Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hawking Zhang | 2603 | 59.73% | 1 | 2.17% |
Jonathan Kim | 751 | 17.23% | 7 | 15.22% |
Huang Rui | 237 | 5.44% | 1 | 2.17% |
Mukul Joshi | 177 | 4.06% | 3 | 6.52% |
Lancelot SIX | 127 | 2.91% | 1 | 2.17% |
Yong Zhao | 109 | 2.50% | 7 | 15.22% |
Ken Wang | 96 | 2.20% | 1 | 2.17% |
Graham Sider | 79 | 1.81% | 3 | 6.52% |
Felix Kuhling | 45 | 1.03% | 4 | 8.70% |
Andres Rodriguez | 30 | 0.69% | 2 | 4.35% |
pengzhou | 23 | 0.53% | 1 | 2.17% |
Amber Lin | 16 | 0.37% | 1 | 2.17% |
Oded Gabbay | 14 | 0.32% | 3 | 6.52% |
Le Ma | 9 | 0.21% | 1 | 2.17% |
Philip Cox | 8 | 0.18% | 1 | 2.17% |
Jack Zhang | 8 | 0.18% | 2 | 4.35% |
Oak Zeng | 7 | 0.16% | 1 | 2.17% |
Eric Huang | 6 | 0.14% | 1 | 2.17% |
Alex Deucher | 5 | 0.11% | 2 | 4.35% |
Harish Kasiviswanathan | 4 | 0.09% | 1 | 2.17% |
Dennis Li | 3 | 0.07% | 1 | 2.17% |
Fenghua Yu | 1 | 0.02% | 1 | 2.17% |
Total | 4358 | 46 |
/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "amdgpu.h" #include "amdgpu_amdkfd.h" #include "amdgpu_amdkfd_gfx_v10.h" #include "gc/gc_10_1_0_offset.h" #include "gc/gc_10_1_0_sh_mask.h" #include "athub/athub_2_0_0_offset.h" #include "athub/athub_2_0_0_sh_mask.h" #include "oss/osssys_5_0_0_offset.h" #include "oss/osssys_5_0_0_sh_mask.h" #include "soc15_common.h" #include "v10_structs.h" #include "nv.h" #include "nvd.h" #include <uapi/linux/kfd_ioctl.h> enum hqd_dequeue_request_type { NO_ACTION = 0, DRAIN_PIPE, RESET_WAVES, SAVE_WAVES }; static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe, uint32_t queue, uint32_t vmid) { mutex_lock(&adev->srbm_mutex); nv_grbm_select(adev, mec, pipe, queue, vmid); } static void unlock_srbm(struct amdgpu_device *adev) { nv_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t queue_id) { uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); lock_srbm(adev, mec, pipe, queue_id, 0); } static uint64_t get_queue_mask(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t queue_id) { unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe + queue_id; return 1ull << bit; } static void release_queue(struct amdgpu_device *adev) { unlock_srbm(adev); } static void kgd_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid, uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases, uint32_t inst) { lock_srbm(adev, 0, 0, 0, vmid); WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, sh_mem_config); WREG32_SOC15(GC, 0, mmSH_MEM_BASES, sh_mem_bases); /* APE1 no longer exists on GFX9 */ unlock_srbm(adev); } static int kgd_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid, unsigned int vmid, uint32_t inst) { /* * We have to assume that there is no outstanding mapping. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because * a mapping is in progress or because a mapping finished * and the SW cleared it. * So the protocol is to always wait & clear. */ uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | ATC_VMID0_PASID_MAPPING__VALID_MASK; pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping); pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid); WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid, pasid_mapping); #if 0 /* TODO: uncomment this code when the hardware support is ready. */ while (!(RREG32(SOC15_REG_OFFSET( ATHUB, 0, mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) & (1U << vmid))) cpu_relax(); pr_debug("ATHUB mapping update finished\n"); WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID_PASID_MAPPING_UPDATE_STATUS), 1U << vmid); #endif /* Mapping vmid to pasid also for IH block */ pr_debug("update mapping for IH block and mmhub"); WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid, pasid_mapping); return 0; } /* TODO - RING0 form of field is obsolete, seems to date back to SI * but still works */ static int kgd_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t inst) { uint32_t mec; uint32_t pipe; mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); lock_srbm(adev, mec, pipe, 0, 0); WREG32_SOC15(GC, 0, mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); unlock_srbm(adev); return 0; } static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev, unsigned int engine_id, unsigned int queue_id) { uint32_t sdma_engine_reg_base[2] = { SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL, /* On gfx10, mmSDMA1_xxx registers are defined NOT based * on SDMA1 base address (dw 0x1860) but based on SDMA0 * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc * below */ SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL }; uint32_t retval = sdma_engine_reg_base[engine_id] + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL); pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id, queue_id, retval); return retval; } #if 0 static uint32_t get_watch_base_addr(struct amdgpu_device *adev) { uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) - mmTCP_WATCH0_ADDR_H; pr_debug("kfd: reg watch base address: 0x%x\n", retval); return retval; } #endif static inline struct v10_compute_mqd *get_mqd(void *mqd) { return (struct v10_compute_mqd *)mqd; } static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd) { return (struct v10_sdma_mqd *)mqd; } static int kgd_hqd_load(struct amdgpu_device *adev, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t __user *wptr, uint32_t wptr_shift, uint32_t wptr_mask, struct mm_struct *mm, uint32_t inst) { struct v10_compute_mqd *m; uint32_t *mqd_hqd; uint32_t reg, hqd_base, data; m = get_mqd(mqd); pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id); acquire_queue(adev, pipe_id, queue_id); /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */ mqd_hqd = &m->cp_mqd_base_addr_lo; hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR); for (reg = hqd_base; reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++) WREG32_SOC15_IP(GC, reg, mqd_hqd[reg - hqd_base]); /* Activate doorbell logic before triggering WPTR poll. */ data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, data); if (wptr) { /* Don't read wptr with get_user because the user * context may not be accessible (if this function * runs in a work queue). Instead trigger a one-shot * polling read from memory in the CP. This assumes * that wptr is GPU-accessible in the queue's VMID via * ATC or SVM. WPTR==RPTR before starting the poll so * the CP starts fetching new commands from the right * place. * * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit * tricky. Assume that the queue didn't overflow. The * number of valid bits in the 32-bit RPTR depends on * the queue size. The remaining bits are taken from * the saved 64-bit WPTR. If the WPTR wrapped, add the * queue size. */ uint32_t queue_size = 2 << REG_GET_FIELD(m->cp_hqd_pq_control, CP_HQD_PQ_CONTROL, QUEUE_SIZE); uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1); if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr) guessed_wptr += queue_size; guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1); guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32; WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO, lower_32_bits(guessed_wptr)); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI, upper_32_bits(guessed_wptr)); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR, lower_32_bits((uint64_t)wptr)); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI, upper_32_bits((uint64_t)wptr)); pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__, (uint32_t)get_queue_mask(adev, pipe_id, queue_id)); WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1, (uint32_t)get_queue_mask(adev, pipe_id, queue_id)); } /* Start the EOP fetcher */ WREG32_SOC15(GC, 0, mmCP_HQD_EOP_RPTR, REG_SET_FIELD(m->cp_hqd_eop_rptr, CP_HQD_EOP_RPTR, INIT_FETCHER, 1)); data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); WREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE, data); release_queue(adev); return 0; } static int kgd_hiq_mqd_load(struct amdgpu_device *adev, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t doorbell_off, uint32_t inst) { struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[0].ring; struct v10_compute_mqd *m; uint32_t mec, pipe; int r; m = get_mqd(mqd); acquire_queue(adev, pipe_id, queue_id); mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n", mec, pipe, queue_id); spin_lock(&adev->gfx.kiq[0].ring_lock); r = amdgpu_ring_alloc(kiq_ring, 7); if (r) { pr_err("Failed to alloc KIQ (%d).\n", r); goto out_unlock; } amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */ PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */ PACKET3_MAP_QUEUES_QUEUE(queue_id) | PACKET3_MAP_QUEUES_PIPE(pipe) | PACKET3_MAP_QUEUES_ME((mec - 1)) | PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */ PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */ PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */ PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */ amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off)); amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo); amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi); amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo); amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi); amdgpu_ring_commit(kiq_ring); out_unlock: spin_unlock(&adev->gfx.kiq[0].ring_lock); release_queue(adev); return r; } static int kgd_hqd_dump(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst) { uint32_t i = 0, reg; #define HQD_N_REGS 56 #define DUMP_REG(addr) do { \ if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ break; \ (*dump)[i][0] = (addr) << 2; \ (*dump)[i++][1] = RREG32_SOC15_IP(GC, addr); \ } while (0) *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL); if (*dump == NULL) return -ENOMEM; acquire_queue(adev, pipe_id, queue_id); for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR); reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++) DUMP_REG(reg); release_queue(adev); WARN_ON_ONCE(i != HQD_N_REGS); *n_regs = i; return 0; } static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd, uint32_t __user *wptr, struct mm_struct *mm) { struct v10_sdma_mqd *m; uint32_t sdma_rlc_reg_offset; unsigned long end_jiffies; uint32_t data; uint64_t data64; uint64_t __user *wptr64 = (uint64_t __user *)wptr; m = get_sdma_mqd(mqd); sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, m->sdma_queue_id); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)); end_jiffies = msecs_to_jiffies(2000) + jiffies; while (true) { data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) break; if (time_after(jiffies, end_jiffies)) { pr_err("SDMA RLC not idle in %s\n", __func__); return -ETIME; } usleep_range(500, 1000); } WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET, m->sdmax_rlcx_doorbell_offset); data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL, ENABLE, 1); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI, m->sdmax_rlcx_rb_rptr_hi); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1); if (read_user_wptr(mm, wptr64, data64)) { WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, lower_32_bits(data64)); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, upper_32_bits(data64)); } else { WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, m->sdmax_rlcx_rb_rptr); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, m->sdmax_rlcx_rb_rptr_hi); } WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI, m->sdmax_rlcx_rb_base_hi); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, m->sdmax_rlcx_rb_rptr_addr_lo); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, m->sdmax_rlcx_rb_rptr_addr_hi); data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL, RB_ENABLE, 1); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data); return 0; } static int kgd_hqd_sdma_dump(struct amdgpu_device *adev, uint32_t engine_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs) { uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, engine_id, queue_id); uint32_t i = 0, reg; #undef HQD_N_REGS #define HQD_N_REGS (19+6+7+10) *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL); if (*dump == NULL) return -ENOMEM; for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); WARN_ON_ONCE(i != HQD_N_REGS); *n_regs = i; return 0; } static bool kgd_hqd_is_occupied(struct amdgpu_device *adev, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id, uint32_t inst) { uint32_t act; bool retval = false; uint32_t low, high; acquire_queue(adev, pipe_id, queue_id); act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE); if (act) { low = lower_32_bits(queue_address >> 8); high = upper_32_bits(queue_address >> 8); if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) && high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI)) retval = true; } release_queue(adev); return retval; } static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd) { struct v10_sdma_mqd *m; uint32_t sdma_rlc_reg_offset; uint32_t sdma_rlc_rb_cntl; m = get_sdma_mqd(mqd); sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, m->sdma_queue_id); sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) return true; return false; } static int kgd_hqd_destroy(struct amdgpu_device *adev, void *mqd, enum kfd_preempt_type reset_type, unsigned int utimeout, uint32_t pipe_id, uint32_t queue_id, uint32_t inst) { enum hqd_dequeue_request_type type; unsigned long end_jiffies; uint32_t temp; struct v10_compute_mqd *m = get_mqd(mqd); if (amdgpu_in_reset(adev)) return -EIO; #if 0 unsigned long flags; int retry; #endif acquire_queue(adev, pipe_id, queue_id); if (m->cp_hqd_vmid == 0) WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0); switch (reset_type) { case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: type = DRAIN_PIPE; break; case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: type = RESET_WAVES; break; case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE: type = SAVE_WAVES; break; default: type = DRAIN_PIPE; break; } #if 0 /* Is this still needed? */ /* Workaround: If IQ timer is active and the wait time is close to or * equal to 0, dequeueing is not safe. Wait until either the wait time * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is * cleared before continuing. Also, ensure wait times are set to at * least 0x3. */ local_irq_save(flags); preempt_disable(); retry = 5000; /* wait for 500 usecs at maximum */ while (true) { temp = RREG32(mmCP_HQD_IQ_TIMER); if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) { pr_debug("HW is processing IQ\n"); goto loop; } if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) { if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE) == 3) /* SEM-rearm is safe */ break; /* Wait time 3 is safe for CP, but our MMIO read/write * time is close to 1 microsecond, so check for 10 to * leave more buffer room */ if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME) >= 10) break; pr_debug("IQ timer is active\n"); } else break; loop: if (!retry) { pr_err("CP HQD IQ timer status time out\n"); break; } ndelay(100); --retry; } retry = 1000; while (true) { temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST); if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK)) break; pr_debug("Dequeue request is pending\n"); if (!retry) { pr_err("CP HQD dequeue request time out\n"); break; } ndelay(100); --retry; } local_irq_restore(flags); preempt_enable(); #endif WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, type); end_jiffies = (utimeout * HZ / 1000) + jiffies; while (true) { temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE); if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) break; if (time_after(jiffies, end_jiffies)) { pr_err("cp queue preemption time out.\n"); release_queue(adev); return -ETIME; } usleep_range(500, 1000); } release_queue(adev); return 0; } static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd, unsigned int utimeout) { struct v10_sdma_mqd *m; uint32_t sdma_rlc_reg_offset; uint32_t temp; unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; m = get_sdma_mqd(mqd); sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, m->sdma_queue_id); temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp); while (true) { temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) break; if (time_after(jiffies, end_jiffies)) { pr_err("SDMA RLC not idle in %s\n", __func__); return -ETIME; } usleep_range(500, 1000); } WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) | SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR); m->sdmax_rlcx_rb_rptr_hi = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI); return 0; } static bool get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev, uint8_t vmid, uint16_t *p_pasid) { uint32_t value; value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid); *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK; return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK); } static int kgd_wave_control_execute(struct amdgpu_device *adev, uint32_t gfx_index_val, uint32_t sq_cmd, uint32_t inst) { uint32_t data = 0; mutex_lock(&adev->grbm_idx_mutex); WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val); WREG32_SOC15(GC, 0, mmSQ_CMD, sq_cmd); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES, 1); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SA_BROADCAST_WRITES, 1); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1); WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, data); mutex_unlock(&adev->grbm_idx_mutex); return 0; } static void set_vm_context_page_table_base(struct amdgpu_device *adev, uint32_t vmid, uint64_t page_table_base) { if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { pr_err("trying to set page table base for wrong VMID %u\n", vmid); return; } /* SDMA is on gfxhub as well for Navi1* series */ adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base); } /* * GFX10 helper for wave launch stall requirements on debug trap setting. * * vmid: * Target VMID to stall/unstall. * * stall: * 0-unstall wave launch (enable), 1-stall wave launch (disable). * After wavefront launch has been stalled, allocated waves must drain from * SPI in order for debug trap settings to take effect on those waves. * This is roughly a ~3500 clock cycle wait on SPI where a read on * SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles. * KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required. * * NOTE: We can afford to clear the entire STALL_VMID field on unstall * because current GFX10 chips cannot support multi-process debugging due to * trap configuration and masking being limited to global scope. Always * assume single process conditions. * */ #define KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY 110 static void kgd_gfx_v10_set_wave_launch_stall(struct amdgpu_device *adev, uint32_t vmid, bool stall) { uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL)); int i; data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID, stall ? 1 << vmid : 0); WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data); if (!stall) return; for (i = 0; i < KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++) RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL)); } uint32_t kgd_gfx_v10_enable_debug_trap(struct amdgpu_device *adev, bool restore_dbg_registers, uint32_t vmid) { mutex_lock(&adev->grbm_idx_mutex); kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true); /* assume gfx off is disabled for the debug session if rlc restore not supported. */ if (restore_dbg_registers) { uint32_t data = 0; data = REG_SET_FIELD(data, SPI_GDBG_TRAP_CONFIG, VMID_SEL, 1 << vmid); data = REG_SET_FIELD(data, SPI_GDBG_TRAP_CONFIG, TRAP_EN, 1); WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_CONFIG), data); WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_DATA0), 0); WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_DATA1), 0); kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false); mutex_unlock(&adev->grbm_idx_mutex); return 0; } WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0); kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false); mutex_unlock(&adev->grbm_idx_mutex); return 0; } uint32_t kgd_gfx_v10_disable_debug_trap(struct amdgpu_device *adev, bool keep_trap_enabled, uint32_t vmid) { mutex_lock(&adev->grbm_idx_mutex); kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true); WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0); kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false); mutex_unlock(&adev->grbm_idx_mutex); return 0; } int kgd_gfx_v10_validate_trap_override_request(struct amdgpu_device *adev, uint32_t trap_override, uint32_t *trap_mask_supported) { *trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH; /* The SPI_GDBG_TRAP_MASK register is global and affects all * processes. Only allow OR-ing the address-watch bit, since * this only affects processes under the debugger. Other bits * should stay 0 to avoid the debugger interfering with other * processes. */ if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR) return -EINVAL; return 0; } uint32_t kgd_gfx_v10_set_wave_launch_trap_override(struct amdgpu_device *adev, uint32_t vmid, uint32_t trap_override, uint32_t trap_mask_bits, uint32_t trap_mask_request, uint32_t *trap_mask_prev, uint32_t kfd_dbg_trap_cntl_prev) { uint32_t data, wave_cntl_prev; mutex_lock(&adev->grbm_idx_mutex); wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL)); kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true); data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK)); *trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN); trap_mask_bits = (trap_mask_bits & trap_mask_request) | (*trap_mask_prev & ~trap_mask_request); data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits); data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override); WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data); /* We need to preserve wave launch mode stall settings. */ WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev); mutex_unlock(&adev->grbm_idx_mutex); return 0; } uint32_t kgd_gfx_v10_set_wave_launch_mode(struct amdgpu_device *adev, uint8_t wave_launch_mode, uint32_t vmid) { uint32_t data = 0; bool is_mode_set = !!wave_launch_mode; mutex_lock(&adev->grbm_idx_mutex); kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true); data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2, VMID_MASK, is_mode_set ? 1 << vmid : 0); data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2, MODE, is_mode_set ? wave_launch_mode : 0); WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data); kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false); mutex_unlock(&adev->grbm_idx_mutex); return 0; } #define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H) #define SQ_WATCH_STRIDE (mmSQ_WATCH1_ADDR_H - mmSQ_WATCH0_ADDR_H) uint32_t kgd_gfx_v10_set_address_watch(struct amdgpu_device *adev, uint64_t watch_address, uint32_t watch_address_mask, uint32_t watch_id, uint32_t watch_mode, uint32_t debug_vmid, uint32_t inst) { /* SQ_WATCH?_ADDR_* and TCP_WATCH?_ADDR_* are programmed with the * same values. */ uint32_t watch_address_high; uint32_t watch_address_low; uint32_t tcp_watch_address_cntl; uint32_t sq_watch_address_cntl; watch_address_low = lower_32_bits(watch_address); watch_address_high = upper_32_bits(watch_address) & 0xffff; tcp_watch_address_cntl = 0; tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl, TCP_WATCH0_CNTL, VMID, debug_vmid); tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl, TCP_WATCH0_CNTL, MODE, watch_mode); tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl, TCP_WATCH0_CNTL, MASK, watch_address_mask >> 7); sq_watch_address_cntl = 0; sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl, SQ_WATCH0_CNTL, VMID, debug_vmid); sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl, SQ_WATCH0_CNTL, MODE, watch_mode); sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl, SQ_WATCH0_CNTL, MASK, watch_address_mask >> 6); /* Turning off this watch point until we set all the registers */ tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl, TCP_WATCH0_CNTL, VALID, 0); WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) + (watch_id * TCP_WATCH_STRIDE)), tcp_watch_address_cntl); sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl, SQ_WATCH0_CNTL, VALID, 0); WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_CNTL) + (watch_id * SQ_WATCH_STRIDE)), sq_watch_address_cntl); /* Program {TCP,SQ}_WATCH?_ADDR* */ WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) + (watch_id * TCP_WATCH_STRIDE)), watch_address_high); WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) + (watch_id * TCP_WATCH_STRIDE)), watch_address_low); WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_ADDR_H) + (watch_id * SQ_WATCH_STRIDE)), watch_address_high); WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_ADDR_L) + (watch_id * SQ_WATCH_STRIDE)), watch_address_low); /* Enable the watch point */ tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl, TCP_WATCH0_CNTL, VALID, 1); WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) + (watch_id * TCP_WATCH_STRIDE)), tcp_watch_address_cntl); sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl, SQ_WATCH0_CNTL, VALID, 1); WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_CNTL) + (watch_id * SQ_WATCH_STRIDE)), sq_watch_address_cntl); return 0; } uint32_t kgd_gfx_v10_clear_address_watch(struct amdgpu_device *adev, uint32_t watch_id) { uint32_t watch_address_cntl; watch_address_cntl = 0; WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) + (watch_id * TCP_WATCH_STRIDE)), watch_address_cntl); WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_CNTL) + (watch_id * SQ_WATCH_STRIDE)), watch_address_cntl); return 0; } #undef TCP_WATCH_STRIDE #undef SQ_WATCH_STRIDE /* kgd_gfx_v10_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values * The values read are: * ib_offload_wait_time -- Wait Count for Indirect Buffer Offloads. * atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads. * wrm_offload_wait_time -- Wait Count for WAIT_REG_MEM Offloads. * gws_wait_time -- Wait Count for Global Wave Syncs. * que_sleep_wait_time -- Wait Count for Dequeue Retry. * sch_wave_wait_time -- Wait Count for Scheduling Wave Message. * sem_rearm_wait_time -- Wait Count for Semaphore re-arm. * deq_retry_wait_time -- Wait Count for Global Wave Syncs. */ void kgd_gfx_v10_get_iq_wait_times(struct amdgpu_device *adev, uint32_t *wait_times, uint32_t inst) { *wait_times = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2)); } void kgd_gfx_v10_build_grace_period_packet_info(struct amdgpu_device *adev, uint32_t wait_times, uint32_t grace_period, uint32_t *reg_offset, uint32_t *reg_data) { *reg_data = wait_times; /* * The CP cannont handle a 0 grace period input and will result in * an infinite grace period being set so set to 1 to prevent this. */ if (grace_period == 0) grace_period = 1; *reg_data = REG_SET_FIELD(*reg_data, CP_IQ_WAIT_TIME2, SCH_WAVE, grace_period); *reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2); } static void program_trap_handler_settings(struct amdgpu_device *adev, uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr, uint32_t inst) { lock_srbm(adev, 0, 0, 0, vmid); /* * Program TBA registers */ WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_LO), lower_32_bits(tba_addr >> 8)); WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_HI), upper_32_bits(tba_addr >> 8) | (1 << SQ_SHADER_TBA_HI__TRAP_EN__SHIFT)); /* * Program TMA registers */ WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_LO), lower_32_bits(tma_addr >> 8)); WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_HI), upper_32_bits(tma_addr >> 8)); unlock_srbm(adev); } const struct kfd2kgd_calls gfx_v10_kfd2kgd = { .program_sh_mem_settings = kgd_program_sh_mem_settings, .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping, .init_interrupts = kgd_init_interrupts, .hqd_load = kgd_hqd_load, .hiq_mqd_load = kgd_hiq_mqd_load, .hqd_sdma_load = kgd_hqd_sdma_load, .hqd_dump = kgd_hqd_dump, .hqd_sdma_dump = kgd_hqd_sdma_dump, .hqd_is_occupied = kgd_hqd_is_occupied, .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, .hqd_destroy = kgd_hqd_destroy, .hqd_sdma_destroy = kgd_hqd_sdma_destroy, .wave_control_execute = kgd_wave_control_execute, .get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info, .set_vm_context_page_table_base = set_vm_context_page_table_base, .enable_debug_trap = kgd_gfx_v10_enable_debug_trap, .disable_debug_trap = kgd_gfx_v10_disable_debug_trap, .validate_trap_override_request = kgd_gfx_v10_validate_trap_override_request, .set_wave_launch_trap_override = kgd_gfx_v10_set_wave_launch_trap_override, .set_wave_launch_mode = kgd_gfx_v10_set_wave_launch_mode, .set_address_watch = kgd_gfx_v10_set_address_watch, .clear_address_watch = kgd_gfx_v10_clear_address_watch, .get_iq_wait_times = kgd_gfx_v10_get_iq_wait_times, .build_grace_period_packet_info = kgd_gfx_v10_build_grace_period_packet_info, .program_trap_handler_settings = program_trap_handler_settings, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1