Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Leo Liu | 3186 | 66.39% | 5 | 7.58% |
Xiangliang Yu | 636 | 13.25% | 4 | 6.06% |
Alex Deucher | 387 | 8.06% | 6 | 9.09% |
Frank Min | 157 | 3.27% | 11 | 16.67% |
Evan Quan | 115 | 2.40% | 2 | 3.03% |
Christian König | 78 | 1.63% | 10 | 15.15% |
Andrey Grodzovsky | 45 | 0.94% | 3 | 4.55% |
Trigger Huang | 44 | 0.92% | 2 | 3.03% |
James Zhu | 29 | 0.60% | 1 | 1.52% |
Daniel Wang | 18 | 0.38% | 1 | 1.52% |
Oak Zeng | 15 | 0.31% | 2 | 3.03% |
Grazvydas Ignotas | 11 | 0.23% | 1 | 1.52% |
Rex Zhu | 11 | 0.23% | 2 | 3.03% |
Satyajit Sahu | 10 | 0.21% | 1 | 1.52% |
Jack Xiao | 8 | 0.17% | 2 | 3.03% |
Harry Wentland | 8 | 0.17% | 1 | 1.52% |
Le Ma | 6 | 0.13% | 1 | 1.52% |
Guchun Chen | 6 | 0.13% | 1 | 1.52% |
Feifei Xu | 5 | 0.10% | 2 | 3.03% |
Chunming Zhou | 5 | 0.10% | 1 | 1.52% |
Monk Liu | 5 | 0.10% | 1 | 1.52% |
Hawking Zhang | 4 | 0.08% | 1 | 1.52% |
Ken Wang | 3 | 0.06% | 1 | 1.52% |
Huang Rui | 3 | 0.06% | 1 | 1.52% |
Michel Dänzer | 2 | 0.04% | 1 | 1.52% |
Nirmoy Das | 2 | 0.04% | 2 | 3.03% |
Total | 4799 | 66 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ #include <linux/firmware.h> #include <drm/drm_drv.h> #include "amdgpu.h" #include "amdgpu_vce.h" #include "soc15.h" #include "soc15d.h" #include "soc15_common.h" #include "mmsch_v1_0.h" #include "vce/vce_4_0_offset.h" #include "vce/vce_4_0_default.h" #include "vce/vce_4_0_sh_mask.h" #include "mmhub/mmhub_1_0_offset.h" #include "mmhub/mmhub_1_0_sh_mask.h" #include "ivsrcid/vce/irqsrcs_vce_4_0.h" #define VCE_STATUS_VCPU_REPORT_FW_LOADED_MASK 0x02 #define VCE_V4_0_FW_SIZE (384 * 1024) #define VCE_V4_0_STACK_SIZE (64 * 1024) #define VCE_V4_0_DATA_SIZE ((16 * 1024 * AMDGPU_MAX_VCE_HANDLES) + (52 * 1024)) static void vce_v4_0_mc_resume(struct amdgpu_device *adev); static void vce_v4_0_set_ring_funcs(struct amdgpu_device *adev); static void vce_v4_0_set_irq_funcs(struct amdgpu_device *adev); /** * vce_v4_0_ring_get_rptr - get read pointer * * @ring: amdgpu_ring pointer * * Returns the current hardware read pointer */ static uint64_t vce_v4_0_ring_get_rptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->me == 0) return RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_RPTR)); else if (ring->me == 1) return RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_RPTR2)); else return RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_RPTR3)); } /** * vce_v4_0_ring_get_wptr - get write pointer * * @ring: amdgpu_ring pointer * * Returns the current hardware write pointer */ static uint64_t vce_v4_0_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->use_doorbell) return *ring->wptr_cpu_addr; if (ring->me == 0) return RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_WPTR)); else if (ring->me == 1) return RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_WPTR2)); else return RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_WPTR3)); } /** * vce_v4_0_ring_set_wptr - set write pointer * * @ring: amdgpu_ring pointer * * Commits the write pointer to the hardware */ static void vce_v4_0_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->use_doorbell) { /* XXX check if swapping is necessary on BE */ *ring->wptr_cpu_addr = lower_32_bits(ring->wptr); WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr)); return; } if (ring->me == 0) WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_WPTR), lower_32_bits(ring->wptr)); else if (ring->me == 1) WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_WPTR2), lower_32_bits(ring->wptr)); else WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_WPTR3), lower_32_bits(ring->wptr)); } static int vce_v4_0_firmware_loaded(struct amdgpu_device *adev) { int i, j; for (i = 0; i < 10; ++i) { for (j = 0; j < 100; ++j) { uint32_t status = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_STATUS)); if (status & VCE_STATUS_VCPU_REPORT_FW_LOADED_MASK) return 0; mdelay(10); } DRM_ERROR("VCE not responding, trying to reset the ECPU!!!\n"); WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_SOFT_RESET), VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK, ~VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK); mdelay(10); WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_SOFT_RESET), 0, ~VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK); mdelay(10); } return -ETIMEDOUT; } static int vce_v4_0_mmsch_start(struct amdgpu_device *adev, struct amdgpu_mm_table *table) { uint32_t data = 0, loop; uint64_t addr = table->gpu_addr; struct mmsch_v1_0_init_header *header = (struct mmsch_v1_0_init_header *)table->cpu_addr; uint32_t size; size = header->header_size + header->vce_table_size + header->uvd_table_size; /* 1, write to vce_mmsch_vf_ctx_addr_lo/hi register with GPU mc addr of memory descriptor location */ WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_MMSCH_VF_CTX_ADDR_LO), lower_32_bits(addr)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_MMSCH_VF_CTX_ADDR_HI), upper_32_bits(addr)); /* 2, update vmid of descriptor */ data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_MMSCH_VF_VMID)); data &= ~VCE_MMSCH_VF_VMID__VF_CTX_VMID_MASK; data |= (0 << VCE_MMSCH_VF_VMID__VF_CTX_VMID__SHIFT); /* use domain0 for MM scheduler */ WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_MMSCH_VF_VMID), data); /* 3, notify mmsch about the size of this descriptor */ WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_MMSCH_VF_CTX_SIZE), size); /* 4, set resp to zero */ WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_MMSCH_VF_MAILBOX_RESP), 0); WDOORBELL32(adev->vce.ring[0].doorbell_index, 0); *adev->vce.ring[0].wptr_cpu_addr = 0; adev->vce.ring[0].wptr = 0; adev->vce.ring[0].wptr_old = 0; /* 5, kick off the initialization and wait until VCE_MMSCH_VF_MAILBOX_RESP becomes non-zero */ WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_MMSCH_VF_MAILBOX_HOST), 0x10000001); data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_MMSCH_VF_MAILBOX_RESP)); loop = 1000; while ((data & 0x10000002) != 0x10000002) { udelay(10); data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_MMSCH_VF_MAILBOX_RESP)); loop--; if (!loop) break; } if (!loop) { dev_err(adev->dev, "failed to init MMSCH, mmVCE_MMSCH_VF_MAILBOX_RESP = %x\n", data); return -EBUSY; } return 0; } static int vce_v4_0_sriov_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring; uint32_t offset, size; uint32_t table_size = 0; struct mmsch_v1_0_cmd_direct_write direct_wt = { { 0 } }; struct mmsch_v1_0_cmd_direct_read_modify_write direct_rd_mod_wt = { { 0 } }; struct mmsch_v1_0_cmd_direct_polling direct_poll = { { 0 } }; struct mmsch_v1_0_cmd_end end = { { 0 } }; uint32_t *init_table = adev->virt.mm_table.cpu_addr; struct mmsch_v1_0_init_header *header = (struct mmsch_v1_0_init_header *)init_table; direct_wt.cmd_header.command_type = MMSCH_COMMAND__DIRECT_REG_WRITE; direct_rd_mod_wt.cmd_header.command_type = MMSCH_COMMAND__DIRECT_REG_READ_MODIFY_WRITE; direct_poll.cmd_header.command_type = MMSCH_COMMAND__DIRECT_REG_POLLING; end.cmd_header.command_type = MMSCH_COMMAND__END; if (header->vce_table_offset == 0 && header->vce_table_size == 0) { header->version = MMSCH_VERSION; header->header_size = sizeof(struct mmsch_v1_0_init_header) >> 2; if (header->uvd_table_offset == 0 && header->uvd_table_size == 0) header->vce_table_offset = header->header_size; else header->vce_table_offset = header->uvd_table_size + header->uvd_table_offset; init_table += header->vce_table_offset; ring = &adev->vce.ring[0]; MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_BASE_LO), lower_32_bits(ring->gpu_addr)); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_BASE_HI), upper_32_bits(ring->gpu_addr)); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_SIZE), ring->ring_size / 4); /* BEGING OF MC_RESUME */ MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_CTRL), 0x398000); MMSCH_V1_0_INSERT_DIRECT_RD_MOD_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_CACHE_CTRL), ~0x1, 0); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_SWAP_CNTL), 0); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_SWAP_CNTL1), 0); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VM_CTRL), 0); offset = AMDGPU_VCE_FIRMWARE_OFFSET; if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { uint32_t low = adev->firmware.ucode[AMDGPU_UCODE_ID_VCE].tmr_mc_addr_lo; uint32_t hi = adev->firmware.ucode[AMDGPU_UCODE_ID_VCE].tmr_mc_addr_hi; uint64_t tmr_mc_addr = (uint64_t)(hi) << 32 | low; MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_40BIT_BAR0), tmr_mc_addr >> 8); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_64BIT_BAR0), (tmr_mc_addr >> 40) & 0xff); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_OFFSET0), 0); } else { MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_40BIT_BAR0), adev->vce.gpu_addr >> 8); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_64BIT_BAR0), (adev->vce.gpu_addr >> 40) & 0xff); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_OFFSET0), offset & ~0x0f000000); } MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_40BIT_BAR1), adev->vce.gpu_addr >> 8); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_64BIT_BAR1), (adev->vce.gpu_addr >> 40) & 0xff); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_40BIT_BAR2), adev->vce.gpu_addr >> 8); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_64BIT_BAR2), (adev->vce.gpu_addr >> 40) & 0xff); size = VCE_V4_0_FW_SIZE; MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_SIZE0), size); offset = (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) ? offset + size : 0; size = VCE_V4_0_STACK_SIZE; MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_OFFSET1), (offset & ~0x0f000000) | (1 << 24)); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_SIZE1), size); offset += size; size = VCE_V4_0_DATA_SIZE; MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_OFFSET2), (offset & ~0x0f000000) | (2 << 24)); MMSCH_V1_0_INSERT_DIRECT_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_SIZE2), size); MMSCH_V1_0_INSERT_DIRECT_RD_MOD_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_CTRL2), ~0x100, 0); MMSCH_V1_0_INSERT_DIRECT_RD_MOD_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_SYS_INT_EN), VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK, VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK); /* end of MC_RESUME */ MMSCH_V1_0_INSERT_DIRECT_RD_MOD_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_STATUS), VCE_STATUS__JOB_BUSY_MASK, ~VCE_STATUS__JOB_BUSY_MASK); MMSCH_V1_0_INSERT_DIRECT_RD_MOD_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CNTL), ~0x200001, VCE_VCPU_CNTL__CLK_EN_MASK); MMSCH_V1_0_INSERT_DIRECT_RD_MOD_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_SOFT_RESET), ~VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK, 0); MMSCH_V1_0_INSERT_DIRECT_POLL(SOC15_REG_OFFSET(VCE, 0, mmVCE_STATUS), VCE_STATUS_VCPU_REPORT_FW_LOADED_MASK, VCE_STATUS_VCPU_REPORT_FW_LOADED_MASK); /* clear BUSY flag */ MMSCH_V1_0_INSERT_DIRECT_RD_MOD_WT(SOC15_REG_OFFSET(VCE, 0, mmVCE_STATUS), ~VCE_STATUS__JOB_BUSY_MASK, 0); /* add end packet */ memcpy((void *)init_table, &end, sizeof(struct mmsch_v1_0_cmd_end)); table_size += sizeof(struct mmsch_v1_0_cmd_end) / 4; header->vce_table_size = table_size; } return vce_v4_0_mmsch_start(adev, &adev->virt.mm_table); } /** * vce_v4_0_start - start VCE block * * @adev: amdgpu_device pointer * * Setup and start the VCE block */ static int vce_v4_0_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring; int r; ring = &adev->vce.ring[0]; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_RPTR), lower_32_bits(ring->wptr)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_WPTR), lower_32_bits(ring->wptr)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_BASE_LO), ring->gpu_addr); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_BASE_HI), upper_32_bits(ring->gpu_addr)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_SIZE), ring->ring_size / 4); ring = &adev->vce.ring[1]; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_RPTR2), lower_32_bits(ring->wptr)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_WPTR2), lower_32_bits(ring->wptr)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_BASE_LO2), ring->gpu_addr); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_BASE_HI2), upper_32_bits(ring->gpu_addr)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_SIZE2), ring->ring_size / 4); ring = &adev->vce.ring[2]; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_RPTR3), lower_32_bits(ring->wptr)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_WPTR3), lower_32_bits(ring->wptr)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_BASE_LO3), ring->gpu_addr); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_BASE_HI3), upper_32_bits(ring->gpu_addr)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_SIZE3), ring->ring_size / 4); vce_v4_0_mc_resume(adev); WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_STATUS), VCE_STATUS__JOB_BUSY_MASK, ~VCE_STATUS__JOB_BUSY_MASK); WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CNTL), 1, ~0x200001); WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_SOFT_RESET), 0, ~VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK); mdelay(100); r = vce_v4_0_firmware_loaded(adev); /* clear BUSY flag */ WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_STATUS), 0, ~VCE_STATUS__JOB_BUSY_MASK); if (r) { DRM_ERROR("VCE not responding, giving up!!!\n"); return r; } return 0; } static int vce_v4_0_stop(struct amdgpu_device *adev) { /* Disable VCPU */ WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CNTL), 0, ~0x200001); /* hold on ECPU */ WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_SOFT_RESET), VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK, ~VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK); /* clear VCE_STATUS */ WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_STATUS), 0); /* Set Clock-Gating off */ /* if (adev->cg_flags & AMD_CG_SUPPORT_VCE_MGCG) vce_v4_0_set_vce_sw_clock_gating(adev, false); */ return 0; } static int vce_v4_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) /* currently only VCN0 support SRIOV */ adev->vce.num_rings = 1; else adev->vce.num_rings = 3; vce_v4_0_set_ring_funcs(adev); vce_v4_0_set_irq_funcs(adev); return 0; } static int vce_v4_0_sw_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct amdgpu_ring *ring; unsigned size; int r, i; r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_VCE0, 167, &adev->vce.irq); if (r) return r; size = VCE_V4_0_STACK_SIZE + VCE_V4_0_DATA_SIZE; if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) size += VCE_V4_0_FW_SIZE; r = amdgpu_vce_sw_init(adev, size); if (r) return r; if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { const struct common_firmware_header *hdr; unsigned size = amdgpu_bo_size(adev->vce.vcpu_bo); adev->vce.saved_bo = kvmalloc(size, GFP_KERNEL); if (!adev->vce.saved_bo) return -ENOMEM; hdr = (const struct common_firmware_header *)adev->vce.fw->data; adev->firmware.ucode[AMDGPU_UCODE_ID_VCE].ucode_id = AMDGPU_UCODE_ID_VCE; adev->firmware.ucode[AMDGPU_UCODE_ID_VCE].fw = adev->vce.fw; adev->firmware.fw_size += ALIGN(le32_to_cpu(hdr->ucode_size_bytes), PAGE_SIZE); DRM_INFO("PSP loading VCE firmware\n"); } else { r = amdgpu_vce_resume(adev); if (r) return r; } for (i = 0; i < adev->vce.num_rings; i++) { enum amdgpu_ring_priority_level hw_prio = amdgpu_vce_get_ring_prio(i); ring = &adev->vce.ring[i]; ring->vm_hub = AMDGPU_MMHUB0(0); sprintf(ring->name, "vce%d", i); if (amdgpu_sriov_vf(adev)) { /* DOORBELL only works under SRIOV */ ring->use_doorbell = true; /* currently only use the first encoding ring for sriov, * so set unused location for other unused rings. */ if (i == 0) ring->doorbell_index = adev->doorbell_index.uvd_vce.vce_ring0_1 * 2; else ring->doorbell_index = adev->doorbell_index.uvd_vce.vce_ring2_3 * 2 + 1; } r = amdgpu_ring_init(adev, ring, 512, &adev->vce.irq, 0, hw_prio, NULL); if (r) return r; } r = amdgpu_virt_alloc_mm_table(adev); if (r) return r; return r; } static int vce_v4_0_sw_fini(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* free MM table */ amdgpu_virt_free_mm_table(adev); if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { kvfree(adev->vce.saved_bo); adev->vce.saved_bo = NULL; } r = amdgpu_vce_suspend(adev); if (r) return r; return amdgpu_vce_sw_fini(adev); } static int vce_v4_0_hw_init(void *handle) { int r, i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) r = vce_v4_0_sriov_start(adev); else r = vce_v4_0_start(adev); if (r) return r; for (i = 0; i < adev->vce.num_rings; i++) { r = amdgpu_ring_test_helper(&adev->vce.ring[i]); if (r) return r; } DRM_INFO("VCE initialized successfully.\n"); return 0; } static int vce_v4_0_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; cancel_delayed_work_sync(&adev->vce.idle_work); if (!amdgpu_sriov_vf(adev)) { /* vce_v4_0_wait_for_idle(handle); */ vce_v4_0_stop(adev); } else { /* full access mode, so don't touch any VCE register */ DRM_DEBUG("For SRIOV client, shouldn't do anything.\n"); } return 0; } static int vce_v4_0_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r, idx; if (adev->vce.vcpu_bo == NULL) return 0; if (drm_dev_enter(adev_to_drm(adev), &idx)) { if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { unsigned size = amdgpu_bo_size(adev->vce.vcpu_bo); void *ptr = adev->vce.cpu_addr; memcpy_fromio(adev->vce.saved_bo, ptr, size); } drm_dev_exit(idx); } /* * Proper cleanups before halting the HW engine: * - cancel the delayed idle work * - enable powergating * - enable clockgating * - disable dpm * * TODO: to align with the VCN implementation, move the * jobs for clockgating/powergating/dpm setting to * ->set_powergating_state(). */ cancel_delayed_work_sync(&adev->vce.idle_work); if (adev->pm.dpm_enabled) { amdgpu_dpm_enable_vce(adev, false); } else { amdgpu_asic_set_vce_clocks(adev, 0, 0); amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_GATE); amdgpu_device_ip_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE, AMD_CG_STATE_GATE); } r = vce_v4_0_hw_fini(adev); if (r) return r; return amdgpu_vce_suspend(adev); } static int vce_v4_0_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r, idx; if (adev->vce.vcpu_bo == NULL) return -EINVAL; if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { if (drm_dev_enter(adev_to_drm(adev), &idx)) { unsigned size = amdgpu_bo_size(adev->vce.vcpu_bo); void *ptr = adev->vce.cpu_addr; memcpy_toio(ptr, adev->vce.saved_bo, size); drm_dev_exit(idx); } } else { r = amdgpu_vce_resume(adev); if (r) return r; } return vce_v4_0_hw_init(adev); } static void vce_v4_0_mc_resume(struct amdgpu_device *adev) { uint32_t offset, size; uint64_t tmr_mc_addr; WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_CLOCK_GATING_A), 0, ~(1 << 16)); WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_CLOCK_GATING), 0x1FF000, ~0xFF9FF000); WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_REG_CLOCK_GATING), 0x3F, ~0x3F); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_CLOCK_GATING_B), 0x1FF); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_CTRL), 0x00398000); WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_CACHE_CTRL), 0x0, ~0x1); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_SWAP_CNTL), 0); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_SWAP_CNTL1), 0); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VM_CTRL), 0); offset = AMDGPU_VCE_FIRMWARE_OFFSET; if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { tmr_mc_addr = (uint64_t)(adev->firmware.ucode[AMDGPU_UCODE_ID_VCE].tmr_mc_addr_hi) << 32 | adev->firmware.ucode[AMDGPU_UCODE_ID_VCE].tmr_mc_addr_lo; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_40BIT_BAR0), (tmr_mc_addr >> 8)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_64BIT_BAR0), (tmr_mc_addr >> 40) & 0xff); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_OFFSET0), 0); } else { WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_40BIT_BAR0), (adev->vce.gpu_addr >> 8)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_64BIT_BAR0), (adev->vce.gpu_addr >> 40) & 0xff); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_OFFSET0), offset & ~0x0f000000); } size = VCE_V4_0_FW_SIZE; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_SIZE0), size); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_40BIT_BAR1), (adev->vce.gpu_addr >> 8)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_64BIT_BAR1), (adev->vce.gpu_addr >> 40) & 0xff); offset = (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) ? offset + size : 0; size = VCE_V4_0_STACK_SIZE; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_OFFSET1), (offset & ~0x0f000000) | (1 << 24)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_SIZE1), size); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_40BIT_BAR2), (adev->vce.gpu_addr >> 8)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_VCPU_CACHE_64BIT_BAR2), (adev->vce.gpu_addr >> 40) & 0xff); offset += size; size = VCE_V4_0_DATA_SIZE; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_OFFSET2), (offset & ~0x0f000000) | (2 << 24)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_VCPU_CACHE_SIZE2), size); WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_LMI_CTRL2), 0x0, ~0x100); WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_SYS_INT_EN), VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK, ~VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK); } static int vce_v4_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { /* needed for driver unload*/ return 0; } #if 0 static bool vce_v4_0_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 mask = 0; mask |= (adev->vce.harvest_config & AMDGPU_VCE_HARVEST_VCE0) ? 0 : SRBM_STATUS2__VCE0_BUSY_MASK; mask |= (adev->vce.harvest_config & AMDGPU_VCE_HARVEST_VCE1) ? 0 : SRBM_STATUS2__VCE1_BUSY_MASK; return !(RREG32(mmSRBM_STATUS2) & mask); } static int vce_v4_0_wait_for_idle(void *handle) { unsigned i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) if (vce_v4_0_is_idle(handle)) return 0; return -ETIMEDOUT; } #define VCE_STATUS_VCPU_REPORT_AUTO_BUSY_MASK 0x00000008L /* AUTO_BUSY */ #define VCE_STATUS_VCPU_REPORT_RB0_BUSY_MASK 0x00000010L /* RB0_BUSY */ #define VCE_STATUS_VCPU_REPORT_RB1_BUSY_MASK 0x00000020L /* RB1_BUSY */ #define AMDGPU_VCE_STATUS_BUSY_MASK (VCE_STATUS_VCPU_REPORT_AUTO_BUSY_MASK | \ VCE_STATUS_VCPU_REPORT_RB0_BUSY_MASK) static bool vce_v4_0_check_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 srbm_soft_reset = 0; /* According to VCE team , we should use VCE_STATUS instead * SRBM_STATUS.VCE_BUSY bit for busy status checking. * GRBM_GFX_INDEX.INSTANCE_INDEX is used to specify which VCE * instance's registers are accessed * (0 for 1st instance, 10 for 2nd instance). * *VCE_STATUS *|UENC|ACPI|AUTO ACTIVE|RB1 |RB0 |RB2 | |FW_LOADED|JOB | *|----+----+-----------+----+----+----+----------+---------+----| *|bit8|bit7| bit6 |bit5|bit4|bit3| bit2 | bit1 |bit0| * * VCE team suggest use bit 3--bit 6 for busy status check */ mutex_lock(&adev->grbm_idx_mutex); WREG32_FIELD(GRBM_GFX_INDEX, INSTANCE_INDEX, 0); if (RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_STATUS) & AMDGPU_VCE_STATUS_BUSY_MASK) { srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VCE0, 1); srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VCE1, 1); } WREG32_FIELD(GRBM_GFX_INDEX, INSTANCE_INDEX, 0x10); if (RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_STATUS) & AMDGPU_VCE_STATUS_BUSY_MASK) { srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VCE0, 1); srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VCE1, 1); } WREG32_FIELD(GRBM_GFX_INDEX, INSTANCE_INDEX, 0); mutex_unlock(&adev->grbm_idx_mutex); if (srbm_soft_reset) { adev->vce.srbm_soft_reset = srbm_soft_reset; return true; } else { adev->vce.srbm_soft_reset = 0; return false; } } static int vce_v4_0_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 srbm_soft_reset; if (!adev->vce.srbm_soft_reset) return 0; srbm_soft_reset = adev->vce.srbm_soft_reset; if (srbm_soft_reset) { u32 tmp; tmp = RREG32(mmSRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); /* Wait a little for things to settle down */ udelay(50); } return 0; } static int vce_v4_0_pre_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!adev->vce.srbm_soft_reset) return 0; mdelay(5); return vce_v4_0_suspend(adev); } static int vce_v4_0_post_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!adev->vce.srbm_soft_reset) return 0; mdelay(5); return vce_v4_0_resume(adev); } static void vce_v4_0_override_vce_clock_gating(struct amdgpu_device *adev, bool override) { u32 tmp, data; tmp = data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_ARB_CTRL)); if (override) data |= VCE_RB_ARB_CTRL__VCE_CGTT_OVERRIDE_MASK; else data &= ~VCE_RB_ARB_CTRL__VCE_CGTT_OVERRIDE_MASK; if (tmp != data) WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_RB_ARB_CTRL), data); } static void vce_v4_0_set_vce_sw_clock_gating(struct amdgpu_device *adev, bool gated) { u32 data; /* Set Override to disable Clock Gating */ vce_v4_0_override_vce_clock_gating(adev, true); /* This function enables MGCG which is controlled by firmware. With the clocks in the gated state the core is still accessible but the firmware will throttle the clocks on the fly as necessary. */ if (gated) { data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_CLOCK_GATING_B)); data |= 0x1ff; data &= ~0xef0000; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_CLOCK_GATING_B), data); data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_CLOCK_GATING)); data |= 0x3ff000; data &= ~0xffc00000; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_CLOCK_GATING), data); data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_CLOCK_GATING_2)); data |= 0x2; data &= ~0x00010000; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_CLOCK_GATING_2), data); data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_REG_CLOCK_GATING)); data |= 0x37f; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_REG_CLOCK_GATING), data); data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_DMA_DCLK_CTRL)); data |= VCE_UENC_DMA_DCLK_CTRL__WRDMCLK_FORCEON_MASK | VCE_UENC_DMA_DCLK_CTRL__RDDMCLK_FORCEON_MASK | VCE_UENC_DMA_DCLK_CTRL__REGCLK_FORCEON_MASK | 0x8; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_DMA_DCLK_CTRL), data); } else { data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_CLOCK_GATING_B)); data &= ~0x80010; data |= 0xe70008; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_CLOCK_GATING_B), data); data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_CLOCK_GATING)); data |= 0xffc00000; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_CLOCK_GATING), data); data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_CLOCK_GATING_2)); data |= 0x10000; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_CLOCK_GATING_2), data); data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_REG_CLOCK_GATING)); data &= ~0xffc00000; WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_REG_CLOCK_GATING), data); data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_DMA_DCLK_CTRL)); data &= ~(VCE_UENC_DMA_DCLK_CTRL__WRDMCLK_FORCEON_MASK | VCE_UENC_DMA_DCLK_CTRL__RDDMCLK_FORCEON_MASK | VCE_UENC_DMA_DCLK_CTRL__REGCLK_FORCEON_MASK | 0x8); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_DMA_DCLK_CTRL), data); } vce_v4_0_override_vce_clock_gating(adev, false); } static void vce_v4_0_set_bypass_mode(struct amdgpu_device *adev, bool enable) { u32 tmp = RREG32_SMC(ixGCK_DFS_BYPASS_CNTL); if (enable) tmp |= GCK_DFS_BYPASS_CNTL__BYPASSECLK_MASK; else tmp &= ~GCK_DFS_BYPASS_CNTL__BYPASSECLK_MASK; WREG32_SMC(ixGCK_DFS_BYPASS_CNTL, tmp); } static int vce_v4_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; bool enable = (state == AMD_CG_STATE_GATE); int i; if ((adev->asic_type == CHIP_POLARIS10) || (adev->asic_type == CHIP_TONGA) || (adev->asic_type == CHIP_FIJI)) vce_v4_0_set_bypass_mode(adev, enable); if (!(adev->cg_flags & AMD_CG_SUPPORT_VCE_MGCG)) return 0; mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < 2; i++) { /* Program VCE Instance 0 or 1 if not harvested */ if (adev->vce.harvest_config & (1 << i)) continue; WREG32_FIELD(GRBM_GFX_INDEX, VCE_INSTANCE, i); if (enable) { /* initialize VCE_CLOCK_GATING_A: Clock ON/OFF delay */ uint32_t data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_CLOCK_GATING_A); data &= ~(0xf | 0xff0); data |= ((0x0 << 0) | (0x04 << 4)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_CLOCK_GATING_A, data); /* initialize VCE_UENC_CLOCK_GATING: Clock ON/OFF delay */ data = RREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_CLOCK_GATING); data &= ~(0xf | 0xff0); data |= ((0x0 << 0) | (0x04 << 4)); WREG32(SOC15_REG_OFFSET(VCE, 0, mmVCE_UENC_CLOCK_GATING, data); } vce_v4_0_set_vce_sw_clock_gating(adev, enable); } WREG32_FIELD(GRBM_GFX_INDEX, VCE_INSTANCE, 0); mutex_unlock(&adev->grbm_idx_mutex); return 0; } #endif static int vce_v4_0_set_powergating_state(void *handle, enum amd_powergating_state state) { /* This doesn't actually powergate the VCE block. * That's done in the dpm code via the SMC. This * just re-inits the block as necessary. The actual * gating still happens in the dpm code. We should * revisit this when there is a cleaner line between * the smc and the hw blocks */ struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (state == AMD_PG_STATE_GATE) return vce_v4_0_stop(adev); else return vce_v4_0_start(adev); } static void vce_v4_0_ring_emit_ib(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); amdgpu_ring_write(ring, VCE_CMD_IB_VM); amdgpu_ring_write(ring, vmid); amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, ib->length_dw); } static void vce_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { WARN_ON(flags & AMDGPU_FENCE_FLAG_64BIT); amdgpu_ring_write(ring, VCE_CMD_FENCE); amdgpu_ring_write(ring, addr); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, seq); amdgpu_ring_write(ring, VCE_CMD_TRAP); } static void vce_v4_0_ring_insert_end(struct amdgpu_ring *ring) { amdgpu_ring_write(ring, VCE_CMD_END); } static void vce_v4_0_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, uint32_t val, uint32_t mask) { amdgpu_ring_write(ring, VCE_CMD_REG_WAIT); amdgpu_ring_write(ring, reg << 2); amdgpu_ring_write(ring, mask); amdgpu_ring_write(ring, val); } static void vce_v4_0_emit_vm_flush(struct amdgpu_ring *ring, unsigned int vmid, uint64_t pd_addr) { struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->vm_hub]; pd_addr = amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); /* wait for reg writes */ vce_v4_0_emit_reg_wait(ring, hub->ctx0_ptb_addr_lo32 + vmid * hub->ctx_addr_distance, lower_32_bits(pd_addr), 0xffffffff); } static void vce_v4_0_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { amdgpu_ring_write(ring, VCE_CMD_REG_WRITE); amdgpu_ring_write(ring, reg << 2); amdgpu_ring_write(ring, val); } static int vce_v4_0_set_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { uint32_t val = 0; if (!amdgpu_sriov_vf(adev)) { if (state == AMDGPU_IRQ_STATE_ENABLE) val |= VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK; WREG32_P(SOC15_REG_OFFSET(VCE, 0, mmVCE_SYS_INT_EN), val, ~VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK); } return 0; } static int vce_v4_0_process_interrupt(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_DEBUG("IH: VCE\n"); switch (entry->src_data[0]) { case 0: case 1: case 2: amdgpu_fence_process(&adev->vce.ring[entry->src_data[0]]); break; default: DRM_ERROR("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]); break; } return 0; } const struct amd_ip_funcs vce_v4_0_ip_funcs = { .name = "vce_v4_0", .early_init = vce_v4_0_early_init, .late_init = NULL, .sw_init = vce_v4_0_sw_init, .sw_fini = vce_v4_0_sw_fini, .hw_init = vce_v4_0_hw_init, .hw_fini = vce_v4_0_hw_fini, .suspend = vce_v4_0_suspend, .resume = vce_v4_0_resume, .is_idle = NULL /* vce_v4_0_is_idle */, .wait_for_idle = NULL /* vce_v4_0_wait_for_idle */, .check_soft_reset = NULL /* vce_v4_0_check_soft_reset */, .pre_soft_reset = NULL /* vce_v4_0_pre_soft_reset */, .soft_reset = NULL /* vce_v4_0_soft_reset */, .post_soft_reset = NULL /* vce_v4_0_post_soft_reset */, .set_clockgating_state = vce_v4_0_set_clockgating_state, .set_powergating_state = vce_v4_0_set_powergating_state, }; static const struct amdgpu_ring_funcs vce_v4_0_ring_vm_funcs = { .type = AMDGPU_RING_TYPE_VCE, .align_mask = 0x3f, .nop = VCE_CMD_NO_OP, .support_64bit_ptrs = false, .no_user_fence = true, .get_rptr = vce_v4_0_ring_get_rptr, .get_wptr = vce_v4_0_ring_get_wptr, .set_wptr = vce_v4_0_ring_set_wptr, .parse_cs = amdgpu_vce_ring_parse_cs_vm, .emit_frame_size = SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 4 + 4 + /* vce_v4_0_emit_vm_flush */ 5 + 5 + /* amdgpu_vce_ring_emit_fence x2 vm fence */ 1, /* vce_v4_0_ring_insert_end */ .emit_ib_size = 5, /* vce_v4_0_ring_emit_ib */ .emit_ib = vce_v4_0_ring_emit_ib, .emit_vm_flush = vce_v4_0_emit_vm_flush, .emit_fence = vce_v4_0_ring_emit_fence, .test_ring = amdgpu_vce_ring_test_ring, .test_ib = amdgpu_vce_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .insert_end = vce_v4_0_ring_insert_end, .pad_ib = amdgpu_ring_generic_pad_ib, .begin_use = amdgpu_vce_ring_begin_use, .end_use = amdgpu_vce_ring_end_use, .emit_wreg = vce_v4_0_emit_wreg, .emit_reg_wait = vce_v4_0_emit_reg_wait, .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, }; static void vce_v4_0_set_ring_funcs(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->vce.num_rings; i++) { adev->vce.ring[i].funcs = &vce_v4_0_ring_vm_funcs; adev->vce.ring[i].me = i; } DRM_INFO("VCE enabled in VM mode\n"); } static const struct amdgpu_irq_src_funcs vce_v4_0_irq_funcs = { .set = vce_v4_0_set_interrupt_state, .process = vce_v4_0_process_interrupt, }; static void vce_v4_0_set_irq_funcs(struct amdgpu_device *adev) { adev->vce.irq.num_types = 1; adev->vce.irq.funcs = &vce_v4_0_irq_funcs; }; const struct amdgpu_ip_block_version vce_v4_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_VCE, .major = 4, .minor = 0, .rev = 0, .funcs = &vce_v4_0_ip_funcs, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1