Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
yipechai | 1309 | 38.38% | 13 | 26.53% |
Candice Li | 1130 | 33.13% | 4 | 8.16% |
Tao Zhou | 511 | 14.98% | 12 | 24.49% |
Yang Wang | 399 | 11.70% | 12 | 24.49% |
Alex Deucher | 45 | 1.32% | 3 | 6.12% |
xinhui pan | 7 | 0.21% | 2 | 4.08% |
Le Ma | 4 | 0.12% | 1 | 2.04% |
Alex Xie | 4 | 0.12% | 1 | 2.04% |
Hawking Zhang | 2 | 0.06% | 1 | 2.04% |
Total | 3411 | 49 |
/* * Copyright 2023 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "umc_v12_0.h" #include "amdgpu_ras.h" #include "amdgpu_umc.h" #include "amdgpu.h" #include "umc/umc_12_0_0_offset.h" #include "umc/umc_12_0_0_sh_mask.h" #include "mp/mp_13_0_6_sh_mask.h" #define MAX_ECC_NUM_PER_RETIREMENT 32 static inline uint64_t get_umc_v12_0_reg_offset(struct amdgpu_device *adev, uint32_t node_inst, uint32_t umc_inst, uint32_t ch_inst) { uint32_t index = umc_inst * adev->umc.channel_inst_num + ch_inst; uint64_t cross_node_offset = (node_inst == 0) ? 0 : UMC_V12_0_CROSS_NODE_OFFSET; umc_inst = index / 4; ch_inst = index % 4; return adev->umc.channel_offs * ch_inst + UMC_V12_0_INST_DIST * umc_inst + UMC_V12_0_NODE_DIST * node_inst + cross_node_offset; } static int umc_v12_0_reset_error_count_per_channel(struct amdgpu_device *adev, uint32_t node_inst, uint32_t umc_inst, uint32_t ch_inst, void *data) { uint64_t odecc_err_cnt_addr; uint64_t umc_reg_offset = get_umc_v12_0_reg_offset(adev, node_inst, umc_inst, ch_inst); odecc_err_cnt_addr = SOC15_REG_OFFSET(UMC, 0, regUMCCH0_OdEccErrCnt); /* clear error count */ WREG32_PCIE_EXT((odecc_err_cnt_addr + umc_reg_offset) * 4, UMC_V12_0_CE_CNT_INIT); return 0; } static void umc_v12_0_reset_error_count(struct amdgpu_device *adev) { amdgpu_umc_loop_channels(adev, umc_v12_0_reset_error_count_per_channel, NULL); } bool umc_v12_0_is_deferred_error(struct amdgpu_device *adev, uint64_t mc_umc_status) { dev_info(adev->dev, "MCA_UMC_STATUS(0x%llx): Val:%llu, Poison:%llu, Deferred:%llu, PCC:%llu, UC:%llu, TCC:%llu\n", mc_umc_status, REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Val), REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Poison), REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Deferred), REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, PCC), REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, UC), REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, TCC) ); return (amdgpu_ras_is_poison_mode_supported(adev) && (REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Val) == 1) && (REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Deferred) == 1)); } bool umc_v12_0_is_uncorrectable_error(struct amdgpu_device *adev, uint64_t mc_umc_status) { if (umc_v12_0_is_deferred_error(adev, mc_umc_status)) return false; return ((REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Val) == 1) && (REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, PCC) == 1 || REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, UC) == 1 || REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, TCC) == 1)); } bool umc_v12_0_is_correctable_error(struct amdgpu_device *adev, uint64_t mc_umc_status) { if (umc_v12_0_is_deferred_error(adev, mc_umc_status)) return false; return (REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, Val) == 1 && (REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, CECC) == 1 || (REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, UECC) == 1 && REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, UC) == 0) || /* Identify data parity error in replay mode */ ((REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, ErrorCodeExt) == 0x5 || REG_GET_FIELD(mc_umc_status, MCA_UMC_UMC0_MCUMC_STATUST0, ErrorCodeExt) == 0xb) && !(umc_v12_0_is_uncorrectable_error(adev, mc_umc_status))))); } static void umc_v12_0_query_error_count_per_type(struct amdgpu_device *adev, uint64_t umc_reg_offset, unsigned long *error_count, check_error_type_func error_type_func) { uint64_t mc_umc_status; uint64_t mc_umc_status_addr; mc_umc_status_addr = SOC15_REG_OFFSET(UMC, 0, regMCA_UMC_UMC0_MCUMC_STATUST0); /* Check MCUMC_STATUS */ mc_umc_status = RREG64_PCIE_EXT((mc_umc_status_addr + umc_reg_offset) * 4); if (error_type_func(adev, mc_umc_status)) *error_count += 1; } static int umc_v12_0_query_error_count(struct amdgpu_device *adev, uint32_t node_inst, uint32_t umc_inst, uint32_t ch_inst, void *data) { struct ras_err_data *err_data = (struct ras_err_data *)data; unsigned long ue_count = 0, ce_count = 0, de_count = 0; /* NOTE: node_inst is converted by adev->umc.active_mask and the range is [0-3], * which can be used as die ID directly */ struct amdgpu_smuio_mcm_config_info mcm_info = { .socket_id = adev->smuio.funcs->get_socket_id(adev), .die_id = node_inst, }; uint64_t umc_reg_offset = get_umc_v12_0_reg_offset(adev, node_inst, umc_inst, ch_inst); umc_v12_0_query_error_count_per_type(adev, umc_reg_offset, &ce_count, umc_v12_0_is_correctable_error); umc_v12_0_query_error_count_per_type(adev, umc_reg_offset, &ue_count, umc_v12_0_is_uncorrectable_error); umc_v12_0_query_error_count_per_type(adev, umc_reg_offset, &de_count, umc_v12_0_is_deferred_error); amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, NULL, ue_count); amdgpu_ras_error_statistic_ce_count(err_data, &mcm_info, NULL, ce_count); amdgpu_ras_error_statistic_de_count(err_data, &mcm_info, NULL, de_count); return 0; } static void umc_v12_0_query_ras_error_count(struct amdgpu_device *adev, void *ras_error_status) { amdgpu_umc_loop_channels(adev, umc_v12_0_query_error_count, ras_error_status); umc_v12_0_reset_error_count(adev); } static void umc_v12_0_convert_error_address(struct amdgpu_device *adev, struct ras_err_data *err_data, struct ta_ras_query_address_input *addr_in) { uint32_t col, row, row_xor, bank, channel_index; uint64_t soc_pa, retired_page, column, err_addr; struct ta_ras_query_address_output addr_out; err_addr = addr_in->ma.err_addr; addr_in->addr_type = TA_RAS_MCA_TO_PA; if (psp_ras_query_address(&adev->psp, addr_in, &addr_out)) { dev_warn(adev->dev, "Failed to query RAS physical address for 0x%llx", err_addr); return; } soc_pa = addr_out.pa.pa; bank = addr_out.pa.bank; channel_index = addr_out.pa.channel_idx; col = (err_addr >> 1) & 0x1fULL; row = (err_addr >> 10) & 0x3fffULL; row_xor = row ^ (0x1ULL << 13); /* clear [C3 C2] in soc physical address */ soc_pa &= ~(0x3ULL << UMC_V12_0_PA_C2_BIT); /* clear [C4] in soc physical address */ soc_pa &= ~(0x1ULL << UMC_V12_0_PA_C4_BIT); /* loop for all possibilities of [C4 C3 C2] */ for (column = 0; column < UMC_V12_0_NA_MAP_PA_NUM; column++) { retired_page = soc_pa | ((column & 0x3) << UMC_V12_0_PA_C2_BIT); retired_page |= (((column & 0x4) >> 2) << UMC_V12_0_PA_C4_BIT); /* include column bit 0 and 1 */ col &= 0x3; col |= (column << 2); dev_info(adev->dev, "Error Address(PA):0x%-10llx Row:0x%-4x Col:0x%-2x Bank:0x%x Channel:0x%x\n", retired_page, row, col, bank, channel_index); amdgpu_umc_fill_error_record(err_data, err_addr, retired_page, channel_index, addr_in->ma.umc_inst); /* shift R13 bit */ retired_page ^= (0x1ULL << UMC_V12_0_PA_R13_BIT); dev_info(adev->dev, "Error Address(PA):0x%-10llx Row:0x%-4x Col:0x%-2x Bank:0x%x Channel:0x%x\n", retired_page, row_xor, col, bank, channel_index); amdgpu_umc_fill_error_record(err_data, err_addr, retired_page, channel_index, addr_in->ma.umc_inst); } } static int umc_v12_0_convert_err_addr(struct amdgpu_device *adev, struct ta_ras_query_address_input *addr_in, uint64_t *pfns, int len) { uint32_t col, row, row_xor, bank, channel_index; uint64_t soc_pa, retired_page, column, err_addr; struct ta_ras_query_address_output addr_out; uint32_t pos = 0; err_addr = addr_in->ma.err_addr; addr_in->addr_type = TA_RAS_MCA_TO_PA; if (psp_ras_query_address(&adev->psp, addr_in, &addr_out)) { dev_warn(adev->dev, "Failed to query RAS physical address for 0x%llx", err_addr); return 0; } soc_pa = addr_out.pa.pa; bank = addr_out.pa.bank; channel_index = addr_out.pa.channel_idx; col = (err_addr >> 1) & 0x1fULL; row = (err_addr >> 10) & 0x3fffULL; row_xor = row ^ (0x1ULL << 13); /* clear [C3 C2] in soc physical address */ soc_pa &= ~(0x3ULL << UMC_V12_0_PA_C2_BIT); /* clear [C4] in soc physical address */ soc_pa &= ~(0x1ULL << UMC_V12_0_PA_C4_BIT); /* loop for all possibilities of [C4 C3 C2] */ for (column = 0; column < UMC_V12_0_NA_MAP_PA_NUM; column++) { retired_page = soc_pa | ((column & 0x3) << UMC_V12_0_PA_C2_BIT); retired_page |= (((column & 0x4) >> 2) << UMC_V12_0_PA_C4_BIT); if (pos >= len) return 0; pfns[pos++] = retired_page >> AMDGPU_GPU_PAGE_SHIFT; /* include column bit 0 and 1 */ col &= 0x3; col |= (column << 2); dev_info(adev->dev, "Error Address(PA):0x%-10llx Row:0x%-4x Col:0x%-2x Bank:0x%x Channel:0x%x\n", retired_page, row, col, bank, channel_index); /* shift R13 bit */ retired_page ^= (0x1ULL << UMC_V12_0_PA_R13_BIT); if (pos >= len) return 0; pfns[pos++] = retired_page >> AMDGPU_GPU_PAGE_SHIFT; dev_info(adev->dev, "Error Address(PA):0x%-10llx Row:0x%-4x Col:0x%-2x Bank:0x%x Channel:0x%x\n", retired_page, row_xor, col, bank, channel_index); } return pos; } static int umc_v12_0_query_error_address(struct amdgpu_device *adev, uint32_t node_inst, uint32_t umc_inst, uint32_t ch_inst, void *data) { struct ras_err_data *err_data = (struct ras_err_data *)data; struct ta_ras_query_address_input addr_in; uint64_t mc_umc_status_addr; uint64_t mc_umc_status, err_addr; uint64_t mc_umc_addrt0; uint64_t umc_reg_offset = get_umc_v12_0_reg_offset(adev, node_inst, umc_inst, ch_inst); mc_umc_status_addr = SOC15_REG_OFFSET(UMC, 0, regMCA_UMC_UMC0_MCUMC_STATUST0); mc_umc_status = RREG64_PCIE_EXT((mc_umc_status_addr + umc_reg_offset) * 4); if (mc_umc_status == 0) return 0; if (!err_data->err_addr) { /* clear umc status */ WREG64_PCIE_EXT((mc_umc_status_addr + umc_reg_offset) * 4, 0x0ULL); return 0; } /* calculate error address if ue error is detected */ if (umc_v12_0_is_uncorrectable_error(adev, mc_umc_status) || umc_v12_0_is_deferred_error(adev, mc_umc_status)) { mc_umc_addrt0 = SOC15_REG_OFFSET(UMC, 0, regMCA_UMC_UMC0_MCUMC_ADDRT0); err_addr = RREG64_PCIE_EXT((mc_umc_addrt0 + umc_reg_offset) * 4); err_addr = REG_GET_FIELD(err_addr, MCA_UMC_UMC0_MCUMC_ADDRT0, ErrorAddr); if (!adev->aid_mask && adev->smuio.funcs && adev->smuio.funcs->get_socket_id) addr_in.ma.socket_id = adev->smuio.funcs->get_socket_id(adev); else addr_in.ma.socket_id = 0; addr_in.ma.err_addr = err_addr; addr_in.ma.ch_inst = ch_inst; addr_in.ma.umc_inst = umc_inst; addr_in.ma.node_inst = node_inst; umc_v12_0_convert_error_address(adev, err_data, &addr_in); } /* clear umc status */ WREG64_PCIE_EXT((mc_umc_status_addr + umc_reg_offset) * 4, 0x0ULL); return 0; } static void umc_v12_0_query_ras_error_address(struct amdgpu_device *adev, void *ras_error_status) { amdgpu_umc_loop_channels(adev, umc_v12_0_query_error_address, ras_error_status); } static int umc_v12_0_err_cnt_init_per_channel(struct amdgpu_device *adev, uint32_t node_inst, uint32_t umc_inst, uint32_t ch_inst, void *data) { uint32_t odecc_cnt_sel; uint64_t odecc_cnt_sel_addr, odecc_err_cnt_addr; uint64_t umc_reg_offset = get_umc_v12_0_reg_offset(adev, node_inst, umc_inst, ch_inst); odecc_cnt_sel_addr = SOC15_REG_OFFSET(UMC, 0, regUMCCH0_OdEccCntSel); odecc_err_cnt_addr = SOC15_REG_OFFSET(UMC, 0, regUMCCH0_OdEccErrCnt); odecc_cnt_sel = RREG32_PCIE_EXT((odecc_cnt_sel_addr + umc_reg_offset) * 4); /* set ce error interrupt type to APIC based interrupt */ odecc_cnt_sel = REG_SET_FIELD(odecc_cnt_sel, UMCCH0_OdEccCntSel, OdEccErrInt, 0x1); WREG32_PCIE_EXT((odecc_cnt_sel_addr + umc_reg_offset) * 4, odecc_cnt_sel); /* set error count to initial value */ WREG32_PCIE_EXT((odecc_err_cnt_addr + umc_reg_offset) * 4, UMC_V12_0_CE_CNT_INIT); return 0; } #ifdef TO_BE_REMOVED static void umc_v12_0_ecc_info_query_ras_error_count(struct amdgpu_device *adev, void *ras_error_status) { struct ras_query_context qctx; memset(&qctx, 0, sizeof(qctx)); qctx.event_id = amdgpu_ras_acquire_event_id(adev, amdgpu_ras_intr_triggered() ? RAS_EVENT_TYPE_ISR : RAS_EVENT_TYPE_INVALID); amdgpu_mca_smu_log_ras_error(adev, AMDGPU_RAS_BLOCK__UMC, AMDGPU_MCA_ERROR_TYPE_CE, ras_error_status, &qctx); amdgpu_mca_smu_log_ras_error(adev, AMDGPU_RAS_BLOCK__UMC, AMDGPU_MCA_ERROR_TYPE_UE, ras_error_status, &qctx); } static void umc_v12_0_ecc_info_query_ras_error_address(struct amdgpu_device *adev, void *ras_error_status) { struct ras_err_node *err_node; uint64_t mc_umc_status; struct ras_err_info *err_info; struct ras_err_addr *mca_err_addr, *tmp; struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; struct ta_ras_query_address_input addr_in; for_each_ras_error(err_node, err_data) { err_info = &err_node->err_info; if (list_empty(&err_info->err_addr_list)) continue; addr_in.ma.node_inst = err_info->mcm_info.die_id; addr_in.ma.socket_id = err_info->mcm_info.socket_id; list_for_each_entry_safe(mca_err_addr, tmp, &err_info->err_addr_list, node) { mc_umc_status = mca_err_addr->err_status; if (mc_umc_status && (umc_v12_0_is_uncorrectable_error(adev, mc_umc_status) || umc_v12_0_is_deferred_error(adev, mc_umc_status))) { uint64_t mca_addr, err_addr, mca_ipid; uint32_t InstanceIdLo; mca_addr = mca_err_addr->err_addr; mca_ipid = mca_err_addr->err_ipid; err_addr = REG_GET_FIELD(mca_addr, MCA_UMC_UMC0_MCUMC_ADDRT0, ErrorAddr); InstanceIdLo = REG_GET_FIELD(mca_ipid, MCMP1_IPIDT0, InstanceIdLo); addr_in.ma.err_addr = err_addr; addr_in.ma.ch_inst = MCA_IPID_LO_2_UMC_CH(InstanceIdLo); addr_in.ma.umc_inst = MCA_IPID_LO_2_UMC_INST(InstanceIdLo); dev_info(adev->dev, "UMC:IPID:0x%llx, aid:%d, inst:%d, ch:%d, err_addr:0x%llx\n", mca_ipid, err_info->mcm_info.die_id, MCA_IPID_LO_2_UMC_INST(InstanceIdLo), MCA_IPID_LO_2_UMC_CH(InstanceIdLo), err_addr); umc_v12_0_convert_error_address(adev, err_data, &addr_in); } /* Delete error address node from list and free memory */ amdgpu_ras_del_mca_err_addr(err_info, mca_err_addr); } } } #endif static bool umc_v12_0_check_ecc_err_status(struct amdgpu_device *adev, enum amdgpu_mca_error_type type, void *ras_error_status) { uint64_t mc_umc_status = *(uint64_t *)ras_error_status; switch (type) { case AMDGPU_MCA_ERROR_TYPE_UE: return umc_v12_0_is_uncorrectable_error(adev, mc_umc_status); case AMDGPU_MCA_ERROR_TYPE_CE: return umc_v12_0_is_correctable_error(adev, mc_umc_status); case AMDGPU_MCA_ERROR_TYPE_DE: return umc_v12_0_is_deferred_error(adev, mc_umc_status); default: return false; } return false; } static void umc_v12_0_err_cnt_init(struct amdgpu_device *adev) { amdgpu_umc_loop_channels(adev, umc_v12_0_err_cnt_init_per_channel, NULL); } static bool umc_v12_0_query_ras_poison_mode(struct amdgpu_device *adev) { /* * Force return true, because regUMCCH0_EccCtrl * is not accessible from host side */ return true; } const struct amdgpu_ras_block_hw_ops umc_v12_0_ras_hw_ops = { .query_ras_error_count = umc_v12_0_query_ras_error_count, .query_ras_error_address = umc_v12_0_query_ras_error_address, }; static int umc_v12_0_aca_bank_parser(struct aca_handle *handle, struct aca_bank *bank, enum aca_smu_type type, void *data) { struct amdgpu_device *adev = handle->adev; struct aca_bank_info info; enum aca_error_type err_type; u64 status, count; u32 ext_error_code; int ret; status = bank->regs[ACA_REG_IDX_STATUS]; if (umc_v12_0_is_deferred_error(adev, status)) err_type = ACA_ERROR_TYPE_DEFERRED; else if (umc_v12_0_is_uncorrectable_error(adev, status)) err_type = ACA_ERROR_TYPE_UE; else if (umc_v12_0_is_correctable_error(adev, status)) err_type = ACA_ERROR_TYPE_CE; else return 0; ret = aca_bank_info_decode(bank, &info); if (ret) return ret; amdgpu_umc_update_ecc_status(adev, bank->regs[ACA_REG_IDX_STATUS], bank->regs[ACA_REG_IDX_IPID], bank->regs[ACA_REG_IDX_ADDR]); ext_error_code = ACA_REG__STATUS__ERRORCODEEXT(status); count = ext_error_code == 0 ? ACA_REG__MISC0__ERRCNT(bank->regs[ACA_REG_IDX_MISC0]) : 1ULL; return aca_error_cache_log_bank_error(handle, &info, err_type, count); } static const struct aca_bank_ops umc_v12_0_aca_bank_ops = { .aca_bank_parser = umc_v12_0_aca_bank_parser, }; const struct aca_info umc_v12_0_aca_info = { .hwip = ACA_HWIP_TYPE_UMC, .mask = ACA_ERROR_UE_MASK | ACA_ERROR_CE_MASK | ACA_ERROR_DEFERRED_MASK, .bank_ops = &umc_v12_0_aca_bank_ops, }; static int umc_v12_0_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) { int ret; ret = amdgpu_umc_ras_late_init(adev, ras_block); if (ret) return ret; ret = amdgpu_ras_bind_aca(adev, AMDGPU_RAS_BLOCK__UMC, &umc_v12_0_aca_info, NULL); if (ret) return ret; return 0; } static int umc_v12_0_update_ecc_status(struct amdgpu_device *adev, uint64_t status, uint64_t ipid, uint64_t addr) { struct amdgpu_ras *con = amdgpu_ras_get_context(adev); uint16_t hwid, mcatype; struct ta_ras_query_address_input addr_in; uint64_t page_pfn[UMC_V12_0_BAD_PAGE_NUM_PER_CHANNEL]; uint64_t err_addr, hash_val = 0; struct ras_ecc_err *ecc_err; int count; int ret; hwid = REG_GET_FIELD(ipid, MCMP1_IPIDT0, HardwareID); mcatype = REG_GET_FIELD(ipid, MCMP1_IPIDT0, McaType); if ((hwid != MCA_UMC_HWID_V12_0) || (mcatype != MCA_UMC_MCATYPE_V12_0)) return 0; if (!status) return 0; if (!umc_v12_0_is_deferred_error(adev, status)) return 0; err_addr = REG_GET_FIELD(addr, MCA_UMC_UMC0_MCUMC_ADDRT0, ErrorAddr); dev_info(adev->dev, "UMC:IPID:0x%llx, socket:%llu, aid:%llu, inst:%llu, ch:%llu, err_addr:0x%llx\n", ipid, MCA_IPID_2_SOCKET_ID(ipid), MCA_IPID_2_DIE_ID(ipid), MCA_IPID_2_UMC_INST(ipid), MCA_IPID_2_UMC_CH(ipid), err_addr); memset(page_pfn, 0, sizeof(page_pfn)); memset(&addr_in, 0, sizeof(addr_in)); addr_in.ma.err_addr = err_addr; addr_in.ma.ch_inst = MCA_IPID_2_UMC_CH(ipid); addr_in.ma.umc_inst = MCA_IPID_2_UMC_INST(ipid); addr_in.ma.node_inst = MCA_IPID_2_DIE_ID(ipid); addr_in.ma.socket_id = MCA_IPID_2_SOCKET_ID(ipid); count = umc_v12_0_convert_err_addr(adev, &addr_in, page_pfn, ARRAY_SIZE(page_pfn)); if (count <= 0) { dev_warn(adev->dev, "Fail to convert error address! count:%d\n", count); return 0; } ret = amdgpu_umc_build_pages_hash(adev, page_pfn, count, &hash_val); if (ret) { dev_err(adev->dev, "Fail to build error pages hash\n"); return ret; } ecc_err = kzalloc(sizeof(*ecc_err), GFP_KERNEL); if (!ecc_err) return -ENOMEM; ecc_err->err_pages.pfn = kcalloc(count, sizeof(*ecc_err->err_pages.pfn), GFP_KERNEL); if (!ecc_err->err_pages.pfn) { kfree(ecc_err); return -ENOMEM; } memcpy(ecc_err->err_pages.pfn, page_pfn, count * sizeof(*ecc_err->err_pages.pfn)); ecc_err->err_pages.count = count; ecc_err->hash_index = hash_val; ecc_err->status = status; ecc_err->ipid = ipid; ecc_err->addr = addr; ret = amdgpu_umc_logs_ecc_err(adev, &con->umc_ecc_log.de_page_tree, ecc_err); if (ret) { if (ret == -EEXIST) con->umc_ecc_log.de_updated = true; else dev_err(adev->dev, "Fail to log ecc error! ret:%d\n", ret); kfree(ecc_err->err_pages.pfn); kfree(ecc_err); return ret; } con->umc_ecc_log.de_updated = true; return 0; } static int umc_v12_0_fill_error_record(struct amdgpu_device *adev, struct ras_ecc_err *ecc_err, void *ras_error_status) { struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; uint32_t i = 0; int ret = 0; if (!err_data || !ecc_err) return -EINVAL; for (i = 0; i < ecc_err->err_pages.count; i++) { ret = amdgpu_umc_fill_error_record(err_data, ecc_err->addr, ecc_err->err_pages.pfn[i] << AMDGPU_GPU_PAGE_SHIFT, MCA_IPID_2_UMC_CH(ecc_err->ipid), MCA_IPID_2_UMC_INST(ecc_err->ipid)); if (ret) break; } err_data->de_count++; return ret; } static void umc_v12_0_query_ras_ecc_err_addr(struct amdgpu_device *adev, void *ras_error_status) { struct amdgpu_ras *con = amdgpu_ras_get_context(adev); struct ras_ecc_err *entries[MAX_ECC_NUM_PER_RETIREMENT]; struct radix_tree_root *ecc_tree; int new_detected, ret, i; ecc_tree = &con->umc_ecc_log.de_page_tree; mutex_lock(&con->umc_ecc_log.lock); new_detected = radix_tree_gang_lookup_tag(ecc_tree, (void **)entries, 0, ARRAY_SIZE(entries), UMC_ECC_NEW_DETECTED_TAG); for (i = 0; i < new_detected; i++) { if (!entries[i]) continue; ret = umc_v12_0_fill_error_record(adev, entries[i], ras_error_status); if (ret) { dev_err(adev->dev, "Fail to fill umc error record, ret:%d\n", ret); break; } radix_tree_tag_clear(ecc_tree, entries[i]->hash_index, UMC_ECC_NEW_DETECTED_TAG); } mutex_unlock(&con->umc_ecc_log.lock); } struct amdgpu_umc_ras umc_v12_0_ras = { .ras_block = { .hw_ops = &umc_v12_0_ras_hw_ops, .ras_late_init = umc_v12_0_ras_late_init, }, .err_cnt_init = umc_v12_0_err_cnt_init, .query_ras_poison_mode = umc_v12_0_query_ras_poison_mode, .ecc_info_query_ras_error_address = umc_v12_0_query_ras_ecc_err_addr, .check_ecc_err_status = umc_v12_0_check_ecc_err_status, .update_ecc_status = umc_v12_0_update_ecc_status, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1