(master, op); } static int read_copro_response(struct fsi_master_acf *master, uint8_t size, uint32_t *response, u8 *tag) { uint8_t rtag = ioread8(master->sram + STAT_RTAG) & 0xf; uint8_t rcrc = ioread8(master->sram + STAT_RCRC) & 0xf; uint32_t rdata = 0; uint32_t crc; uint8_t ack; *tag = ack = rtag & 3; /* we have a whole message now; check CRC */ crc = crc4(0, 1, 1); crc = crc4(crc, rtag, 4); if (ack == FSI_RESP_ACK && size) { rdata = ioread32be(master->sram + RSP_DATA); crc = crc4(crc, rdata, size); if (response) *response = rdata; } crc = crc4(crc, rcrc, 4); trace_fsi_master_acf_copro_response(master, rtag, rcrc, rdata, crc == 0); if (crc) { /* * Check if it's all 1's or all 0's, that probably means * the host is off */ if ((rtag == 0xf && rcrc == 0xf) || (rtag == 0 && rcrc == 0)) return -ENODEV; dev_dbg(master->dev, "Bad response CRC !\n"); return -EAGAIN; } return 0; } static int send_term(struct fsi_master_acf *master, uint8_t slave) { struct fsi_msg cmd; uint8_t tag; int rc; build_term_command(&cmd, slave); rc = send_request(master, &cmd, 0); if (rc) { dev_warn(master->dev, "Error %d sending term\n", rc); return rc; } rc = read_copro_response(master, 0, NULL, &tag); if (rc < 0) { dev_err(master->dev, "TERM failed; lost communication with slave\n"); return -EIO; } else if (tag != FSI_RESP_ACK) { dev_err(master->dev, "TERM failed; response %d\n", tag); return -EIO; } return 0; } static void dump_ucode_trace(struct fsi_master_acf *master) { char trbuf[52]; char *p; int i; dev_dbg(master->dev, "CMDSTAT:%08x RTAG=%02x RCRC=%02x RDATA=%02x #INT=%08x\n", ioread32be(master->sram + CMD_STAT_REG), ioread8(master->sram + STAT_RTAG), ioread8(master->sram + STAT_RCRC), ioread32be(master->sram + RSP_DATA), ioread32be(master->sram + INT_CNT)); for (i = 0; i < 512; i++) { uint8_t v; if ((i % 16) == 0) p = trbuf; v = ioread8(master->sram + TRACEBUF + i); p += sprintf(p, "%02x ", v); if (((i % 16) == 15) || v == TR_END) dev_dbg(master->dev, "%s\n", trbuf); if (v == TR_END) break; } } static int handle_response(struct fsi_master_acf *master, uint8_t slave, uint8_t size, void *data) { int busy_count = 0, rc; int crc_err_retries = 0; struct fsi_msg cmd; uint32_t response; uint8_t tag; retry: rc = read_copro_response(master, size, &response, &tag); /* Handle retries on CRC errors */ if (rc == -EAGAIN) { /* Too many retries ? */ if (crc_err_retries++ > FSI_CRC_ERR_RETRIES) { /* * Pass it up as a -EIO otherwise upper level will retry * the whole command which isn't what we want here. */ rc = -EIO; goto bail; } trace_fsi_master_acf_crc_rsp_error(master, crc_err_retries); if (master->trace_enabled) dump_ucode_trace(master); rc = clock_zeros(master, FSI_MASTER_EPOLL_CLOCKS); if (rc) { dev_warn(master->dev, "Error %d clocking zeros for E_POLL\n", rc); return rc; } build_epoll_command(&cmd, slave); rc = send_request(master, &cmd, size); if (rc) { dev_warn(master->dev, "Error %d sending E_POLL\n", rc); return -EIO; } goto retry; } if (rc) return rc; switch (tag) { case FSI_RESP_ACK: if (size && data) { if (size == 32) *(__be32 *)data = cpu_to_be32(response); else if (size == 16) *(__be16 *)data = cpu_to_be16(response); else *(u8 *)data = response; } break; case FSI_RESP_BUSY: /* * Its necessary to clock slave before issuing * d-poll, not indicated in the hardware protocol * spec. < 20 clocks causes slave to hang, 21 ok. */ dev_dbg(master->dev, "Busy, retrying...\n"); if (master->trace_enabled) dump_ucode_trace(master); rc = clock_zeros(master, FSI_MASTER_DPOLL_CLOCKS); if (rc) { dev_warn(master->dev, "Error %d clocking zeros for D_POLL\n", rc); break; } if (busy_count++ < FSI_MASTER_MAX_BUSY) { build_dpoll_command(&cmd, slave); rc = send_request(master, &cmd, size); if (rc) { dev_warn(master->dev, "Error %d sending D_POLL\n", rc); break; } goto retry; } dev_dbg(master->dev, "ERR slave is stuck in busy state, issuing TERM\n"); send_term(master, slave); rc = -EIO; break; case FSI_RESP_ERRA: dev_dbg(master->dev, "ERRA received\n"); if (master->trace_enabled) dump_ucode_trace(master); rc = -EIO; break; case FSI_RESP_ERRC: dev_dbg(master->dev, "ERRC received\n"); if (master->trace_enabled) dump_ucode_trace(master); rc = -EAGAIN; break; } bail: if (busy_count > 0) { trace_fsi_master_acf_poll_response_busy(master, busy_count); } return rc; } static int fsi_master_acf_xfer(struct fsi_master_acf *master, uint8_t slave, struct fsi_msg *cmd, size_t resp_len, void *resp) { int rc = -EAGAIN, retries = 0; resp_len <<= 3; while ((retries++) < FSI_CRC_ERR_RETRIES) { rc = send_request(master, cmd, resp_len); if (rc) { if (rc != -ESHUTDOWN) dev_warn(master->dev, "Error %d sending command\n", rc); break; } rc = handle_response(master, slave, resp_len, resp); if (rc != -EAGAIN) break; rc = -EIO; dev_dbg(master->dev, "ECRC retry %d\n", retries); /* Pace it a bit before retry */ msleep(1); } return rc; } static int fsi_master_acf_read(struct fsi_master *_master, int link, uint8_t id, uint32_t addr, void *val, size_t size) { struct fsi_master_acf *master = to_fsi_master_acf(_master); struct fsi_msg cmd; int rc; if (link != 0) return -ENODEV; mutex_lock(&master->lock); dev_dbg(master->dev, "read id %d addr %x size %zd\n", id, addr, size); build_ar_command(master, &cmd, id, addr, size, NULL); rc = fsi_master_acf_xfer(master, id, &cmd, size, val); last_address_update(master, id, rc == 0, addr); if (rc) dev_dbg(master->dev, "read id %d addr 0x%08x err: %d\n", id, addr, rc); mutex_unlock(&master->lock); return rc; } static int fsi_master_acf_write(struct fsi_master *_master, int link, uint8_t id, uint32_t addr, const void *val, size_t size) { struct fsi_master_acf *master = to_fsi_master_acf(_master); struct fsi_msg cmd; int rc; if (link != 0) return -ENODEV; mutex_lock(&master->lock); build_ar_command(master, &cmd, id, addr, size, val); dev_dbg(master->dev, "write id %d addr %x size %zd raw_data: %08x\n", id, addr, size, *(uint32_t *)val); rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL); last_address_update(master, id, rc == 0, addr); if (rc) dev_dbg(master->dev, "write id %d addr 0x%08x err: %d\n", id, addr, rc); mutex_unlock(&master->lock); return rc; } static int fsi_master_acf_term(struct fsi_master *_master, int link, uint8_t id) { struct fsi_master_acf *master = to_fsi_master_acf(_master); struct fsi_msg cmd; int rc; if (link != 0) return -ENODEV; mutex_lock(&master->lock); build_term_command(&cmd, id); dev_dbg(master->dev, "term id %d\n", id); rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL); last_address_update(master, id, false, 0); mutex_unlock(&master->lock); return rc; } static int fsi_master_acf_break(struct fsi_master *_master, int link) { struct fsi_master_acf *master = to_fsi_master_acf(_master); int rc; if (link != 0) return -ENODEV; mutex_lock(&master->lock); if (master->external_mode) { mutex_unlock(&master->lock); return -EBUSY; } dev_dbg(master->dev, "sending BREAK\n"); rc = do_copro_command(master, CMD_BREAK); last_address_update(master, 0, false, 0); mutex_unlock(&master->lock); /* Wait for logic reset to take effect */ udelay(200); return rc; } static void reset_cf(struct fsi_master_acf *master) { regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_RESET); usleep_range(20,20); regmap_write(master->scu, SCU_COPRO_CTRL, 0); usleep_range(20,20); } static void start_cf(struct fsi_master_acf *master) { regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_CLK_EN); } static void setup_ast2500_cf_maps(struct fsi_master_acf *master) { /* * Note about byteswap setting: the bus is wired backwards, * so setting the byteswap bit actually makes the ColdFire * work "normally" for a BE processor, ie, put the MSB in * the lowest address byte. * * We thus need to set the bit for our main memory which * contains our program code. We create two mappings for * the register, one with each setting. * * Segments 2 and 3 has a "swapped" mapping (BE) * and 6 and 7 have a non-swapped mapping (LE) which allows * us to avoid byteswapping register accesses since the * registers are all LE. */ /* Setup segment 0 to our memory region */ regmap_write(master->scu, SCU_2500_COPRO_SEG0, master->cf_mem_addr | SCU_2500_COPRO_SEG_SWAP); /* Segments 2 and 3 to sysregs with byteswap (for SRAM) */ regmap_write(master->scu, SCU_2500_COPRO_SEG2, SYSREG_BASE | SCU_2500_COPRO_SEG_SWAP); regmap_write(master->scu, SCU_2500_COPRO_SEG3, SYSREG_BASE | 0x100000 | SCU_2500_COPRO_SEG_SWAP); /* And segment 6 and 7 to sysregs no byteswap */ regmap_write(master->scu, SCU_2500_COPRO_SEG6, SYSREG_BASE); regmap_write(master->scu, SCU_2500_COPRO_SEG7, SYSREG_BASE | 0x100000); /* Memory cachable, regs and SRAM not cachable */ regmap_write(master->scu, SCU_2500_COPRO_CACHE_CTL, SCU_2500_COPRO_SEG0_CACHE_EN | SCU_2500_COPRO_CACHE_EN); } static void setup_ast2400_cf_maps(struct fsi_master_acf *master) { /* Setup segment 0 to our memory region */ regmap_write(master->scu, SCU_2400_COPRO_SEG0, master->cf_mem_addr | SCU_2400_COPRO_SEG_SWAP); /* Segments 2 to sysregs with byteswap (for SRAM) */ regmap_write(master->scu, SCU_2400_COPRO_SEG2, SYSREG_BASE | SCU_2400_COPRO_SEG_SWAP); /* And segment 6 to sysregs no byteswap */ regmap_write(master->scu, SCU_2400_COPRO_SEG6, SYSREG_BASE); /* Memory cachable, regs and SRAM not cachable */ regmap_write(master->scu, SCU_2400_COPRO_CACHE_CTL, SCU_2400_COPRO_SEG0_CACHE_EN | SCU_2400_COPRO_CACHE_EN); } static void setup_common_fw_config(struct fsi_master_acf *master, void __iomem *base) { iowrite16be(master->gpio_clk_vreg, base + HDR_CLOCK_GPIO_VADDR); iowrite16be(master->gpio_clk_dreg, base + HDR_CLOCK_GPIO_DADDR); iowrite16be(master->gpio_dat_vreg, base + HDR_DATA_GPIO_VADDR); iowrite16be(master->gpio_dat_dreg, base + HDR_DATA_GPIO_DADDR); iowrite16be(master->gpio_tra_vreg, base + HDR_TRANS_GPIO_VADDR); iowrite16be(master->gpio_tra_dreg, base + HDR_TRANS_GPIO_DADDR); iowrite8(master->gpio_clk_bit, base + HDR_CLOCK_GPIO_BIT); iowrite8(master->gpio_dat_bit, base + HDR_DATA_GPIO_BIT); iowrite8(master->gpio_tra_bit, base + HDR_TRANS_GPIO_BIT); } static void setup_ast2500_fw_config(struct fsi_master_acf *master) { void __iomem *base = master->cf_mem + HDR_OFFSET; setup_common_fw_config(master, base); iowrite32be(FW_CONTROL_USE_STOP, base + HDR_FW_CONTROL); } static void setup_ast2400_fw_config(struct fsi_master_acf *master) { void __iomem *base = master->cf_mem + HDR_OFFSET; setup_common_fw_config(master, base); iowrite32be(FW_CONTROL_CONT_CLOCK|FW_CONTROL_DUMMY_RD, base + HDR_FW_CONTROL); } static int setup_gpios_for_copro(struct fsi_master_acf *master) { int rc; /* This aren't under ColdFire control, just set them up appropriately */ gpiod_direction_output(master->gpio_mux, 1); gpiod_direction_output(master->gpio_enable, 1); /* Those are under ColdFire control, let it configure them */ rc = aspeed_gpio_copro_grab_gpio(master->gpio_clk, &master->gpio_clk_vreg, &master->gpio_clk_dreg, &master->gpio_clk_bit); if (rc) { dev_err(master->dev, "failed to assign clock gpio to coprocessor\n"); return rc; } rc = aspeed_gpio_copro_grab_gpio(master->gpio_data, &master->gpio_dat_vreg, &master->gpio_dat_dreg, &master->gpio_dat_bit); if (rc) { dev_err(master->dev, "failed to assign data gpio to coprocessor\n"); aspeed_gpio_copro_release_gpio(master->gpio_clk); return rc; } rc = aspeed_gpio_copro_grab_gpio(master->gpio_trans, &master->gpio_tra_vreg, &master->gpio_tra_dreg, &master->gpio_tra_bit); if (rc) { dev_err(master->dev, "failed to assign trans gpio to coprocessor\n"); aspeed_gpio_copro_release_gpio(master->gpio_clk); aspeed_gpio_copro_release_gpio(master->gpio_data); return rc; } return 0; } static void release_copro_gpios(struct fsi_master_acf *master) { aspeed_gpio_copro_release_gpio(master->gpio_clk); aspeed_gpio_copro_release_gpio(master->gpio_data); aspeed_gpio_copro_release_gpio(master->gpio_trans); } static int load_copro_firmware(struct fsi_master_acf *master) { const struct firmware *fw; uint16_t sig = 0, wanted_sig; const u8 *data; size_t size = 0; int rc; /* Get the binary */ rc = request_firmware(&fw, FW_FILE_NAME, master->dev); if (rc) { dev_err( master->dev, "Error %d to load firmware '%s' !\n", rc, FW_FILE_NAME); return rc; } /* Which image do we want ? (shared vs. split clock/data GPIOs) */ if (master->gpio_clk_vreg == master->gpio_dat_vreg) wanted_sig = SYS_SIG_SHARED; else wanted_sig = SYS_SIG_SPLIT; dev_dbg(master->dev, "Looking for image sig %04x\n", wanted_sig); /* Try to find it */ for (data = fw->data; data < (fw->data + fw->size);) { sig = be16_to_cpup((__be16 *)(data + HDR_OFFSET + HDR_SYS_SIG)); size = be32_to_cpup((__be32 *)(data + HDR_OFFSET + HDR_FW_SIZE)); if (sig == wanted_sig) break; data += size; } if (sig != wanted_sig) { dev_err(master->dev, "Failed to locate image sig %04x in FW blob\n", wanted_sig); rc = -ENODEV; goto release_fw; } if (size > master->cf_mem_size) { dev_err(master->dev, "FW size (%zd) bigger than memory reserve (%zd)\n", fw->size, master->cf_mem_size); rc = -ENOMEM; } else { memcpy_toio(master->cf_mem, data, size); } release_fw: release_firmware(fw); return rc; } static int check_firmware_image(struct fsi_master_acf *master) { uint32_t fw_vers, fw_api, fw_options; fw_vers = ioread16be(master->cf_mem + HDR_OFFSET + HDR_FW_VERS); fw_api = ioread16be(master->cf_mem + HDR_OFFSET + HDR_API_VERS); fw_options = ioread32be(master->cf_mem + HDR_OFFSET + HDR_FW_OPTIONS); master->trace_enabled = !!(fw_options & FW_OPTION_TRACE_EN); /* Check version and signature */ dev_info(master->dev, "ColdFire initialized, firmware v%d API v%d.%d (trace %s)\n", fw_vers, fw_api >> 8, fw_api & 0xff, master->trace_enabled ? "enabled" : "disabled"); if ((fw_api >> 8) != API_VERSION_MAJ) { dev_err(master->dev, "Unsupported coprocessor API version !\n"); return -ENODEV; } return 0; } static int copro_enable_sw_irq(struct fsi_master_acf *master) { int timeout; uint32_t val; /* * Enable coprocessor interrupt input. I've had problems getting the * value to stick, so try in a loop */ for (timeout = 0; timeout < 10; timeout++) { iowrite32(0x2, master->cvic + CVIC_EN_REG); val = ioread32(master->cvic + CVIC_EN_REG); if (val & 2) break; msleep(1); } if (!(val & 2)) { dev_err(master->dev, "Failed to enable coprocessor interrupt !\n"); return -ENODEV; } return 0; } static int fsi_master_acf_setup(struct fsi_master_acf *master) { int timeout, rc; uint32_t val; /* Make sure the ColdFire is stopped */ reset_cf(master); /* * Clear SRAM. This needs to happen before we setup the GPIOs * as we might start trying to arbitrate as soon as that happens. */ memset_io(master->sram, 0, SRAM_SIZE); /* Configure GPIOs */ rc = setup_gpios_for_copro(master); if (rc) return rc; /* Load the firmware into the reserved memory */ rc = load_copro_firmware(master); if (rc) return rc; /* Read signature and check versions */ rc = check_firmware_image(master); if (rc) return rc; /* Setup coldfire memory map */ if (master->is_ast2500) { setup_ast2500_cf_maps(master); setup_ast2500_fw_config(master); } else { setup_ast2400_cf_maps(master); setup_ast2400_fw_config(master); } /* Start the ColdFire */ start_cf(master); /* Wait for status register to indicate command completion * which signals the initialization is complete */ for (timeout = 0; timeout < 10; timeout++) { val = ioread8(master->sram + CF_STARTED); if (val) break; msleep(1); } if (!val) { dev_err(master->dev, "Coprocessor startup timeout !\n"); rc = -ENODEV; goto err; } /* Configure echo & send delay */ iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG); iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG); /* Enable SW interrupt to copro if any */ if (master->cvic) { rc = copro_enable_sw_irq(master); if (rc) goto err; } return 0; err: /* An error occurred, don't leave the coprocessor running */ reset_cf(master); /* Release the GPIOs */ release_copro_gpios(master); return rc; } static void fsi_master_acf_terminate(struct fsi_master_acf *master) { unsigned long flags; /* * A GPIO arbitration requestion could come in while this is * happening. To avoid problems, we disable interrupts so it * cannot preempt us on this CPU */ local_irq_save(flags); /* Stop the coprocessor */ reset_cf(master); /* We mark the copro not-started */ iowrite32(0, master->sram + CF_STARTED); /* We mark the ARB register as having given up arbitration to * deal with a potential race with the arbitration request */ iowrite8(ARB_ARM_ACK, master->sram + ARB_REG); local_irq_restore(flags); /* Return the GPIOs to the ARM */ release_copro_gpios(master); } static void fsi_master_acf_setup_external(struct fsi_master_acf *master) { /* Setup GPIOs for external FSI master (FSP box) */ gpiod_direction_output(master->gpio_mux, 0); gpiod_direction_output(master->gpio_trans, 0); gpiod_direction_output(master->gpio_enable, 1); gpiod_direction_input(master->gpio_clk); gpiod_direction_input(master->gpio_data); } static int fsi_master_acf_link_enable(struct fsi_master *_master, int link, bool enable) { struct fsi_master_acf *master = to_fsi_master_acf(_master); int rc = -EBUSY; if (link != 0) return -ENODEV; mutex_lock(&master->lock); if (!master->external_mode) { gpiod_set_value(master->gpio_enable, enable ? 1 : 0); rc = 0; } mutex_unlock(&master->lock); return rc; } static int fsi_master_acf_link_config(struct fsi_master *_master, int link, u8 t_send_delay, u8 t_echo_delay) { struct fsi_master_acf *master = to_fsi_master_acf(_master); if (link != 0) return -ENODEV; mutex_lock(&master->lock); master->t_send_delay = t_send_delay; master->t_echo_delay = t_echo_delay; dev_dbg(master->dev, "Changing delays: send=%d echo=%d\n", t_send_delay, t_echo_delay); iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG); iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG); mutex_unlock(&master->lock); return 0; } static ssize_t external_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fsi_master_acf *master = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE - 1, "%u\n", master->external_mode ? 1 : 0); } static ssize_t external_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fsi_master_acf *master = dev_get_drvdata(dev); unsigned long val; bool external_mode; int err; err = kstrtoul(buf, 0, &val); if (err) return err; external_mode = !!val; mutex_lock(&master->lock); if (external_mode == master->external_mode) { mutex_unlock(&master->lock); return count; } master->external_mode = external_mode; if (master->external_mode) { fsi_master_acf_terminate(master); fsi_master_acf_setup_external(master); } else fsi_master_acf_setup(master); mutex_unlock(&master->lock); fsi_master_rescan(&master->master); return count; } static DEVICE_ATTR(external_mode, 0664, external_mode_show, external_mode_store); static int fsi_master_acf_gpio_request(void *data) { struct fsi_master_acf *master = data; int timeout; u8 val; /* Note: This doesn't require holding out mutex */ /* Write request */ iowrite8(ARB_ARM_REQ, master->sram + ARB_REG); /* * There is a race (which does happen at boot time) when we get an * arbitration request as we are either about to or just starting * the coprocessor. * * To handle it, we first check if we are running. If not yet we * check whether the copro is started in the SCU. * * If it's not started, we can basically just assume we have arbitration * and return. Otherwise, we wait normally expecting for the arbitration * to eventually complete. */ if (ioread32(master->sram + CF_STARTED) == 0) { unsigned int reg = 0; regmap_read(master->scu, SCU_COPRO_CTRL, ®); if (!(reg & SCU_COPRO_CLK_EN)) return 0; } /* Ring doorbell if any */ if (master->cvic) iowrite32(0x2, master->cvic + CVIC_TRIG_REG); for (timeout = 0; timeout < 10000; timeout++) { val = ioread8(master->sram + ARB_REG); if (val != ARB_ARM_REQ) break; udelay(1); } /* If it failed, override anyway */ if (val != ARB_ARM_ACK) dev_warn(master->dev, "GPIO request arbitration timeout\n"); return 0; } static int fsi_master_acf_gpio_release(void *data) { struct fsi_master_acf *master = data; /* Write release */ iowrite8(0, master->sram + ARB_REG); /* Ring doorbell if any */ if (master->cvic) iowrite32(0x2, master->cvic + CVIC_TRIG_REG); return 0; } static void fsi_master_acf_release(struct device *dev) { struct fsi_master_acf *master = to_fsi_master_acf(to_fsi_master(dev)); /* Cleanup, stop coprocessor */ mutex_lock(&master->lock); fsi_master_acf_terminate(master); aspeed_gpio_copro_set_ops(NULL, NULL); mutex_unlock(&master->lock); /* Free resources */ gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE); of_node_put(dev_of_node(master->dev)); kfree(master); } static const struct aspeed_gpio_copro_ops fsi_master_acf_gpio_ops = { .request_access = fsi_master_acf_gpio_request, .release_access = fsi_master_acf_gpio_release, }; static int fsi_master_acf_probe(struct platform_device *pdev) { struct device_node *np, *mnode = dev_of_node(&pdev->dev); struct genpool_data_fixed gpdf; struct fsi_master_acf *master; struct gpio_desc *gpio; struct resource res; uint32_t cf_mem_align; int rc; master = kzalloc(sizeof(*master), GFP_KERNEL); if (!master) return -ENOMEM; master->dev = &pdev->dev; master->master.dev.parent = master->dev; master->last_addr = LAST_ADDR_INVALID; /* AST2400 vs. AST2500 */ master->is_ast2500 = of_device_is_compatible(mnode, "aspeed,ast2500-cf-fsi-master"); /* Grab the SCU, we'll need to access it to configure the coprocessor */ if (master->is_ast2500) master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2500-scu"); else master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2400-scu"); if (IS_ERR(master->scu)) { dev_err(&pdev->dev, "failed to find SCU regmap\n"); rc = PTR_ERR(master->scu); goto err_free; } /* Grab all the GPIOs we need */ gpio = devm_gpiod_get(&pdev->dev, "clock", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get clock gpio\n"); rc = PTR_ERR(gpio); goto err_free; } master->gpio_clk = gpio; gpio = devm_gpiod_get(&pdev->dev, "data", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get data gpio\n"); rc = PTR_ERR(gpio); goto err_free; } master->gpio_data = gpio; /* Optional GPIOs */ gpio = devm_gpiod_get_optional(&pdev->dev, "trans", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get trans gpio\n"); rc = PTR_ERR(gpio); goto err_free; } master->gpio_trans = gpio; gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get enable gpio\n"); rc = PTR_ERR(gpio); goto err_free; } master->gpio_enable = gpio; gpio = devm_gpiod_get_optional(&pdev->dev, "mux", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get mux gpio\n"); rc = PTR_ERR(gpio); goto err_free; } master->gpio_mux = gpio; /* Grab the reserved memory region (use DMA API instead ?) */ np = of_parse_phandle(mnode, "memory-region", 0); if (!np) { dev_err(&pdev->dev, "Didn't find reserved memory\n"); rc = -EINVAL; goto err_free; } rc = of_address_to_resource(np, 0, &res); of_node_put(np); if (rc) { dev_err(&pdev->dev, "Couldn't address to resource for reserved memory\n"); rc = -ENOMEM; goto err_free; } master->cf_mem_size = resource_size(&res); master->cf_mem_addr = (uint32_t)res.start; cf_mem_align = master->is_ast2500 ? 0x00100000 : 0x00200000; if (master->cf_mem_addr & (cf_mem_align - 1)) { dev_err(&pdev->dev, "Reserved memory has insufficient alignment\n"); rc = -ENOMEM; goto err_free; } master->cf_mem = devm_ioremap_resource(&pdev->dev, &res); if (IS_ERR(master->cf_mem)) { rc = PTR_ERR(master->cf_mem); goto err_free; } dev_dbg(&pdev->dev, "DRAM allocation @%x\n", master->cf_mem_addr); /* AST2500 has a SW interrupt to the coprocessor */ if (master->is_ast2500) { /* Grab the CVIC (ColdFire interrupts controller) */ np = of_parse_phandle(mnode, "aspeed,cvic", 0); if (!np) { dev_err(&pdev->dev, "Didn't find CVIC\n"); rc = -EINVAL; goto err_free; } master->cvic = devm_of_iomap(&pdev->dev, np, 0, NULL); if (IS_ERR(master->cvic)) { of_node_put(np); rc = PTR_ERR(master->cvic); dev_err(&pdev->dev, "Error %d mapping CVIC\n", rc); goto err_free; } rc = of_property_read_u32(np, "copro-sw-interrupts", &master->cvic_sw_irq); of_node_put(np); if (rc) { dev_err(&pdev->dev, "Can't find coprocessor SW interrupt\n"); goto err_free; } } /* Grab the SRAM */ master->sram_pool = of_gen_pool_get(dev_of_node(&pdev->dev), "aspeed,sram", 0); if (!master->sram_pool) { rc = -ENODEV; dev_err(&pdev->dev, "Can't find sram pool\n"); goto err_free; } /* Current microcode only deals with fixed location in SRAM */ gpdf.offset = 0; master->sram = (void __iomem *)gen_pool_alloc_algo(master->sram_pool, SRAM_SIZE, gen_pool_fixed_alloc, &gpdf); if (!master->sram) { rc = -ENOMEM; dev_err(&pdev->dev, "Failed to allocate sram from pool\n"); goto err_free; } dev_dbg(&pdev->dev, "SRAM allocation @%lx\n", (unsigned long)gen_pool_virt_to_phys(master->sram_pool, (unsigned long)master->sram)); /* * Hookup with the GPIO driver for arbitration of GPIO banks * ownership. */ aspeed_gpio_copro_set_ops(&fsi_master_acf_gpio_ops, master); /* Default FSI command delays */ master->t_send_delay = FSI_SEND_DELAY_CLOCKS; master->t_echo_delay = FSI_ECHO_DELAY_CLOCKS; master->master.n_links = 1; if (master->is_ast2500) master->master.flags = FSI_MASTER_FLAG_SWCLOCK; master->master.read = fsi_master_acf_read; master->master.write = fsi_master_acf_write; master->master.term = fsi_master_acf_term; master->master.send_break = fsi_master_acf_break; master->master.link_enable = fsi_master_acf_link_enable; master->master.link_config = fsi_master_acf_link_config; master->master.dev.of_node = of_node_get(dev_of_node(master->dev)); master->master.dev.release = fsi_master_acf_release; platform_set_drvdata(pdev, master); mutex_init(&master->lock); mutex_lock(&master->lock); rc = fsi_master_acf_setup(master); mutex_unlock(&master->lock); if (rc) goto release_of_dev; rc = device_create_file(&pdev->dev, &dev_attr_external_mode); if (rc) goto stop_copro; rc = fsi_master_register(&master->master); if (!rc) return 0; device_remove_file(master->dev, &dev_attr_external_mode); put_device(&master->master.dev); return rc; stop_copro: fsi_master_acf_terminate(master); release_of_dev: aspeed_gpio_copro_set_ops(NULL, NULL); gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE); of_node_put(dev_of_node(master->dev)); err_free: kfree(master); return rc; } static int fsi_master_acf_remove(struct platform_device *pdev) { struct fsi_master_acf *master = platform_get_drvdata(pdev); device_remove_file(master->dev, &dev_attr_external_mode); fsi_master_unregister(&master->master); return 0; } static const struct of_device_id fsi_master_acf_match[] = { { .compatible = "aspeed,ast2400-cf-fsi-master" }, { .compatible = "aspeed,ast2500-cf-fsi-master" }, { }, }; MODULE_DEVICE_TABLE(of, fsi_master_acf_match); static struct platform_driver fsi_master_acf = { .driver = { .name = "fsi-master-acf", .of_match_table = fsi_master_acf_match, }, .probe = fsi_master_acf_probe, .remove = fsi_master_acf_remove, }; module_platform_driver(fsi_master_acf); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(FW_FILE_NAME);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1