Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
John Crispin | 1125 | 81.64% | 3 | 14.29% |
Aleksander Jan Bajkowski | 130 | 9.43% | 1 | 4.76% |
Martin Blumenstingl | 66 | 4.79% | 5 | 23.81% |
Mathias Kresin | 26 | 1.89% | 1 | 4.76% |
Linus Walleij | 9 | 0.65% | 4 | 19.05% |
Thierry Reding | 7 | 0.51% | 1 | 4.76% |
Laxman Dewangan | 6 | 0.44% | 1 | 4.76% |
Stefan Agner | 3 | 0.22% | 1 | 4.76% |
Thomas Gleixner | 2 | 0.15% | 1 | 4.76% |
Rob Herring | 2 | 0.15% | 2 | 9.52% |
Enrico Weigelt | 2 | 0.15% | 1 | 4.76% |
Total | 1378 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2012 John Crispin <john@phrozen.org> */ #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/module.h> #include <linux/types.h> #include <linux/of.h> #include <linux/mutex.h> #include <linux/gpio/driver.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/err.h> /* * The Serial To Parallel (STP) is found on MIPS based Lantiq socs. It is a * peripheral controller used to drive external shift register cascades. At most * 3 groups of 8 bits can be driven. The hardware is able to allow the DSL modem * to drive the 2 LSBs of the cascade automatically. */ /* control register 0 */ #define XWAY_STP_CON0 0x00 /* control register 1 */ #define XWAY_STP_CON1 0x04 /* data register 0 */ #define XWAY_STP_CPU0 0x08 /* data register 1 */ #define XWAY_STP_CPU1 0x0C /* access register */ #define XWAY_STP_AR 0x10 /* software or hardware update select bit */ #define XWAY_STP_CON_SWU BIT(31) /* automatic update rates */ #define XWAY_STP_2HZ 0 #define XWAY_STP_4HZ BIT(23) #define XWAY_STP_8HZ BIT(24) #define XWAY_STP_10HZ (BIT(24) | BIT(23)) #define XWAY_STP_SPEED_MASK (BIT(23) | BIT(24) | BIT(25) | BIT(26) | BIT(27)) #define XWAY_STP_FPIS_VALUE BIT(21) #define XWAY_STP_FPIS_MASK (BIT(20) | BIT(21)) /* clock source for automatic update */ #define XWAY_STP_UPD_FPI BIT(31) #define XWAY_STP_UPD_MASK (BIT(31) | BIT(30)) /* let the adsl core drive the 2 LSBs */ #define XWAY_STP_ADSL_SHIFT 24 #define XWAY_STP_ADSL_MASK 0x3 /* 2 groups of 3 bits can be driven by the phys */ #define XWAY_STP_PHY_MASK 0x7 #define XWAY_STP_PHY1_SHIFT 27 #define XWAY_STP_PHY2_SHIFT 3 #define XWAY_STP_PHY3_SHIFT 6 #define XWAY_STP_PHY4_SHIFT 15 /* STP has 3 groups of 8 bits */ #define XWAY_STP_GROUP0 BIT(0) #define XWAY_STP_GROUP1 BIT(1) #define XWAY_STP_GROUP2 BIT(2) #define XWAY_STP_GROUP_MASK (0x7) /* Edge configuration bits */ #define XWAY_STP_FALLING BIT(26) #define XWAY_STP_EDGE_MASK BIT(26) #define xway_stp_r32(m, reg) __raw_readl(m + reg) #define xway_stp_w32(m, val, reg) __raw_writel(val, m + reg) #define xway_stp_w32_mask(m, clear, set, reg) \ xway_stp_w32(m, (xway_stp_r32(m, reg) & ~(clear)) | (set), reg) struct xway_stp { struct gpio_chip gc; void __iomem *virt; u32 edge; /* rising or falling edge triggered shift register */ u32 shadow; /* shadow the shift registers state */ u8 groups; /* we can drive 1-3 groups of 8bit each */ u8 dsl; /* the 2 LSBs can be driven by the dsl core */ u8 phy1; /* 3 bits can be driven by phy1 */ u8 phy2; /* 3 bits can be driven by phy2 */ u8 phy3; /* 3 bits can be driven by phy3 */ u8 phy4; /* 3 bits can be driven by phy4 */ u8 reserved; /* mask out the hw driven bits in gpio_request */ }; /** * xway_stp_get() - gpio_chip->get - get gpios. * @gc: Pointer to gpio_chip device structure. * @gpio: GPIO signal number. * * Gets the shadow value. */ static int xway_stp_get(struct gpio_chip *gc, unsigned int gpio) { struct xway_stp *chip = gpiochip_get_data(gc); return (xway_stp_r32(chip->virt, XWAY_STP_CPU0) & BIT(gpio)); } /** * xway_stp_set() - gpio_chip->set - set gpios. * @gc: Pointer to gpio_chip device structure. * @gpio: GPIO signal number. * @val: Value to be written to specified signal. * * Set the shadow value and call ltq_ebu_apply. */ static void xway_stp_set(struct gpio_chip *gc, unsigned gpio, int val) { struct xway_stp *chip = gpiochip_get_data(gc); if (val) chip->shadow |= BIT(gpio); else chip->shadow &= ~BIT(gpio); xway_stp_w32(chip->virt, chip->shadow, XWAY_STP_CPU0); if (!chip->reserved) xway_stp_w32_mask(chip->virt, 0, XWAY_STP_CON_SWU, XWAY_STP_CON0); } /** * xway_stp_dir_out() - gpio_chip->dir_out - set gpio direction. * @gc: Pointer to gpio_chip device structure. * @gpio: GPIO signal number. * @val: Value to be written to specified signal. * * Same as xway_stp_set, always returns 0. */ static int xway_stp_dir_out(struct gpio_chip *gc, unsigned gpio, int val) { xway_stp_set(gc, gpio, val); return 0; } /** * xway_stp_request() - gpio_chip->request * @gc: Pointer to gpio_chip device structure. * @gpio: GPIO signal number. * * We mask out the HW driven pins */ static int xway_stp_request(struct gpio_chip *gc, unsigned gpio) { struct xway_stp *chip = gpiochip_get_data(gc); if ((gpio < 8) && (chip->reserved & BIT(gpio))) { dev_err(gc->parent, "GPIO %d is driven by hardware\n", gpio); return -ENODEV; } return 0; } /** * xway_stp_hw_init() - Configure the STP unit and enable the clock gate * @chip: Pointer to the xway_stp chip structure */ static void xway_stp_hw_init(struct xway_stp *chip) { /* sane defaults */ xway_stp_w32(chip->virt, 0, XWAY_STP_AR); xway_stp_w32(chip->virt, 0, XWAY_STP_CPU0); xway_stp_w32(chip->virt, 0, XWAY_STP_CPU1); xway_stp_w32(chip->virt, XWAY_STP_CON_SWU, XWAY_STP_CON0); xway_stp_w32(chip->virt, 0, XWAY_STP_CON1); /* apply edge trigger settings for the shift register */ xway_stp_w32_mask(chip->virt, XWAY_STP_EDGE_MASK, chip->edge, XWAY_STP_CON0); /* apply led group settings */ xway_stp_w32_mask(chip->virt, XWAY_STP_GROUP_MASK, chip->groups, XWAY_STP_CON1); /* tell the hardware which pins are controlled by the dsl modem */ xway_stp_w32_mask(chip->virt, XWAY_STP_ADSL_MASK << XWAY_STP_ADSL_SHIFT, chip->dsl << XWAY_STP_ADSL_SHIFT, XWAY_STP_CON0); /* tell the hardware which pins are controlled by the phys */ xway_stp_w32_mask(chip->virt, XWAY_STP_PHY_MASK << XWAY_STP_PHY1_SHIFT, chip->phy1 << XWAY_STP_PHY1_SHIFT, XWAY_STP_CON0); xway_stp_w32_mask(chip->virt, XWAY_STP_PHY_MASK << XWAY_STP_PHY2_SHIFT, chip->phy2 << XWAY_STP_PHY2_SHIFT, XWAY_STP_CON1); if (of_machine_is_compatible("lantiq,grx390") || of_machine_is_compatible("lantiq,ar10")) { xway_stp_w32_mask(chip->virt, XWAY_STP_PHY_MASK << XWAY_STP_PHY3_SHIFT, chip->phy3 << XWAY_STP_PHY3_SHIFT, XWAY_STP_CON1); } if (of_machine_is_compatible("lantiq,grx390")) { xway_stp_w32_mask(chip->virt, XWAY_STP_PHY_MASK << XWAY_STP_PHY4_SHIFT, chip->phy4 << XWAY_STP_PHY4_SHIFT, XWAY_STP_CON1); } /* mask out the hw driven bits in gpio_request */ chip->reserved = (chip->phy4 << 11) | (chip->phy3 << 8) | (chip->phy2 << 5) | (chip->phy1 << 2) | chip->dsl; /* * if we have pins that are driven by hw, we need to tell the stp what * clock to use as a timer. */ if (chip->reserved) { xway_stp_w32_mask(chip->virt, XWAY_STP_UPD_MASK, XWAY_STP_UPD_FPI, XWAY_STP_CON1); xway_stp_w32_mask(chip->virt, XWAY_STP_SPEED_MASK, XWAY_STP_10HZ, XWAY_STP_CON1); xway_stp_w32_mask(chip->virt, XWAY_STP_FPIS_MASK, XWAY_STP_FPIS_VALUE, XWAY_STP_CON1); } } static int xway_stp_probe(struct platform_device *pdev) { u32 shadow, groups, dsl, phy; struct xway_stp *chip; struct clk *clk; int ret = 0; chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->virt = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(chip->virt)) return PTR_ERR(chip->virt); chip->gc.parent = &pdev->dev; chip->gc.label = "stp-xway"; chip->gc.direction_output = xway_stp_dir_out; chip->gc.get = xway_stp_get; chip->gc.set = xway_stp_set; chip->gc.request = xway_stp_request; chip->gc.base = -1; chip->gc.owner = THIS_MODULE; /* store the shadow value if one was passed by the devicetree */ if (!of_property_read_u32(pdev->dev.of_node, "lantiq,shadow", &shadow)) chip->shadow = shadow; /* find out which gpio groups should be enabled */ if (!of_property_read_u32(pdev->dev.of_node, "lantiq,groups", &groups)) chip->groups = groups & XWAY_STP_GROUP_MASK; else chip->groups = XWAY_STP_GROUP0; chip->gc.ngpio = fls(chip->groups) * 8; /* find out which gpios are controlled by the dsl core */ if (!of_property_read_u32(pdev->dev.of_node, "lantiq,dsl", &dsl)) chip->dsl = dsl & XWAY_STP_ADSL_MASK; /* find out which gpios are controlled by the phys */ if (of_machine_is_compatible("lantiq,ar9") || of_machine_is_compatible("lantiq,gr9") || of_machine_is_compatible("lantiq,vr9") || of_machine_is_compatible("lantiq,ar10") || of_machine_is_compatible("lantiq,grx390")) { if (!of_property_read_u32(pdev->dev.of_node, "lantiq,phy1", &phy)) chip->phy1 = phy & XWAY_STP_PHY_MASK; if (!of_property_read_u32(pdev->dev.of_node, "lantiq,phy2", &phy)) chip->phy2 = phy & XWAY_STP_PHY_MASK; } if (of_machine_is_compatible("lantiq,ar10") || of_machine_is_compatible("lantiq,grx390")) { if (!of_property_read_u32(pdev->dev.of_node, "lantiq,phy3", &phy)) chip->phy3 = phy & XWAY_STP_PHY_MASK; } if (of_machine_is_compatible("lantiq,grx390")) { if (!of_property_read_u32(pdev->dev.of_node, "lantiq,phy4", &phy)) chip->phy4 = phy & XWAY_STP_PHY_MASK; } /* check which edge trigger we should use, default to a falling edge */ if (!of_property_read_bool(pdev->dev.of_node, "lantiq,rising")) chip->edge = XWAY_STP_FALLING; clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) { dev_err(&pdev->dev, "Failed to get clock\n"); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) return ret; xway_stp_hw_init(chip); ret = devm_gpiochip_add_data(&pdev->dev, &chip->gc, chip); if (ret) { clk_disable_unprepare(clk); return ret; } dev_info(&pdev->dev, "Init done\n"); return 0; } static const struct of_device_id xway_stp_match[] = { { .compatible = "lantiq,gpio-stp-xway" }, {}, }; MODULE_DEVICE_TABLE(of, xway_stp_match); static struct platform_driver xway_stp_driver = { .probe = xway_stp_probe, .driver = { .name = "gpio-stp-xway", .of_match_table = xway_stp_match, }, }; static int __init xway_stp_init(void) { return platform_driver_register(&xway_stp_driver); } subsys_initcall(xway_stp_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1