Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrew Lewycky | 1973 | 36.18% | 3 | 4.48% |
Felix Kuhling | 1160 | 21.27% | 20 | 29.85% |
David Yat Sin | 985 | 18.06% | 3 | 4.48% |
Alexey Skidanov | 414 | 7.59% | 4 | 5.97% |
Shaoyun Liu | 253 | 4.64% | 2 | 2.99% |
Oded Gabbay | 210 | 3.85% | 5 | 7.46% |
James Zhu | 143 | 2.62% | 3 | 4.48% |
Eric Huang | 55 | 1.01% | 1 | 1.49% |
Dennis Li | 49 | 0.90% | 1 | 1.49% |
Dan Carpenter | 34 | 0.62% | 1 | 1.49% |
yipechai | 34 | 0.62% | 1 | 1.49% |
Sean Keely | 22 | 0.40% | 2 | 2.99% |
Moses Reuben | 19 | 0.35% | 1 | 1.49% |
Jonathan Kim | 18 | 0.33% | 2 | 2.99% |
Yong Zhao | 16 | 0.29% | 2 | 2.99% |
Evgeny Pinchuk | 15 | 0.28% | 1 | 1.49% |
QintaoShen | 8 | 0.15% | 1 | 1.49% |
Kent Russell | 8 | 0.15% | 2 | 2.99% |
Pan Bian | 7 | 0.13% | 1 | 1.49% |
Ben Goz | 7 | 0.13% | 2 | 2.99% |
Oak Zeng | 6 | 0.11% | 1 | 1.49% |
Mukul Joshi | 4 | 0.07% | 1 | 1.49% |
Suren Baghdasaryan | 4 | 0.07% | 1 | 1.49% |
Fenghua Yu | 3 | 0.06% | 1 | 1.49% |
Edward O'Callaghan | 2 | 0.04% | 1 | 1.49% |
Rajneesh Bhardwaj | 2 | 0.04% | 1 | 1.49% |
Qu Huang | 1 | 0.02% | 1 | 1.49% |
Ingo Molnar | 1 | 0.02% | 1 | 1.49% |
Harish Kasiviswanathan | 1 | 0.02% | 1 | 1.49% |
Total | 5454 | 67 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2014-2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/mm_types.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/sched/signal.h> #include <linux/sched/mm.h> #include <linux/uaccess.h> #include <linux/mman.h> #include <linux/memory.h> #include "kfd_priv.h" #include "kfd_events.h" #include <linux/device.h> /* * Wrapper around wait_queue_entry_t */ struct kfd_event_waiter { wait_queue_entry_t wait; struct kfd_event *event; /* Event to wait for */ bool activated; /* Becomes true when event is signaled */ bool event_age_enabled; /* set to true when last_event_age is non-zero */ }; /* * Each signal event needs a 64-bit signal slot where the signaler will write * a 1 before sending an interrupt. (This is needed because some interrupts * do not contain enough spare data bits to identify an event.) * We get whole pages and map them to the process VA. * Individual signal events use their event_id as slot index. */ struct kfd_signal_page { uint64_t *kernel_address; uint64_t __user *user_address; bool need_to_free_pages; }; static uint64_t *page_slots(struct kfd_signal_page *page) { return page->kernel_address; } static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p) { void *backing_store; struct kfd_signal_page *page; page = kzalloc(sizeof(*page), GFP_KERNEL); if (!page) return NULL; backing_store = (void *) __get_free_pages(GFP_KERNEL, get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); if (!backing_store) goto fail_alloc_signal_store; /* Initialize all events to unsignaled */ memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, KFD_SIGNAL_EVENT_LIMIT * 8); page->kernel_address = backing_store; page->need_to_free_pages = true; pr_debug("Allocated new event signal page at %p, for process %p\n", page, p); return page; fail_alloc_signal_store: kfree(page); return NULL; } static int allocate_event_notification_slot(struct kfd_process *p, struct kfd_event *ev, const int *restore_id) { int id; if (!p->signal_page) { p->signal_page = allocate_signal_page(p); if (!p->signal_page) return -ENOMEM; /* Oldest user mode expects 256 event slots */ p->signal_mapped_size = 256*8; } if (restore_id) { id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, GFP_KERNEL); } else { /* * Compatibility with old user mode: Only use signal slots * user mode has mapped, may be less than * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase * of the event limit without breaking user mode. */ id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8, GFP_KERNEL); } if (id < 0) return id; ev->event_id = id; page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT; return 0; } /* * Assumes that p->event_mutex or rcu_readlock is held and of course that p is * not going away. */ static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) { return idr_find(&p->event_idr, id); } /** * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID * @p: Pointer to struct kfd_process * @id: ID to look up * @bits: Number of valid bits in @id * * Finds the first signaled event with a matching partial ID. If no * matching signaled event is found, returns NULL. In that case the * caller should assume that the partial ID is invalid and do an * exhaustive search of all siglaned events. * * If multiple events with the same partial ID signal at the same * time, they will be found one interrupt at a time, not necessarily * in the same order the interrupts occurred. As long as the number of * interrupts is correct, all signaled events will be seen by the * driver. */ static struct kfd_event *lookup_signaled_event_by_partial_id( struct kfd_process *p, uint32_t id, uint32_t bits) { struct kfd_event *ev; if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT) return NULL; /* Fast path for the common case that @id is not a partial ID * and we only need a single lookup. */ if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) { if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) return NULL; return idr_find(&p->event_idr, id); } /* General case for partial IDs: Iterate over all matching IDs * and find the first one that has signaled. */ for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) { if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) continue; ev = idr_find(&p->event_idr, id); } return ev; } static int create_signal_event(struct file *devkfd, struct kfd_process *p, struct kfd_event *ev, const int *restore_id) { int ret; if (p->signal_mapped_size && p->signal_event_count == p->signal_mapped_size / 8) { if (!p->signal_event_limit_reached) { pr_debug("Signal event wasn't created because limit was reached\n"); p->signal_event_limit_reached = true; } return -ENOSPC; } ret = allocate_event_notification_slot(p, ev, restore_id); if (ret) { pr_warn("Signal event wasn't created because out of kernel memory\n"); return ret; } p->signal_event_count++; ev->user_signal_address = &p->signal_page->user_address[ev->event_id]; pr_debug("Signal event number %zu created with id %d, address %p\n", p->signal_event_count, ev->event_id, ev->user_signal_address); return 0; } static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id) { int id; if (restore_id) id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, GFP_KERNEL); else /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an * intentional integer overflow to -1 without a compiler * warning. idr_alloc treats a negative value as "maximum * signed integer". */ id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID, (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1, GFP_KERNEL); if (id < 0) return id; ev->event_id = id; return 0; } int kfd_event_init_process(struct kfd_process *p) { int id; mutex_init(&p->event_mutex); idr_init(&p->event_idr); p->signal_page = NULL; p->signal_event_count = 1; /* Allocate event ID 0. It is used for a fast path to ignore bogus events * that are sent by the CP without a context ID */ id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL); if (id < 0) { idr_destroy(&p->event_idr); mutex_destroy(&p->event_mutex); return id; } return 0; } static void destroy_event(struct kfd_process *p, struct kfd_event *ev) { struct kfd_event_waiter *waiter; /* Wake up pending waiters. They will return failure */ spin_lock(&ev->lock); list_for_each_entry(waiter, &ev->wq.head, wait.entry) WRITE_ONCE(waiter->event, NULL); wake_up_all(&ev->wq); spin_unlock(&ev->lock); if (ev->type == KFD_EVENT_TYPE_SIGNAL || ev->type == KFD_EVENT_TYPE_DEBUG) p->signal_event_count--; idr_remove(&p->event_idr, ev->event_id); kfree_rcu(ev, rcu); } static void destroy_events(struct kfd_process *p) { struct kfd_event *ev; uint32_t id; idr_for_each_entry(&p->event_idr, ev, id) if (ev) destroy_event(p, ev); idr_destroy(&p->event_idr); mutex_destroy(&p->event_mutex); } /* * We assume that the process is being destroyed and there is no need to * unmap the pages or keep bookkeeping data in order. */ static void shutdown_signal_page(struct kfd_process *p) { struct kfd_signal_page *page = p->signal_page; if (page) { if (page->need_to_free_pages) free_pages((unsigned long)page->kernel_address, get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); kfree(page); } } void kfd_event_free_process(struct kfd_process *p) { destroy_events(p); shutdown_signal_page(p); } static bool event_can_be_gpu_signaled(const struct kfd_event *ev) { return ev->type == KFD_EVENT_TYPE_SIGNAL || ev->type == KFD_EVENT_TYPE_DEBUG; } static bool event_can_be_cpu_signaled(const struct kfd_event *ev) { return ev->type == KFD_EVENT_TYPE_SIGNAL; } static int kfd_event_page_set(struct kfd_process *p, void *kernel_address, uint64_t size, uint64_t user_handle) { struct kfd_signal_page *page; if (p->signal_page) return -EBUSY; page = kzalloc(sizeof(*page), GFP_KERNEL); if (!page) return -ENOMEM; /* Initialize all events to unsignaled */ memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT, KFD_SIGNAL_EVENT_LIMIT * 8); page->kernel_address = kernel_address; p->signal_page = page; p->signal_mapped_size = size; p->signal_handle = user_handle; return 0; } int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset) { struct kfd_node *kfd; struct kfd_process_device *pdd; void *mem, *kern_addr; uint64_t size; int err = 0; if (p->signal_page) { pr_err("Event page is already set\n"); return -EINVAL; } pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset)); if (!pdd) { pr_err("Getting device by id failed in %s\n", __func__); return -EINVAL; } kfd = pdd->dev; pdd = kfd_bind_process_to_device(kfd, p); if (IS_ERR(pdd)) return PTR_ERR(pdd); mem = kfd_process_device_translate_handle(pdd, GET_IDR_HANDLE(event_page_offset)); if (!mem) { pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset); return -EINVAL; } err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size); if (err) { pr_err("Failed to map event page to kernel\n"); return err; } err = kfd_event_page_set(p, kern_addr, size, event_page_offset); if (err) { pr_err("Failed to set event page\n"); amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); return err; } return err; } int kfd_event_create(struct file *devkfd, struct kfd_process *p, uint32_t event_type, bool auto_reset, uint32_t node_id, uint32_t *event_id, uint32_t *event_trigger_data, uint64_t *event_page_offset, uint32_t *event_slot_index) { int ret = 0; struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); if (!ev) return -ENOMEM; ev->type = event_type; ev->auto_reset = auto_reset; ev->signaled = false; spin_lock_init(&ev->lock); init_waitqueue_head(&ev->wq); *event_page_offset = 0; mutex_lock(&p->event_mutex); switch (event_type) { case KFD_EVENT_TYPE_SIGNAL: case KFD_EVENT_TYPE_DEBUG: ret = create_signal_event(devkfd, p, ev, NULL); if (!ret) { *event_page_offset = KFD_MMAP_TYPE_EVENTS; *event_slot_index = ev->event_id; } break; default: ret = create_other_event(p, ev, NULL); break; } if (!ret) { *event_id = ev->event_id; *event_trigger_data = ev->event_id; ev->event_age = 1; } else { kfree(ev); } mutex_unlock(&p->event_mutex); return ret; } int kfd_criu_restore_event(struct file *devkfd, struct kfd_process *p, uint8_t __user *user_priv_ptr, uint64_t *priv_data_offset, uint64_t max_priv_data_size) { struct kfd_criu_event_priv_data *ev_priv; struct kfd_event *ev = NULL; int ret = 0; ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL); if (!ev_priv) return -ENOMEM; ev = kzalloc(sizeof(*ev), GFP_KERNEL); if (!ev) { ret = -ENOMEM; goto exit; } if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) { ret = -EINVAL; goto exit; } ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv)); if (ret) { ret = -EFAULT; goto exit; } *priv_data_offset += sizeof(*ev_priv); if (ev_priv->user_handle) { ret = kfd_kmap_event_page(p, ev_priv->user_handle); if (ret) goto exit; } ev->type = ev_priv->type; ev->auto_reset = ev_priv->auto_reset; ev->signaled = ev_priv->signaled; spin_lock_init(&ev->lock); init_waitqueue_head(&ev->wq); mutex_lock(&p->event_mutex); switch (ev->type) { case KFD_EVENT_TYPE_SIGNAL: case KFD_EVENT_TYPE_DEBUG: ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id); break; case KFD_EVENT_TYPE_MEMORY: memcpy(&ev->memory_exception_data, &ev_priv->memory_exception_data, sizeof(struct kfd_hsa_memory_exception_data)); ret = create_other_event(p, ev, &ev_priv->event_id); break; case KFD_EVENT_TYPE_HW_EXCEPTION: memcpy(&ev->hw_exception_data, &ev_priv->hw_exception_data, sizeof(struct kfd_hsa_hw_exception_data)); ret = create_other_event(p, ev, &ev_priv->event_id); break; } mutex_unlock(&p->event_mutex); exit: if (ret) kfree(ev); kfree(ev_priv); return ret; } int kfd_criu_checkpoint_events(struct kfd_process *p, uint8_t __user *user_priv_data, uint64_t *priv_data_offset) { struct kfd_criu_event_priv_data *ev_privs; int i = 0; int ret = 0; struct kfd_event *ev; uint32_t ev_id; uint32_t num_events = kfd_get_num_events(p); if (!num_events) return 0; ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL); if (!ev_privs) return -ENOMEM; idr_for_each_entry(&p->event_idr, ev, ev_id) { struct kfd_criu_event_priv_data *ev_priv; /* * Currently, all events have same size of private_data, but the current ioctl's * and CRIU plugin supports private_data of variable sizes */ ev_priv = &ev_privs[i]; ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT; /* We store the user_handle with the first event */ if (i == 0 && p->signal_page) ev_priv->user_handle = p->signal_handle; ev_priv->event_id = ev->event_id; ev_priv->auto_reset = ev->auto_reset; ev_priv->type = ev->type; ev_priv->signaled = ev->signaled; if (ev_priv->type == KFD_EVENT_TYPE_MEMORY) memcpy(&ev_priv->memory_exception_data, &ev->memory_exception_data, sizeof(struct kfd_hsa_memory_exception_data)); else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION) memcpy(&ev_priv->hw_exception_data, &ev->hw_exception_data, sizeof(struct kfd_hsa_hw_exception_data)); pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n", i, ev_priv->event_id, ev_priv->auto_reset, ev_priv->type, ev_priv->signaled); i++; } ret = copy_to_user(user_priv_data + *priv_data_offset, ev_privs, num_events * sizeof(*ev_privs)); if (ret) { pr_err("Failed to copy events priv to user\n"); ret = -EFAULT; } *priv_data_offset += num_events * sizeof(*ev_privs); kvfree(ev_privs); return ret; } int kfd_get_num_events(struct kfd_process *p) { struct kfd_event *ev; uint32_t id; u32 num_events = 0; idr_for_each_entry(&p->event_idr, ev, id) num_events++; return num_events; } /* Assumes that p is current. */ int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) { struct kfd_event *ev; int ret = 0; mutex_lock(&p->event_mutex); ev = lookup_event_by_id(p, event_id); if (ev) destroy_event(p, ev); else ret = -EINVAL; mutex_unlock(&p->event_mutex); return ret; } static void set_event(struct kfd_event *ev) { struct kfd_event_waiter *waiter; /* Auto reset if the list is non-empty and we're waking * someone. waitqueue_active is safe here because we're * protected by the ev->lock, which is also held when * updating the wait queues in kfd_wait_on_events. */ ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq); if (!(++ev->event_age)) { /* Never wrap back to reserved/default event age 0/1 */ ev->event_age = 2; WARN_ONCE(1, "event_age wrap back!"); } list_for_each_entry(waiter, &ev->wq.head, wait.entry) WRITE_ONCE(waiter->activated, true); wake_up_all(&ev->wq); } /* Assumes that p is current. */ int kfd_set_event(struct kfd_process *p, uint32_t event_id) { int ret = 0; struct kfd_event *ev; rcu_read_lock(); ev = lookup_event_by_id(p, event_id); if (!ev) { ret = -EINVAL; goto unlock_rcu; } spin_lock(&ev->lock); if (event_can_be_cpu_signaled(ev)) set_event(ev); else ret = -EINVAL; spin_unlock(&ev->lock); unlock_rcu: rcu_read_unlock(); return ret; } static void reset_event(struct kfd_event *ev) { ev->signaled = false; } /* Assumes that p is current. */ int kfd_reset_event(struct kfd_process *p, uint32_t event_id) { int ret = 0; struct kfd_event *ev; rcu_read_lock(); ev = lookup_event_by_id(p, event_id); if (!ev) { ret = -EINVAL; goto unlock_rcu; } spin_lock(&ev->lock); if (event_can_be_cpu_signaled(ev)) reset_event(ev); else ret = -EINVAL; spin_unlock(&ev->lock); unlock_rcu: rcu_read_unlock(); return ret; } static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) { WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT); } static void set_event_from_interrupt(struct kfd_process *p, struct kfd_event *ev) { if (ev && event_can_be_gpu_signaled(ev)) { acknowledge_signal(p, ev); spin_lock(&ev->lock); set_event(ev); spin_unlock(&ev->lock); } } void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, uint32_t valid_id_bits) { struct kfd_event *ev = NULL; /* * Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function increments the process ref count. */ struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); if (!p) return; /* Presumably process exited. */ rcu_read_lock(); if (valid_id_bits) ev = lookup_signaled_event_by_partial_id(p, partial_id, valid_id_bits); if (ev) { set_event_from_interrupt(p, ev); } else if (p->signal_page) { /* * Partial ID lookup failed. Assume that the event ID * in the interrupt payload was invalid and do an * exhaustive search of signaled events. */ uint64_t *slots = page_slots(p->signal_page); uint32_t id; if (valid_id_bits) pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n", partial_id, valid_id_bits); if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) { /* With relatively few events, it's faster to * iterate over the event IDR */ idr_for_each_entry(&p->event_idr, ev, id) { if (id >= KFD_SIGNAL_EVENT_LIMIT) break; if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) set_event_from_interrupt(p, ev); } } else { /* With relatively many events, it's faster to * iterate over the signal slots and lookup * only signaled events from the IDR. */ for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++) if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) { ev = lookup_event_by_id(p, id); set_event_from_interrupt(p, ev); } } } rcu_read_unlock(); kfd_unref_process(p); } static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) { struct kfd_event_waiter *event_waiters; uint32_t i; event_waiters = kcalloc(num_events, sizeof(struct kfd_event_waiter), GFP_KERNEL); if (!event_waiters) return NULL; for (i = 0; i < num_events; i++) init_wait(&event_waiters[i].wait); return event_waiters; } static int init_event_waiter(struct kfd_process *p, struct kfd_event_waiter *waiter, struct kfd_event_data *event_data) { struct kfd_event *ev = lookup_event_by_id(p, event_data->event_id); if (!ev) return -EINVAL; spin_lock(&ev->lock); waiter->event = ev; waiter->activated = ev->signaled; ev->signaled = ev->signaled && !ev->auto_reset; /* last_event_age = 0 reserved for backward compatible */ if (waiter->event->type == KFD_EVENT_TYPE_SIGNAL && event_data->signal_event_data.last_event_age) { waiter->event_age_enabled = true; if (ev->event_age != event_data->signal_event_data.last_event_age) waiter->activated = true; } if (!waiter->activated) add_wait_queue(&ev->wq, &waiter->wait); spin_unlock(&ev->lock); return 0; } /* test_event_condition - Test condition of events being waited for * @all: Return completion only if all events have signaled * @num_events: Number of events to wait for * @event_waiters: Array of event waiters, one per event * * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all) * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of * the events have been destroyed. */ static uint32_t test_event_condition(bool all, uint32_t num_events, struct kfd_event_waiter *event_waiters) { uint32_t i; uint32_t activated_count = 0; for (i = 0; i < num_events; i++) { if (!READ_ONCE(event_waiters[i].event)) return KFD_IOC_WAIT_RESULT_FAIL; if (READ_ONCE(event_waiters[i].activated)) { if (!all) return KFD_IOC_WAIT_RESULT_COMPLETE; activated_count++; } } return activated_count == num_events ? KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT; } /* * Copy event specific data, if defined. * Currently only memory exception events have additional data to copy to user */ static int copy_signaled_event_data(uint32_t num_events, struct kfd_event_waiter *event_waiters, struct kfd_event_data __user *data) { void *src; void __user *dst; struct kfd_event_waiter *waiter; struct kfd_event *event; uint32_t i, size = 0; for (i = 0; i < num_events; i++) { waiter = &event_waiters[i]; event = waiter->event; if (!event) return -EINVAL; /* event was destroyed */ if (waiter->activated) { if (event->type == KFD_EVENT_TYPE_MEMORY) { dst = &data[i].memory_exception_data; src = &event->memory_exception_data; size = sizeof(struct kfd_hsa_memory_exception_data); } else if (event->type == KFD_EVENT_TYPE_HW_EXCEPTION) { dst = &data[i].memory_exception_data; src = &event->hw_exception_data; size = sizeof(struct kfd_hsa_hw_exception_data); } else if (event->type == KFD_EVENT_TYPE_SIGNAL && waiter->event_age_enabled) { dst = &data[i].signal_event_data.last_event_age; src = &event->event_age; size = sizeof(u64); } if (size && copy_to_user(dst, src, size)) return -EFAULT; } } return 0; } static long user_timeout_to_jiffies(uint32_t user_timeout_ms) { if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) return 0; if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) return MAX_SCHEDULE_TIMEOUT; /* * msecs_to_jiffies interprets all values above 2^31-1 as infinite, * but we consider them finite. * This hack is wrong, but nobody is likely to notice. */ user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); return msecs_to_jiffies(user_timeout_ms) + 1; } static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters, bool undo_auto_reset) { uint32_t i; for (i = 0; i < num_events; i++) if (waiters[i].event) { spin_lock(&waiters[i].event->lock); remove_wait_queue(&waiters[i].event->wq, &waiters[i].wait); if (undo_auto_reset && waiters[i].activated && waiters[i].event && waiters[i].event->auto_reset) set_event(waiters[i].event); spin_unlock(&waiters[i].event->lock); } kfree(waiters); } int kfd_wait_on_events(struct kfd_process *p, uint32_t num_events, void __user *data, bool all, uint32_t *user_timeout_ms, uint32_t *wait_result) { struct kfd_event_data __user *events = (struct kfd_event_data __user *) data; uint32_t i; int ret = 0; struct kfd_event_waiter *event_waiters = NULL; long timeout = user_timeout_to_jiffies(*user_timeout_ms); event_waiters = alloc_event_waiters(num_events); if (!event_waiters) { ret = -ENOMEM; goto out; } /* Use p->event_mutex here to protect against concurrent creation and * destruction of events while we initialize event_waiters. */ mutex_lock(&p->event_mutex); for (i = 0; i < num_events; i++) { struct kfd_event_data event_data; if (copy_from_user(&event_data, &events[i], sizeof(struct kfd_event_data))) { ret = -EFAULT; goto out_unlock; } ret = init_event_waiter(p, &event_waiters[i], &event_data); if (ret) goto out_unlock; } /* Check condition once. */ *wait_result = test_event_condition(all, num_events, event_waiters); if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) { ret = copy_signaled_event_data(num_events, event_waiters, events); goto out_unlock; } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) { /* This should not happen. Events shouldn't be * destroyed while we're holding the event_mutex */ goto out_unlock; } mutex_unlock(&p->event_mutex); while (true) { if (fatal_signal_pending(current)) { ret = -EINTR; break; } if (signal_pending(current)) { ret = -ERESTARTSYS; if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE && *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE) *user_timeout_ms = jiffies_to_msecs( max(0l, timeout-1)); break; } /* Set task state to interruptible sleep before * checking wake-up conditions. A concurrent wake-up * will put the task back into runnable state. In that * case schedule_timeout will not put the task to * sleep and we'll get a chance to re-check the * updated conditions almost immediately. Otherwise, * this race condition would lead to a soft hang or a * very long sleep. */ set_current_state(TASK_INTERRUPTIBLE); *wait_result = test_event_condition(all, num_events, event_waiters); if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT) break; if (timeout <= 0) break; timeout = schedule_timeout(timeout); } __set_current_state(TASK_RUNNING); mutex_lock(&p->event_mutex); /* copy_signaled_event_data may sleep. So this has to happen * after the task state is set back to RUNNING. * * The event may also have been destroyed after signaling. So * copy_signaled_event_data also must confirm that the event * still exists. Therefore this must be under the p->event_mutex * which is also held when events are destroyed. */ if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) ret = copy_signaled_event_data(num_events, event_waiters, events); out_unlock: free_waiters(num_events, event_waiters, ret == -ERESTARTSYS); mutex_unlock(&p->event_mutex); out: if (ret) *wait_result = KFD_IOC_WAIT_RESULT_FAIL; else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL) ret = -EIO; return ret; } int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) { unsigned long pfn; struct kfd_signal_page *page; int ret; /* check required size doesn't exceed the allocated size */ if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) < get_order(vma->vm_end - vma->vm_start)) { pr_err("Event page mmap requested illegal size\n"); return -EINVAL; } page = p->signal_page; if (!page) { /* Probably KFD bug, but mmap is user-accessible. */ pr_debug("Signal page could not be found\n"); return -EINVAL; } pfn = __pa(page->kernel_address); pfn >>= PAGE_SHIFT; vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); pr_debug("Mapping signal page\n"); pr_debug(" start user address == 0x%08lx\n", vma->vm_start); pr_debug(" end user address == 0x%08lx\n", vma->vm_end); pr_debug(" pfn == 0x%016lX\n", pfn); pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); pr_debug(" size == 0x%08lX\n", vma->vm_end - vma->vm_start); page->user_address = (uint64_t __user *)vma->vm_start; /* mapping the page to user process */ ret = remap_pfn_range(vma, vma->vm_start, pfn, vma->vm_end - vma->vm_start, vma->vm_page_prot); if (!ret) p->signal_mapped_size = vma->vm_end - vma->vm_start; return ret; } /* * Assumes that p is not going away. */ static void lookup_events_by_type_and_signal(struct kfd_process *p, int type, void *event_data) { struct kfd_hsa_memory_exception_data *ev_data; struct kfd_event *ev; uint32_t id; bool send_signal = true; ev_data = (struct kfd_hsa_memory_exception_data *) event_data; rcu_read_lock(); id = KFD_FIRST_NONSIGNAL_EVENT_ID; idr_for_each_entry_continue(&p->event_idr, ev, id) if (ev->type == type) { send_signal = false; dev_dbg(kfd_device, "Event found: id %X type %d", ev->event_id, ev->type); spin_lock(&ev->lock); set_event(ev); if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) ev->memory_exception_data = *ev_data; spin_unlock(&ev->lock); } if (type == KFD_EVENT_TYPE_MEMORY) { dev_warn(kfd_device, "Sending SIGSEGV to process %d (pasid 0x%x)", p->lead_thread->pid, p->pasid); send_sig(SIGSEGV, p->lead_thread, 0); } /* Send SIGTERM no event of type "type" has been found*/ if (send_signal) { if (send_sigterm) { dev_warn(kfd_device, "Sending SIGTERM to process %d (pasid 0x%x)", p->lead_thread->pid, p->pasid); send_sig(SIGTERM, p->lead_thread, 0); } else { dev_err(kfd_device, "Process %d (pasid 0x%x) got unhandled exception", p->lead_thread->pid, p->pasid); } } rcu_read_unlock(); } void kfd_signal_hw_exception_event(u32 pasid) { /* * Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function increments the process ref count. */ struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); if (!p) return; /* Presumably process exited. */ lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); kfd_unref_process(p); } void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid, struct kfd_vm_fault_info *info, struct kfd_hsa_memory_exception_data *data) { struct kfd_event *ev; uint32_t id; struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); struct kfd_hsa_memory_exception_data memory_exception_data; int user_gpu_id; if (!p) return; /* Presumably process exited. */ user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); if (unlikely(user_gpu_id == -EINVAL)) { WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); return; } /* SoC15 chips and onwards will pass in data from now on. */ if (!data) { memset(&memory_exception_data, 0, sizeof(memory_exception_data)); memory_exception_data.gpu_id = user_gpu_id; memory_exception_data.failure.imprecise = true; /* Set failure reason */ if (info) { memory_exception_data.va = (info->page_addr) << PAGE_SHIFT; memory_exception_data.failure.NotPresent = info->prot_valid ? 1 : 0; memory_exception_data.failure.NoExecute = info->prot_exec ? 1 : 0; memory_exception_data.failure.ReadOnly = info->prot_write ? 1 : 0; memory_exception_data.failure.imprecise = 0; } } rcu_read_lock(); id = KFD_FIRST_NONSIGNAL_EVENT_ID; idr_for_each_entry_continue(&p->event_idr, ev, id) if (ev->type == KFD_EVENT_TYPE_MEMORY) { spin_lock(&ev->lock); ev->memory_exception_data = data ? *data : memory_exception_data; set_event(ev); spin_unlock(&ev->lock); } rcu_read_unlock(); kfd_unref_process(p); } void kfd_signal_reset_event(struct kfd_node *dev) { struct kfd_hsa_hw_exception_data hw_exception_data; struct kfd_hsa_memory_exception_data memory_exception_data; struct kfd_process *p; struct kfd_event *ev; unsigned int temp; uint32_t id, idx; int reset_cause = atomic_read(&dev->sram_ecc_flag) ? KFD_HW_EXCEPTION_ECC : KFD_HW_EXCEPTION_GPU_HANG; /* Whole gpu reset caused by GPU hang and memory is lost */ memset(&hw_exception_data, 0, sizeof(hw_exception_data)); hw_exception_data.memory_lost = 1; hw_exception_data.reset_cause = reset_cause; memset(&memory_exception_data, 0, sizeof(memory_exception_data)); memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC; memory_exception_data.failure.imprecise = true; idx = srcu_read_lock(&kfd_processes_srcu); hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); if (unlikely(user_gpu_id == -EINVAL)) { WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); continue; } rcu_read_lock(); id = KFD_FIRST_NONSIGNAL_EVENT_ID; idr_for_each_entry_continue(&p->event_idr, ev, id) { if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { spin_lock(&ev->lock); ev->hw_exception_data = hw_exception_data; ev->hw_exception_data.gpu_id = user_gpu_id; set_event(ev); spin_unlock(&ev->lock); } if (ev->type == KFD_EVENT_TYPE_MEMORY && reset_cause == KFD_HW_EXCEPTION_ECC) { spin_lock(&ev->lock); ev->memory_exception_data = memory_exception_data; ev->memory_exception_data.gpu_id = user_gpu_id; set_event(ev); spin_unlock(&ev->lock); } } rcu_read_unlock(); } srcu_read_unlock(&kfd_processes_srcu, idx); } void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid) { struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); struct kfd_hsa_memory_exception_data memory_exception_data; struct kfd_hsa_hw_exception_data hw_exception_data; struct kfd_event *ev; uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID; int user_gpu_id; if (!p) { dev_warn(dev->adev->dev, "Not find process with pasid:%d\n", pasid); return; /* Presumably process exited. */ } user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); if (unlikely(user_gpu_id == -EINVAL)) { WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); return; } memset(&hw_exception_data, 0, sizeof(hw_exception_data)); hw_exception_data.gpu_id = user_gpu_id; hw_exception_data.memory_lost = 1; hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC; memset(&memory_exception_data, 0, sizeof(memory_exception_data)); memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED; memory_exception_data.gpu_id = user_gpu_id; memory_exception_data.failure.imprecise = true; rcu_read_lock(); idr_for_each_entry_continue(&p->event_idr, ev, id) { if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { spin_lock(&ev->lock); ev->hw_exception_data = hw_exception_data; set_event(ev); spin_unlock(&ev->lock); } if (ev->type == KFD_EVENT_TYPE_MEMORY) { spin_lock(&ev->lock); ev->memory_exception_data = memory_exception_data; set_event(ev); spin_unlock(&ev->lock); } } dev_warn(dev->adev->dev, "Send SIGBUS to process %s(pasid:%d)\n", p->lead_thread->comm, pasid); rcu_read_unlock(); /* user application will handle SIGBUS signal */ send_sig(SIGBUS, p->lead_thread, 0); kfd_unref_process(p); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1