Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Luben Tuikov | 3015 | 49.74% | 18 | 22.78% |
Andrey Grodzovsky | 974 | 16.07% | 6 | 7.59% |
Stanley.Yang | 956 | 15.77% | 7 | 8.86% |
Guchun Chen | 216 | 3.56% | 7 | 8.86% |
xinhui pan | 215 | 3.55% | 4 | 5.06% |
John Clements | 202 | 3.33% | 6 | 7.59% |
Candice Li | 143 | 2.36% | 7 | 8.86% |
Alex Deucher | 130 | 2.14% | 5 | 6.33% |
Tao Zhou | 57 | 0.94% | 3 | 3.80% |
Dennis Li | 55 | 0.91% | 2 | 2.53% |
Kent Russell | 48 | 0.79% | 3 | 3.80% |
Lijo Lazar | 18 | 0.30% | 2 | 2.53% |
Dan Carpenter | 14 | 0.23% | 3 | 3.80% |
Mario Limonciello | 6 | 0.10% | 1 | 1.27% |
Yang Wang | 6 | 0.10% | 1 | 1.27% |
Srinivasan S | 3 | 0.05% | 2 | 2.53% |
Shaoyun Liu | 2 | 0.03% | 1 | 1.27% |
Tom St Denis | 2 | 0.03% | 1 | 1.27% |
Total | 6062 | 79 |
/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "amdgpu_ras_eeprom.h" #include "amdgpu.h" #include "amdgpu_ras.h" #include <linux/bits.h> #include "atom.h" #include "amdgpu_eeprom.h" #include "amdgpu_atomfirmware.h" #include <linux/debugfs.h> #include <linux/uaccess.h> #include "amdgpu_reset.h" /* These are memory addresses as would be seen by one or more EEPROM * chips strung on the I2C bus, usually by manipulating pins 1-3 of a * set of EEPROM devices. They form a continuous memory space. * * The I2C device address includes the device type identifier, 1010b, * which is a reserved value and indicates that this is an I2C EEPROM * device. It also includes the top 3 bits of the 19 bit EEPROM memory * address, namely bits 18, 17, and 16. This makes up the 7 bit * address sent on the I2C bus with bit 0 being the direction bit, * which is not represented here, and sent by the hardware directly. * * For instance, * 50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0. * 54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h. * 56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h. * Depending on the size of the I2C EEPROM device(s), bits 18:16 may * address memory in a device or a device on the I2C bus, depending on * the status of pins 1-3. See top of amdgpu_eeprom.c. * * The RAS table lives either at address 0 or address 40000h of EEPROM. */ #define EEPROM_I2C_MADDR_0 0x0 #define EEPROM_I2C_MADDR_4 0x40000 /* * The 2 macros bellow represent the actual size in bytes that * those entities occupy in the EEPROM memory. * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which * uses uint64 to store 6b fields such as retired_page. */ #define RAS_TABLE_HEADER_SIZE 20 #define RAS_TABLE_RECORD_SIZE 24 /* Table hdr is 'AMDR' */ #define RAS_TABLE_HDR_VAL 0x414d4452 /* Bad GPU tag ‘BADG’ */ #define RAS_TABLE_HDR_BAD 0x42414447 /* * EEPROM Table structure v1 * --------------------------------- * | | * | EEPROM TABLE HEADER | * | ( size 20 Bytes ) | * | | * --------------------------------- * | | * | BAD PAGE RECORD AREA | * | | * --------------------------------- */ /* Assume 2-Mbit size EEPROM and take up the whole space. */ #define RAS_TBL_SIZE_BYTES (256 * 1024) #define RAS_TABLE_START 0 #define RAS_HDR_START RAS_TABLE_START #define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE) #define RAS_MAX_RECORD_COUNT ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \ / RAS_TABLE_RECORD_SIZE) /* * EEPROM Table structrue v2.1 * --------------------------------- * | | * | EEPROM TABLE HEADER | * | ( size 20 Bytes ) | * | | * --------------------------------- * | | * | EEPROM TABLE RAS INFO | * | (available info size 4 Bytes) | * | ( reserved size 252 Bytes ) | * | | * --------------------------------- * | | * | BAD PAGE RECORD AREA | * | | * --------------------------------- */ /* EEPROM Table V2_1 */ #define RAS_TABLE_V2_1_INFO_SIZE 256 #define RAS_TABLE_V2_1_INFO_START RAS_TABLE_HEADER_SIZE #define RAS_RECORD_START_V2_1 (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \ RAS_TABLE_V2_1_INFO_SIZE) #define RAS_MAX_RECORD_COUNT_V2_1 ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \ RAS_TABLE_V2_1_INFO_SIZE) \ / RAS_TABLE_RECORD_SIZE) /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM * offset off of RAS_TABLE_START. That is, this is something you can * add to control->i2c_address, and then tell I2C layer to read * from/write to there. _N is the so called absolute index, * because it starts right after the table header. */ #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \ (_N) * RAS_TABLE_RECORD_SIZE) #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \ (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE) /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off * of "fri", return the absolute record index off of the end of * the table header. */ #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \ (_C)->ras_max_record_count) #define RAS_NUM_RECS(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE) #define RAS_NUM_RECS_V2_1(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ RAS_TABLE_HEADER_SIZE - \ RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE) #define to_amdgpu_device(x) ((container_of(x, struct amdgpu_ras, eeprom_control))->adev) static bool __is_ras_eeprom_supported(struct amdgpu_device *adev) { switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */ case IP_VERSION(11, 0, 7): /* Sienna cichlid */ case IP_VERSION(13, 0, 0): case IP_VERSION(13, 0, 2): /* Aldebaran */ case IP_VERSION(13, 0, 10): return true; case IP_VERSION(13, 0, 6): return (adev->gmc.is_app_apu) ? false : true; default: return false; } } static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev, struct amdgpu_ras_eeprom_control *control) { struct atom_context *atom_ctx = adev->mode_info.atom_context; u8 i2c_addr; if (!control) return false; if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) { /* The address given by VBIOS is an 8-bit, wire-format * address, i.e. the most significant byte. * * Normalize it to a 19-bit EEPROM address. Remove the * device type identifier and make it a 7-bit address; * then make it a 19-bit EEPROM address. See top of * amdgpu_eeprom.c. */ i2c_addr = (i2c_addr & 0x0F) >> 1; control->i2c_address = ((u32) i2c_addr) << 16; return true; } switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */ if (adev->asic_type == CHIP_VEGA20) control->i2c_address = EEPROM_I2C_MADDR_0; else if (strnstr(atom_ctx->vbios_pn, "D342", sizeof(atom_ctx->vbios_pn))) control->i2c_address = EEPROM_I2C_MADDR_0; else control->i2c_address = EEPROM_I2C_MADDR_4; return true; case IP_VERSION(11, 0, 7): control->i2c_address = EEPROM_I2C_MADDR_0; return true; case IP_VERSION(13, 0, 2): if (strnstr(atom_ctx->vbios_pn, "D673", sizeof(atom_ctx->vbios_pn))) control->i2c_address = EEPROM_I2C_MADDR_4; else control->i2c_address = EEPROM_I2C_MADDR_0; return true; case IP_VERSION(13, 0, 0): if (strnstr(atom_ctx->vbios_pn, "D707", sizeof(atom_ctx->vbios_pn))) control->i2c_address = EEPROM_I2C_MADDR_0; else control->i2c_address = EEPROM_I2C_MADDR_4; return true; case IP_VERSION(13, 0, 6): case IP_VERSION(13, 0, 10): control->i2c_address = EEPROM_I2C_MADDR_4; return true; default: return false; } } static void __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr, unsigned char *buf) { u32 *pp = (uint32_t *)buf; pp[0] = cpu_to_le32(hdr->header); pp[1] = cpu_to_le32(hdr->version); pp[2] = cpu_to_le32(hdr->first_rec_offset); pp[3] = cpu_to_le32(hdr->tbl_size); pp[4] = cpu_to_le32(hdr->checksum); } static void __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr, unsigned char *buf) { u32 *pp = (uint32_t *)buf; hdr->header = le32_to_cpu(pp[0]); hdr->version = le32_to_cpu(pp[1]); hdr->first_rec_offset = le32_to_cpu(pp[2]); hdr->tbl_size = le32_to_cpu(pp[3]); hdr->checksum = le32_to_cpu(pp[4]); } static int __write_table_header(struct amdgpu_ras_eeprom_control *control) { u8 buf[RAS_TABLE_HEADER_SIZE]; struct amdgpu_device *adev = to_amdgpu_device(control); int res; memset(buf, 0, sizeof(buf)); __encode_table_header_to_buf(&control->tbl_hdr, buf); /* i2c may be unstable in gpu reset */ down_read(&adev->reset_domain->sem); res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, control->i2c_address + control->ras_header_offset, buf, RAS_TABLE_HEADER_SIZE); up_read(&adev->reset_domain->sem); if (res < 0) { DRM_ERROR("Failed to write EEPROM table header:%d", res); } else if (res < RAS_TABLE_HEADER_SIZE) { DRM_ERROR("Short write:%d out of %d\n", res, RAS_TABLE_HEADER_SIZE); res = -EIO; } else { res = 0; } return res; } static void __encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info *rai, unsigned char *buf) { u32 *pp = (uint32_t *)buf; u32 tmp; tmp = ((uint32_t)(rai->rma_status) & 0xFF) | (((uint32_t)(rai->health_percent) << 8) & 0xFF00) | (((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000); pp[0] = cpu_to_le32(tmp); } static void __decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info *rai, unsigned char *buf) { u32 *pp = (uint32_t *)buf; u32 tmp; tmp = le32_to_cpu(pp[0]); rai->rma_status = tmp & 0xFF; rai->health_percent = (tmp >> 8) & 0xFF; rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF; } static int __write_table_ras_info(struct amdgpu_ras_eeprom_control *control) { struct amdgpu_device *adev = to_amdgpu_device(control); u8 *buf; int res; buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL); if (!buf) { DRM_ERROR("Failed to alloc buf to write table ras info\n"); return -ENOMEM; } __encode_table_ras_info_to_buf(&control->tbl_rai, buf); /* i2c may be unstable in gpu reset */ down_read(&adev->reset_domain->sem); res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, control->i2c_address + control->ras_info_offset, buf, RAS_TABLE_V2_1_INFO_SIZE); up_read(&adev->reset_domain->sem); if (res < 0) { DRM_ERROR("Failed to write EEPROM table ras info:%d", res); } else if (res < RAS_TABLE_V2_1_INFO_SIZE) { DRM_ERROR("Short write:%d out of %d\n", res, RAS_TABLE_V2_1_INFO_SIZE); res = -EIO; } else { res = 0; } kfree(buf); return res; } static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control) { int ii; u8 *pp, csum; size_t sz; /* Header checksum, skip checksum field in the calculation */ sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); pp = (u8 *) &control->tbl_hdr; csum = 0; for (ii = 0; ii < sz; ii++, pp++) csum += *pp; return csum; } static u8 __calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control *control) { int ii; u8 *pp, csum; size_t sz; sz = sizeof(control->tbl_rai); pp = (u8 *) &control->tbl_rai; csum = 0; for (ii = 0; ii < sz; ii++, pp++) csum += *pp; return csum; } static int amdgpu_ras_eeprom_correct_header_tag( struct amdgpu_ras_eeprom_control *control, uint32_t header) { struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; u8 *hh; int res; u8 csum; csum = -hdr->checksum; hh = (void *) &hdr->header; csum -= (hh[0] + hh[1] + hh[2] + hh[3]); hh = (void *) &header; csum += hh[0] + hh[1] + hh[2] + hh[3]; csum = -csum; mutex_lock(&control->ras_tbl_mutex); hdr->header = header; hdr->checksum = csum; res = __write_table_header(control); mutex_unlock(&control->ras_tbl_mutex); return res; } static void amdgpu_ras_set_eeprom_table_version(struct amdgpu_ras_eeprom_control *control) { struct amdgpu_device *adev = to_amdgpu_device(control); struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; switch (amdgpu_ip_version(adev, UMC_HWIP, 0)) { case IP_VERSION(8, 10, 0): case IP_VERSION(12, 0, 0): hdr->version = RAS_TABLE_VER_V2_1; return; default: hdr->version = RAS_TABLE_VER_V1; return; } } /** * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table * @control: pointer to control structure * * Reset the contents of the header of the RAS EEPROM table. * Return 0 on success, -errno on error. */ int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control) { struct amdgpu_device *adev = to_amdgpu_device(control); struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai; struct amdgpu_ras *con = amdgpu_ras_get_context(adev); u8 csum; int res; mutex_lock(&control->ras_tbl_mutex); hdr->header = RAS_TABLE_HDR_VAL; amdgpu_ras_set_eeprom_table_version(control); if (hdr->version == RAS_TABLE_VER_V2_1) { hdr->first_rec_offset = RAS_RECORD_START_V2_1; hdr->tbl_size = RAS_TABLE_HEADER_SIZE + RAS_TABLE_V2_1_INFO_SIZE; rai->rma_status = GPU_HEALTH_USABLE; /** * GPU health represented as a percentage. * 0 means worst health, 100 means fully health. */ rai->health_percent = 100; /* ecc_page_threshold = 0 means disable bad page retirement */ rai->ecc_page_threshold = con->bad_page_cnt_threshold; } else { hdr->first_rec_offset = RAS_RECORD_START; hdr->tbl_size = RAS_TABLE_HEADER_SIZE; } csum = __calc_hdr_byte_sum(control); if (hdr->version == RAS_TABLE_VER_V2_1) csum += __calc_ras_info_byte_sum(control); csum = -csum; hdr->checksum = csum; res = __write_table_header(control); if (!res && hdr->version > RAS_TABLE_VER_V1) res = __write_table_ras_info(control); control->ras_num_recs = 0; control->ras_fri = 0; amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs); control->bad_channel_bitmap = 0; amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap); con->update_channel_flag = false; amdgpu_ras_debugfs_set_ret_size(control); mutex_unlock(&control->ras_tbl_mutex); return res; } static void __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *record, unsigned char *buf) { __le64 tmp = 0; int i = 0; /* Next are all record fields according to EEPROM page spec in LE foramt */ buf[i++] = record->err_type; buf[i++] = record->bank; tmp = cpu_to_le64(record->ts); memcpy(buf + i, &tmp, 8); i += 8; tmp = cpu_to_le64((record->offset & 0xffffffffffff)); memcpy(buf + i, &tmp, 6); i += 6; buf[i++] = record->mem_channel; buf[i++] = record->mcumc_id; tmp = cpu_to_le64((record->retired_page & 0xffffffffffff)); memcpy(buf + i, &tmp, 6); } static void __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *record, unsigned char *buf) { __le64 tmp = 0; int i = 0; /* Next are all record fields according to EEPROM page spec in LE foramt */ record->err_type = buf[i++]; record->bank = buf[i++]; memcpy(&tmp, buf + i, 8); record->ts = le64_to_cpu(tmp); i += 8; memcpy(&tmp, buf + i, 6); record->offset = (le64_to_cpu(tmp) & 0xffffffffffff); i += 6; record->mem_channel = buf[i++]; record->mcumc_id = buf[i++]; memcpy(&tmp, buf + i, 6); record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff); } bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev) { struct amdgpu_ras *con = amdgpu_ras_get_context(adev); if (!__is_ras_eeprom_supported(adev) || !amdgpu_bad_page_threshold) return false; /* skip check eeprom table for VEGA20 Gaming */ if (!con) return false; else if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC))) return false; if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) { if (amdgpu_bad_page_threshold == -1) { dev_warn(adev->dev, "RAS records:%d exceed threshold:%d", con->eeprom_control.ras_num_recs, con->bad_page_cnt_threshold); dev_warn(adev->dev, "But GPU can be operated due to bad_page_threshold = -1.\n"); return false; } else { dev_warn(adev->dev, "This GPU is in BAD status."); dev_warn(adev->dev, "Please retire it or set a larger " "threshold value when reloading driver.\n"); return true; } } return false; } /** * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM * @control: pointer to control structure * @buf: pointer to buffer containing data to write * @fri: start writing at this index * @num: number of records to write * * The caller must hold the table mutex in @control. * Return 0 on success, -errno otherwise. */ static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control, u8 *buf, const u32 fri, const u32 num) { struct amdgpu_device *adev = to_amdgpu_device(control); u32 buf_size; int res; /* i2c may be unstable in gpu reset */ down_read(&adev->reset_domain->sem); buf_size = num * RAS_TABLE_RECORD_SIZE; res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, control->i2c_address + RAS_INDEX_TO_OFFSET(control, fri), buf, buf_size); up_read(&adev->reset_domain->sem); if (res < 0) { DRM_ERROR("Writing %d EEPROM table records error:%d", num, res); } else if (res < buf_size) { /* Short write, return error. */ DRM_ERROR("Wrote %d records out of %d", res / RAS_TABLE_RECORD_SIZE, num); res = -EIO; } else { res = 0; } return res; } static int amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *record, const u32 num) { struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control)); u32 a, b, i; u8 *buf, *pp; int res; buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; /* Encode all of them in one go. */ pp = buf; for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { __encode_table_record_to_buf(control, &record[i], pp); /* update bad channel bitmap */ if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) && !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { control->bad_channel_bitmap |= 1 << record[i].mem_channel; con->update_channel_flag = true; } } /* a, first record index to write into. * b, last record index to write into. * a = first index to read (fri) + number of records in the table, * b = a + @num - 1. * Let N = control->ras_max_num_record_count, then we have, * case 0: 0 <= a <= b < N, * just append @num records starting at a; * case 1: 0 <= a < N <= b, * append (N - a) records starting at a, and * append the remainder, b % N + 1, starting at 0. * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases, * case 2a: 0 <= a <= b < N * append num records starting at a; and fix fri if b overwrote it, * and since a <= b, if b overwrote it then a must've also, * and if b didn't overwrite it, then a didn't also. * case 2b: 0 <= b < a < N * write num records starting at a, which wraps around 0=N * and overwrite fri unconditionally. Now from case 2a, * this means that b eclipsed fri to overwrite it and wrap * around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally * set fri = b + 1 (mod N). * Now, since fri is updated in every case, except the trivial case 0, * the number of records present in the table after writing, is, * num_recs - 1 = b - fri (mod N), and we take the positive value, * by adding an arbitrary multiple of N before taking the modulo N * as shown below. */ a = control->ras_fri + control->ras_num_recs; b = a + num - 1; if (b < control->ras_max_record_count) { res = __amdgpu_ras_eeprom_write(control, buf, a, num); } else if (a < control->ras_max_record_count) { u32 g0, g1; g0 = control->ras_max_record_count - a; g1 = b % control->ras_max_record_count + 1; res = __amdgpu_ras_eeprom_write(control, buf, a, g0); if (res) goto Out; res = __amdgpu_ras_eeprom_write(control, buf + g0 * RAS_TABLE_RECORD_SIZE, 0, g1); if (res) goto Out; if (g1 > control->ras_fri) control->ras_fri = g1 % control->ras_max_record_count; } else { a %= control->ras_max_record_count; b %= control->ras_max_record_count; if (a <= b) { /* Note that, b - a + 1 = num. */ res = __amdgpu_ras_eeprom_write(control, buf, a, num); if (res) goto Out; if (b >= control->ras_fri) control->ras_fri = (b + 1) % control->ras_max_record_count; } else { u32 g0, g1; /* b < a, which means, we write from * a to the end of the table, and from * the start of the table to b. */ g0 = control->ras_max_record_count - a; g1 = b + 1; res = __amdgpu_ras_eeprom_write(control, buf, a, g0); if (res) goto Out; res = __amdgpu_ras_eeprom_write(control, buf + g0 * RAS_TABLE_RECORD_SIZE, 0, g1); if (res) goto Out; control->ras_fri = g1 % control->ras_max_record_count; } } control->ras_num_recs = 1 + (control->ras_max_record_count + b - control->ras_fri) % control->ras_max_record_count; Out: kfree(buf); return res; } static int amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control) { struct amdgpu_device *adev = to_amdgpu_device(control); struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); u8 *buf, *pp, csum; u32 buf_size; int res; /* Modify the header if it exceeds. */ if (amdgpu_bad_page_threshold != 0 && control->ras_num_recs >= ras->bad_page_cnt_threshold) { dev_warn(adev->dev, "Saved bad pages %d reaches threshold value %d\n", control->ras_num_recs, ras->bad_page_cnt_threshold); control->tbl_hdr.header = RAS_TABLE_HDR_BAD; if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) { control->tbl_rai.rma_status = GPU_RETIRED__ECC_REACH_THRESHOLD; control->tbl_rai.health_percent = 0; } /* ignore the -ENOTSUPP return value */ amdgpu_dpm_send_rma_reason(adev); } if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + RAS_TABLE_V2_1_INFO_SIZE + control->ras_num_recs * RAS_TABLE_RECORD_SIZE; else control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + control->ras_num_recs * RAS_TABLE_RECORD_SIZE; control->tbl_hdr.checksum = 0; buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE; buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); if (!buf) { DRM_ERROR("allocating memory for table of size %d bytes failed\n", control->tbl_hdr.tbl_size); res = -ENOMEM; goto Out; } down_read(&adev->reset_domain->sem); res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, control->i2c_address + control->ras_record_offset, buf, buf_size); up_read(&adev->reset_domain->sem); if (res < 0) { DRM_ERROR("EEPROM failed reading records:%d\n", res); goto Out; } else if (res < buf_size) { DRM_ERROR("EEPROM read %d out of %d bytes\n", res, buf_size); res = -EIO; goto Out; } /** * bad page records have been stored in eeprom, * now calculate gpu health percent */ if (amdgpu_bad_page_threshold != 0 && control->tbl_hdr.version == RAS_TABLE_VER_V2_1 && control->ras_num_recs < ras->bad_page_cnt_threshold) control->tbl_rai.health_percent = ((ras->bad_page_cnt_threshold - control->ras_num_recs) * 100) / ras->bad_page_cnt_threshold; /* Recalc the checksum. */ csum = 0; for (pp = buf; pp < buf + buf_size; pp++) csum += *pp; csum += __calc_hdr_byte_sum(control); if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) csum += __calc_ras_info_byte_sum(control); /* avoid sign extension when assigning to "checksum" */ csum = -csum; control->tbl_hdr.checksum = csum; res = __write_table_header(control); if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1) res = __write_table_ras_info(control); Out: kfree(buf); return res; } /** * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table * @control: pointer to control structure * @record: array of records to append * @num: number of records in @record array * * Append @num records to the table, calculate the checksum and write * the table back to EEPROM. The maximum number of records that * can be appended is between 1 and control->ras_max_record_count, * regardless of how many records are already stored in the table. * * Return 0 on success or if EEPROM is not supported, -errno on error. */ int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *record, const u32 num) { struct amdgpu_device *adev = to_amdgpu_device(control); int res; if (!__is_ras_eeprom_supported(adev)) return 0; if (num == 0) { DRM_ERROR("will not append 0 records\n"); return -EINVAL; } else if (num > control->ras_max_record_count) { DRM_ERROR("cannot append %d records than the size of table %d\n", num, control->ras_max_record_count); return -EINVAL; } mutex_lock(&control->ras_tbl_mutex); res = amdgpu_ras_eeprom_append_table(control, record, num); if (!res) res = amdgpu_ras_eeprom_update_header(control); if (!res) amdgpu_ras_debugfs_set_ret_size(control); mutex_unlock(&control->ras_tbl_mutex); return res; } /** * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer * @control: pointer to control structure * @buf: pointer to buffer to read into * @fri: first record index, start reading at this index, absolute index * @num: number of records to read * * The caller must hold the table mutex in @control. * Return 0 on success, -errno otherwise. */ static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, u8 *buf, const u32 fri, const u32 num) { struct amdgpu_device *adev = to_amdgpu_device(control); u32 buf_size; int res; /* i2c may be unstable in gpu reset */ down_read(&adev->reset_domain->sem); buf_size = num * RAS_TABLE_RECORD_SIZE; res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, control->i2c_address + RAS_INDEX_TO_OFFSET(control, fri), buf, buf_size); up_read(&adev->reset_domain->sem); if (res < 0) { DRM_ERROR("Reading %d EEPROM table records error:%d", num, res); } else if (res < buf_size) { /* Short read, return error. */ DRM_ERROR("Read %d records out of %d", res / RAS_TABLE_RECORD_SIZE, num); res = -EIO; } else { res = 0; } return res; } /** * amdgpu_ras_eeprom_read -- read EEPROM * @control: pointer to control structure * @record: array of records to read into * @num: number of records in @record * * Reads num records from the RAS table in EEPROM and * writes the data into @record array. * * Returns 0 on success, -errno on error. */ int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *record, const u32 num) { struct amdgpu_device *adev = to_amdgpu_device(control); struct amdgpu_ras *con = amdgpu_ras_get_context(adev); int i, res; u8 *buf, *pp; u32 g0, g1; if (!__is_ras_eeprom_supported(adev)) return 0; if (num == 0) { DRM_ERROR("will not read 0 records\n"); return -EINVAL; } else if (num > control->ras_num_recs) { DRM_ERROR("too many records to read:%d available:%d\n", num, control->ras_num_recs); return -EINVAL; } buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; /* Determine how many records to read, from the first record * index, fri, to the end of the table, and from the beginning * of the table, such that the total number of records is * @num, and we handle wrap around when fri > 0 and * fri + num > RAS_MAX_RECORD_COUNT. * * First we compute the index of the last element * which would be fetched from each region, * g0 is in [fri, fri + num - 1], and * g1 is in [0, RAS_MAX_RECORD_COUNT - 1]. * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of * the last element to fetch, we set g0 to _the number_ * of elements to fetch, @num, since we know that the last * indexed to be fetched does not exceed the table. * * If, however, g0 >= RAS_MAX_RECORD_COUNT, then * we set g0 to the number of elements to read * until the end of the table, and g1 to the number of * elements to read from the beginning of the table. */ g0 = control->ras_fri + num - 1; g1 = g0 % control->ras_max_record_count; if (g0 < control->ras_max_record_count) { g0 = num; g1 = 0; } else { g0 = control->ras_max_record_count - control->ras_fri; g1 += 1; } mutex_lock(&control->ras_tbl_mutex); res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0); if (res) goto Out; if (g1) { res = __amdgpu_ras_eeprom_read(control, buf + g0 * RAS_TABLE_RECORD_SIZE, 0, g1); if (res) goto Out; } res = 0; /* Read up everything? Then transform. */ pp = buf; for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { __decode_table_record_from_buf(control, &record[i], pp); /* update bad channel bitmap */ if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) && !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { control->bad_channel_bitmap |= 1 << record[i].mem_channel; con->update_channel_flag = true; } } Out: kfree(buf); mutex_unlock(&control->ras_tbl_mutex); return res; } uint32_t amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control *control) { if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) return RAS_MAX_RECORD_COUNT_V2_1; else return RAS_MAX_RECORD_COUNT; } static ssize_t amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; u8 data[50]; int res; if (!size) return size; if (!ras || !control) { res = snprintf(data, sizeof(data), "Not supported\n"); } else { res = snprintf(data, sizeof(data), "%d bytes or %d records\n", RAS_TBL_SIZE_BYTES, control->ras_max_record_count); } if (*pos >= res) return 0; res -= *pos; res = min_t(size_t, res, size); if (copy_to_user(buf, &data[*pos], res)) return -EFAULT; *pos += res; return res; } const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = { .owner = THIS_MODULE, .read = amdgpu_ras_debugfs_eeprom_size_read, .write = NULL, .llseek = default_llseek, }; static const char *tbl_hdr_str = " Signature Version FirstOffs Size Checksum\n"; static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n"; #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1) static const char *rec_hdr_str = "Index Offset ErrType Bank/CU TimeStamp Offs/Addr MemChl MCUMCID RetiredPage\n"; static const char *rec_hdr_fmt = "%5d 0x%05X %7s 0x%02X 0x%016llX 0x%012llX 0x%02X 0x%02X 0x%012llX\n"; #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1) static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = { "ignore", "re", "ue", }; static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control) { return strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs; } void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control) { struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras, eeprom_control); struct dentry *de = ras->de_ras_eeprom_table; if (de) d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control); } static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control; const size_t orig_size = size; int res = -EFAULT; size_t data_len; mutex_lock(&control->ras_tbl_mutex); /* We want *pos - data_len > 0, which means there's * bytes to be printed from data. */ data_len = strlen(tbl_hdr_str); if (*pos < data_len) { data_len -= *pos; data_len = min_t(size_t, data_len, size); if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len)) goto Out; buf += data_len; size -= data_len; *pos += data_len; } data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size; if (*pos < data_len && size > 0) { u8 data[tbl_hdr_fmt_size + 1]; loff_t lpos; snprintf(data, sizeof(data), tbl_hdr_fmt, control->tbl_hdr.header, control->tbl_hdr.version, control->tbl_hdr.first_rec_offset, control->tbl_hdr.tbl_size, control->tbl_hdr.checksum); data_len -= *pos; data_len = min_t(size_t, data_len, size); lpos = *pos - strlen(tbl_hdr_str); if (copy_to_user(buf, &data[lpos], data_len)) goto Out; buf += data_len; size -= data_len; *pos += data_len; } data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str); if (*pos < data_len && size > 0) { loff_t lpos; data_len -= *pos; data_len = min_t(size_t, data_len, size); lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size; if (copy_to_user(buf, &rec_hdr_str[lpos], data_len)) goto Out; buf += data_len; size -= data_len; *pos += data_len; } data_len = amdgpu_ras_debugfs_table_size(control); if (*pos < data_len && size > 0) { u8 dare[RAS_TABLE_RECORD_SIZE]; u8 data[rec_hdr_fmt_size + 1]; struct eeprom_table_record record; int s, r; /* Find the starting record index */ s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - strlen(rec_hdr_str); s = s / rec_hdr_fmt_size; r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - strlen(rec_hdr_str); r = r % rec_hdr_fmt_size; for ( ; size > 0 && s < control->ras_num_recs; s++) { u32 ai = RAS_RI_TO_AI(control, s); /* Read a single record */ res = __amdgpu_ras_eeprom_read(control, dare, ai, 1); if (res) goto Out; __decode_table_record_from_buf(control, &record, dare); snprintf(data, sizeof(data), rec_hdr_fmt, s, RAS_INDEX_TO_OFFSET(control, ai), record_err_type_str[record.err_type], record.bank, record.ts, record.offset, record.mem_channel, record.mcumc_id, record.retired_page); data_len = min_t(size_t, rec_hdr_fmt_size - r, size); if (copy_to_user(buf, &data[r], data_len)) { res = -EFAULT; goto Out; } buf += data_len; size -= data_len; *pos += data_len; r = 0; } } res = 0; Out: mutex_unlock(&control->ras_tbl_mutex); return res < 0 ? res : orig_size - size; } static ssize_t amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; u8 data[81]; int res; if (!size) return size; if (!ras || !control) { res = snprintf(data, sizeof(data), "Not supported\n"); if (*pos >= res) return 0; res -= *pos; res = min_t(size_t, res, size); if (copy_to_user(buf, &data[*pos], res)) return -EFAULT; *pos += res; return res; } else { return amdgpu_ras_debugfs_table_read(f, buf, size, pos); } } const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = { .owner = THIS_MODULE, .read = amdgpu_ras_debugfs_eeprom_table_read, .write = NULL, .llseek = default_llseek, }; /** * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum * @control: pointer to control structure * * Check the checksum of the stored in EEPROM RAS table. * * Return 0 if the checksum is correct, * positive if it is not correct, and * -errno on I/O error. */ static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control) { struct amdgpu_device *adev = to_amdgpu_device(control); int buf_size, res; u8 csum, *buf, *pp; if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) buf_size = RAS_TABLE_HEADER_SIZE + RAS_TABLE_V2_1_INFO_SIZE + control->ras_num_recs * RAS_TABLE_RECORD_SIZE; else buf_size = RAS_TABLE_HEADER_SIZE + control->ras_num_recs * RAS_TABLE_RECORD_SIZE; buf = kzalloc(buf_size, GFP_KERNEL); if (!buf) { DRM_ERROR("Out of memory checking RAS table checksum.\n"); return -ENOMEM; } res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, control->i2c_address + control->ras_header_offset, buf, buf_size); if (res < buf_size) { DRM_ERROR("Partial read for checksum, res:%d\n", res); /* On partial reads, return -EIO. */ if (res >= 0) res = -EIO; goto Out; } csum = 0; for (pp = buf; pp < buf + buf_size; pp++) csum += *pp; Out: kfree(buf); return res < 0 ? res : csum; } static int __read_table_ras_info(struct amdgpu_ras_eeprom_control *control) { struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai; struct amdgpu_device *adev = to_amdgpu_device(control); unsigned char *buf; int res; buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL); if (!buf) { DRM_ERROR("Failed to alloc buf to read EEPROM table ras info\n"); return -ENOMEM; } /** * EEPROM table V2_1 supports ras info, * read EEPROM table ras info */ res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, control->i2c_address + control->ras_info_offset, buf, RAS_TABLE_V2_1_INFO_SIZE); if (res < RAS_TABLE_V2_1_INFO_SIZE) { DRM_ERROR("Failed to read EEPROM table ras info, res:%d", res); res = res >= 0 ? -EIO : res; goto Out; } __decode_table_ras_info_from_buf(rai, buf); Out: kfree(buf); return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res; } int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control, bool *exceed_err_limit) { struct amdgpu_device *adev = to_amdgpu_device(control); unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 }; struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); int res; *exceed_err_limit = false; if (!__is_ras_eeprom_supported(adev)) return 0; /* Verify i2c adapter is initialized */ if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo) return -ENOENT; if (!__get_eeprom_i2c_addr(adev, control)) return -EINVAL; control->ras_header_offset = RAS_HDR_START; control->ras_info_offset = RAS_TABLE_V2_1_INFO_START; mutex_init(&control->ras_tbl_mutex); /* Read the table header from EEPROM address */ res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, control->i2c_address + control->ras_header_offset, buf, RAS_TABLE_HEADER_SIZE); if (res < RAS_TABLE_HEADER_SIZE) { DRM_ERROR("Failed to read EEPROM table header, res:%d", res); return res >= 0 ? -EIO : res; } __decode_table_header_from_buf(hdr, buf); if (hdr->version == RAS_TABLE_VER_V2_1) { control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr); control->ras_record_offset = RAS_RECORD_START_V2_1; control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1; } else { control->ras_num_recs = RAS_NUM_RECS(hdr); control->ras_record_offset = RAS_RECORD_START; control->ras_max_record_count = RAS_MAX_RECORD_COUNT; } control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset); if (hdr->header == RAS_TABLE_HDR_VAL) { DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records", control->ras_num_recs); if (hdr->version == RAS_TABLE_VER_V2_1) { res = __read_table_ras_info(control); if (res) return res; } res = __verify_ras_table_checksum(control); if (res) DRM_ERROR("RAS table incorrect checksum or error:%d\n", res); /* Warn if we are at 90% of the threshold or above */ if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold) dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d", control->ras_num_recs, ras->bad_page_cnt_threshold); } else if (hdr->header == RAS_TABLE_HDR_BAD && amdgpu_bad_page_threshold != 0) { if (hdr->version == RAS_TABLE_VER_V2_1) { res = __read_table_ras_info(control); if (res) return res; } res = __verify_ras_table_checksum(control); if (res) DRM_ERROR("RAS Table incorrect checksum or error:%d\n", res); if (ras->bad_page_cnt_threshold > control->ras_num_recs) { /* This means that, the threshold was increased since * the last time the system was booted, and now, * ras->bad_page_cnt_threshold - control->num_recs > 0, * so that at least one more record can be saved, * before the page count threshold is reached. */ dev_info(adev->dev, "records:%d threshold:%d, resetting " "RAS table header signature", control->ras_num_recs, ras->bad_page_cnt_threshold); res = amdgpu_ras_eeprom_correct_header_tag(control, RAS_TABLE_HDR_VAL); } else { dev_err(adev->dev, "RAS records:%d exceed threshold:%d", control->ras_num_recs, ras->bad_page_cnt_threshold); if (amdgpu_bad_page_threshold == -1) { dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -1."); res = 0; } else { *exceed_err_limit = true; dev_err(adev->dev, "RAS records:%d exceed threshold:%d, " "GPU will not be initialized. Replace this GPU or increase the threshold", control->ras_num_recs, ras->bad_page_cnt_threshold); } } } else { DRM_INFO("Creating a new EEPROM table"); res = amdgpu_ras_eeprom_reset_table(control); } return res < 0 ? res : 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1