Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 1461 | 25.68% | 7 | 6.25% |
Jerry (Fangzhi) Zuo | 1119 | 19.67% | 8 | 7.14% |
Wayne Lin | 508 | 8.93% | 10 | 8.93% |
Qingqing Zhuo | 405 | 7.12% | 1 | 0.89% |
Nicholas Kazlauskas | 316 | 5.55% | 3 | 2.68% |
Hamza Mahfooz | 227 | 3.99% | 3 | 2.68% |
Zhan Liu | 190 | 3.34% | 2 | 1.79% |
Andrey Grodzovsky | 162 | 2.85% | 3 | 2.68% |
Aurabindo Pillai | 154 | 2.71% | 1 | 0.89% |
Ian Chen | 123 | 2.16% | 3 | 2.68% |
Mikita Lipski | 115 | 2.02% | 5 | 4.46% |
Bing Guo | 111 | 1.95% | 1 | 0.89% |
Sung Joon Kim | 110 | 1.93% | 2 | 1.79% |
Stephen Chandler Paul | 89 | 1.56% | 4 | 3.57% |
David Francis | 86 | 1.51% | 4 | 3.57% |
Alex Deucher | 63 | 1.11% | 2 | 1.79% |
Bhawanpreet Lakha | 45 | 0.79% | 3 | 2.68% |
Jude Shih | 42 | 0.74% | 2 | 1.79% |
Leo (Hanghong) Ma | 37 | 0.65% | 1 | 0.89% |
Wenjing Liu | 34 | 0.60% | 4 | 3.57% |
Ivan Lipski | 28 | 0.49% | 1 | 0.89% |
Brandon Syu | 20 | 0.35% | 1 | 0.89% |
Tony Cheng | 20 | 0.35% | 1 | 0.89% |
Hersen Wu | 20 | 0.35% | 2 | 1.79% |
George Shen | 20 | 0.35% | 1 | 0.89% |
Tsung-hua Lin | 19 | 0.33% | 1 | 0.89% |
Jun Lei | 18 | 0.32% | 1 | 0.89% |
Colin Ian King | 16 | 0.28% | 2 | 1.79% |
Claudio Suarez | 16 | 0.28% | 2 | 1.79% |
Srinivasan S | 13 | 0.23% | 2 | 1.79% |
Michael Strauss | 10 | 0.18% | 1 | 0.89% |
Dmytro Laktyushkin | 9 | 0.16% | 1 | 0.89% |
Yongqiang Sun | 8 | 0.14% | 1 | 0.89% |
Eric Yang | 7 | 0.12% | 1 | 0.89% |
Huang Rui | 7 | 0.12% | 1 | 0.89% |
Imre Deak | 7 | 0.12% | 2 | 1.79% |
Lee Jones | 7 | 0.12% | 2 | 1.79% |
Thomas Lim | 6 | 0.11% | 1 | 0.89% |
Alvin lee | 6 | 0.11% | 1 | 0.89% |
Roman Li | 5 | 0.09% | 1 | 0.89% |
Haowen Bai | 4 | 0.07% | 1 | 0.89% |
Martin Tsai | 3 | 0.05% | 2 | 1.79% |
Dhinakaran Pandiyan | 3 | 0.05% | 1 | 0.89% |
Jean Delvare | 3 | 0.05% | 1 | 0.89% |
Nikola Cornij | 2 | 0.04% | 1 | 0.89% |
Nathan Chancellor | 2 | 0.04% | 1 | 0.89% |
Wyatt Wood | 2 | 0.04% | 1 | 0.89% |
Dave Airlie | 2 | 0.04% | 1 | 0.89% |
Kees Cook | 2 | 0.04% | 1 | 0.89% |
Stylon Wang | 1 | 0.02% | 1 | 0.89% |
Rex Zhu | 1 | 0.02% | 1 | 0.89% |
Daniel Vetter | 1 | 0.02% | 1 | 0.89% |
Magali Lemes | 1 | 0.02% | 1 | 0.89% |
Dan Carpenter | 1 | 0.02% | 1 | 0.89% |
Corbin McElhanney | 1 | 0.02% | 1 | 0.89% |
Meenakshikumar Somasundaram | 1 | 0.02% | 1 | 0.89% |
Total | 5689 | 112 |
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include <linux/string.h> #include <linux/acpi.h> #include <linux/i2c.h> #include <drm/drm_atomic.h> #include <drm/drm_probe_helper.h> #include <drm/amdgpu_drm.h> #include <drm/drm_edid.h> #include <drm/drm_fixed.h> #include "dm_services.h" #include "amdgpu.h" #include "dc.h" #include "amdgpu_dm.h" #include "amdgpu_dm_irq.h" #include "amdgpu_dm_mst_types.h" #include "dpcd_defs.h" #include "dc/inc/core_types.h" #include "dm_helpers.h" #include "ddc_service_types.h" static u32 edid_extract_panel_id(struct edid *edid) { return (u32)edid->mfg_id[0] << 24 | (u32)edid->mfg_id[1] << 16 | (u32)EDID_PRODUCT_ID(edid); } static void apply_edid_quirks(struct edid *edid, struct dc_edid_caps *edid_caps) { uint32_t panel_id = edid_extract_panel_id(edid); switch (panel_id) { /* Workaround for some monitors which does not work well with FAMS */ case drm_edid_encode_panel_id('S', 'A', 'M', 0x0E5E): case drm_edid_encode_panel_id('S', 'A', 'M', 0x7053): case drm_edid_encode_panel_id('S', 'A', 'M', 0x71AC): DRM_DEBUG_DRIVER("Disabling FAMS on monitor with panel id %X\n", panel_id); edid_caps->panel_patch.disable_fams = true; break; /* Workaround for some monitors that do not clear DPCD 0x317 if FreeSync is unsupported */ case drm_edid_encode_panel_id('A', 'U', 'O', 0xA7AB): case drm_edid_encode_panel_id('A', 'U', 'O', 0xE69B): case drm_edid_encode_panel_id('B', 'O', 'E', 0x092A): case drm_edid_encode_panel_id('L', 'G', 'D', 0x06D1): DRM_DEBUG_DRIVER("Clearing DPCD 0x317 on monitor with panel id %X\n", panel_id); edid_caps->panel_patch.remove_sink_ext_caps = true; break; default: return; } } /** * dm_helpers_parse_edid_caps() - Parse edid caps * * @link: current detected link * @edid: [in] pointer to edid * @edid_caps: [in] pointer to edid caps * * Return: void */ enum dc_edid_status dm_helpers_parse_edid_caps( struct dc_link *link, const struct dc_edid *edid, struct dc_edid_caps *edid_caps) { struct amdgpu_dm_connector *aconnector = link->priv; struct drm_connector *connector = &aconnector->base; struct edid *edid_buf = edid ? (struct edid *) edid->raw_edid : NULL; struct cea_sad *sads; int sad_count = -1; int sadb_count = -1; int i = 0; uint8_t *sadb = NULL; enum dc_edid_status result = EDID_OK; if (!edid_caps || !edid) return EDID_BAD_INPUT; if (!drm_edid_is_valid(edid_buf)) result = EDID_BAD_CHECKSUM; edid_caps->manufacturer_id = (uint16_t) edid_buf->mfg_id[0] | ((uint16_t) edid_buf->mfg_id[1])<<8; edid_caps->product_id = (uint16_t) edid_buf->prod_code[0] | ((uint16_t) edid_buf->prod_code[1])<<8; edid_caps->serial_number = edid_buf->serial; edid_caps->manufacture_week = edid_buf->mfg_week; edid_caps->manufacture_year = edid_buf->mfg_year; drm_edid_get_monitor_name(edid_buf, edid_caps->display_name, AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS); edid_caps->edid_hdmi = connector->display_info.is_hdmi; apply_edid_quirks(edid_buf, edid_caps); sad_count = drm_edid_to_sad((struct edid *) edid->raw_edid, &sads); if (sad_count <= 0) return result; edid_caps->audio_mode_count = min(sad_count, DC_MAX_AUDIO_DESC_COUNT); for (i = 0; i < edid_caps->audio_mode_count; ++i) { struct cea_sad *sad = &sads[i]; edid_caps->audio_modes[i].format_code = sad->format; edid_caps->audio_modes[i].channel_count = sad->channels + 1; edid_caps->audio_modes[i].sample_rate = sad->freq; edid_caps->audio_modes[i].sample_size = sad->byte2; } sadb_count = drm_edid_to_speaker_allocation((struct edid *) edid->raw_edid, &sadb); if (sadb_count < 0) { DRM_ERROR("Couldn't read Speaker Allocation Data Block: %d\n", sadb_count); sadb_count = 0; } if (sadb_count) edid_caps->speaker_flags = sadb[0]; else edid_caps->speaker_flags = DEFAULT_SPEAKER_LOCATION; kfree(sads); kfree(sadb); return result; } static void fill_dc_mst_payload_table_from_drm(struct dc_link *link, bool enable, struct drm_dp_mst_atomic_payload *target_payload, struct dc_dp_mst_stream_allocation_table *table) { struct dc_dp_mst_stream_allocation_table new_table = { 0 }; struct dc_dp_mst_stream_allocation *sa; struct link_mst_stream_allocation_table copy_of_link_table = link->mst_stream_alloc_table; int i; int current_hw_table_stream_cnt = copy_of_link_table.stream_count; struct link_mst_stream_allocation *dc_alloc; /* TODO: refactor to set link->mst_stream_alloc_table directly if possible.*/ if (enable) { dc_alloc = ©_of_link_table.stream_allocations[current_hw_table_stream_cnt]; dc_alloc->vcp_id = target_payload->vcpi; dc_alloc->slot_count = target_payload->time_slots; } else { for (i = 0; i < copy_of_link_table.stream_count; i++) { dc_alloc = ©_of_link_table.stream_allocations[i]; if (dc_alloc->vcp_id == target_payload->vcpi) { dc_alloc->vcp_id = 0; dc_alloc->slot_count = 0; break; } } ASSERT(i != copy_of_link_table.stream_count); } /* Fill payload info*/ for (i = 0; i < MAX_CONTROLLER_NUM; i++) { dc_alloc = ©_of_link_table.stream_allocations[i]; if (dc_alloc->vcp_id > 0 && dc_alloc->slot_count > 0) { sa = &new_table.stream_allocations[new_table.stream_count]; sa->slot_count = dc_alloc->slot_count; sa->vcp_id = dc_alloc->vcp_id; new_table.stream_count++; } } /* Overwrite the old table */ *table = new_table; } void dm_helpers_dp_update_branch_info( struct dc_context *ctx, const struct dc_link *link) {} static void dm_helpers_construct_old_payload( struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_topology_state *mst_state, struct drm_dp_mst_atomic_payload *new_payload, struct drm_dp_mst_atomic_payload *old_payload) { struct drm_dp_mst_atomic_payload *pos; int pbn_per_slot = dfixed_trunc(mst_state->pbn_div); u8 next_payload_vc_start = mgr->next_start_slot; u8 payload_vc_start = new_payload->vc_start_slot; u8 allocated_time_slots; *old_payload = *new_payload; /* Set correct time_slots/PBN of old payload. * other fields (delete & dsc_enabled) in * struct drm_dp_mst_atomic_payload are don't care fields * while calling drm_dp_remove_payload_part2() */ list_for_each_entry(pos, &mst_state->payloads, next) { if (pos != new_payload && pos->vc_start_slot > payload_vc_start && pos->vc_start_slot < next_payload_vc_start) next_payload_vc_start = pos->vc_start_slot; } allocated_time_slots = next_payload_vc_start - payload_vc_start; old_payload->time_slots = allocated_time_slots; old_payload->pbn = allocated_time_slots * pbn_per_slot; } /* * Writes payload allocation table in immediate downstream device. */ bool dm_helpers_dp_mst_write_payload_allocation_table( struct dc_context *ctx, const struct dc_stream_state *stream, struct dc_dp_mst_stream_allocation_table *proposed_table, bool enable) { struct amdgpu_dm_connector *aconnector; struct drm_dp_mst_topology_state *mst_state; struct drm_dp_mst_atomic_payload *target_payload, *new_payload, old_payload; struct drm_dp_mst_topology_mgr *mst_mgr; aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context; /* Accessing the connector state is required for vcpi_slots allocation * and directly relies on behaviour in commit check * that blocks before commit guaranteeing that the state * is not gonna be swapped while still in use in commit tail */ if (!aconnector || !aconnector->mst_root) return false; mst_mgr = &aconnector->mst_root->mst_mgr; mst_state = to_drm_dp_mst_topology_state(mst_mgr->base.state); new_payload = drm_atomic_get_mst_payload_state(mst_state, aconnector->mst_output_port); if (enable) { target_payload = new_payload; /* It's OK for this to fail */ drm_dp_add_payload_part1(mst_mgr, mst_state, new_payload); } else { /* construct old payload by VCPI*/ dm_helpers_construct_old_payload(mst_mgr, mst_state, new_payload, &old_payload); target_payload = &old_payload; drm_dp_remove_payload_part1(mst_mgr, mst_state, new_payload); } /* mst_mgr->->payloads are VC payload notify MST branch using DPCD or * AUX message. The sequence is slot 1-63 allocated sequence for each * stream. AMD ASIC stream slot allocation should follow the same * sequence. copy DRM MST allocation to dc */ fill_dc_mst_payload_table_from_drm(stream->link, enable, target_payload, proposed_table); return true; } /* * poll pending down reply */ void dm_helpers_dp_mst_poll_pending_down_reply( struct dc_context *ctx, const struct dc_link *link) {} /* * Clear payload allocation table before enable MST DP link. */ void dm_helpers_dp_mst_clear_payload_allocation_table( struct dc_context *ctx, const struct dc_link *link) {} /* * Polls for ACT (allocation change trigger) handled and sends * ALLOCATE_PAYLOAD message. */ enum act_return_status dm_helpers_dp_mst_poll_for_allocation_change_trigger( struct dc_context *ctx, const struct dc_stream_state *stream) { struct amdgpu_dm_connector *aconnector; struct drm_dp_mst_topology_mgr *mst_mgr; int ret; aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context; if (!aconnector || !aconnector->mst_root) return ACT_FAILED; mst_mgr = &aconnector->mst_root->mst_mgr; if (!mst_mgr->mst_state) return ACT_FAILED; ret = drm_dp_check_act_status(mst_mgr); if (ret) return ACT_FAILED; return ACT_SUCCESS; } void dm_helpers_dp_mst_send_payload_allocation( struct dc_context *ctx, const struct dc_stream_state *stream) { struct amdgpu_dm_connector *aconnector; struct drm_dp_mst_topology_state *mst_state; struct drm_dp_mst_topology_mgr *mst_mgr; struct drm_dp_mst_atomic_payload *new_payload; enum mst_progress_status set_flag = MST_ALLOCATE_NEW_PAYLOAD; enum mst_progress_status clr_flag = MST_CLEAR_ALLOCATED_PAYLOAD; int ret = 0; aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context; if (!aconnector || !aconnector->mst_root) return; mst_mgr = &aconnector->mst_root->mst_mgr; mst_state = to_drm_dp_mst_topology_state(mst_mgr->base.state); new_payload = drm_atomic_get_mst_payload_state(mst_state, aconnector->mst_output_port); ret = drm_dp_add_payload_part2(mst_mgr, new_payload); if (ret) { amdgpu_dm_set_mst_status(&aconnector->mst_status, set_flag, false); } else { amdgpu_dm_set_mst_status(&aconnector->mst_status, set_flag, true); amdgpu_dm_set_mst_status(&aconnector->mst_status, clr_flag, false); } } void dm_helpers_dp_mst_update_mst_mgr_for_deallocation( struct dc_context *ctx, const struct dc_stream_state *stream) { struct amdgpu_dm_connector *aconnector; struct drm_dp_mst_topology_state *mst_state; struct drm_dp_mst_topology_mgr *mst_mgr; struct drm_dp_mst_atomic_payload *new_payload, old_payload; enum mst_progress_status set_flag = MST_CLEAR_ALLOCATED_PAYLOAD; enum mst_progress_status clr_flag = MST_ALLOCATE_NEW_PAYLOAD; aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context; if (!aconnector || !aconnector->mst_root) return; mst_mgr = &aconnector->mst_root->mst_mgr; mst_state = to_drm_dp_mst_topology_state(mst_mgr->base.state); new_payload = drm_atomic_get_mst_payload_state(mst_state, aconnector->mst_output_port); dm_helpers_construct_old_payload(mst_mgr, mst_state, new_payload, &old_payload); drm_dp_remove_payload_part2(mst_mgr, mst_state, &old_payload, new_payload); amdgpu_dm_set_mst_status(&aconnector->mst_status, set_flag, true); amdgpu_dm_set_mst_status(&aconnector->mst_status, clr_flag, false); } void dm_dtn_log_begin(struct dc_context *ctx, struct dc_log_buffer_ctx *log_ctx) { static const char msg[] = "[dtn begin]\n"; if (!log_ctx) { pr_info("%s", msg); return; } dm_dtn_log_append_v(ctx, log_ctx, "%s", msg); } __printf(3, 4) void dm_dtn_log_append_v(struct dc_context *ctx, struct dc_log_buffer_ctx *log_ctx, const char *msg, ...) { va_list args; size_t total; int n; if (!log_ctx) { /* No context, redirect to dmesg. */ struct va_format vaf; vaf.fmt = msg; vaf.va = &args; va_start(args, msg); pr_info("%pV", &vaf); va_end(args); return; } /* Measure the output. */ va_start(args, msg); n = vsnprintf(NULL, 0, msg, args); va_end(args); if (n <= 0) return; /* Reallocate the string buffer as needed. */ total = log_ctx->pos + n + 1; if (total > log_ctx->size) { char *buf = kvcalloc(total, sizeof(char), GFP_KERNEL); if (buf) { memcpy(buf, log_ctx->buf, log_ctx->pos); kfree(log_ctx->buf); log_ctx->buf = buf; log_ctx->size = total; } } if (!log_ctx->buf) return; /* Write the formatted string to the log buffer. */ va_start(args, msg); n = vscnprintf( log_ctx->buf + log_ctx->pos, log_ctx->size - log_ctx->pos, msg, args); va_end(args); if (n > 0) log_ctx->pos += n; } void dm_dtn_log_end(struct dc_context *ctx, struct dc_log_buffer_ctx *log_ctx) { static const char msg[] = "[dtn end]\n"; if (!log_ctx) { pr_info("%s", msg); return; } dm_dtn_log_append_v(ctx, log_ctx, "%s", msg); } bool dm_helpers_dp_mst_start_top_mgr( struct dc_context *ctx, const struct dc_link *link, bool boot) { struct amdgpu_dm_connector *aconnector = link->priv; int ret; if (!aconnector) { DRM_ERROR("Failed to find connector for link!"); return false; } if (boot) { DRM_INFO("DM_MST: Differing MST start on aconnector: %p [id: %d]\n", aconnector, aconnector->base.base.id); return true; } DRM_INFO("DM_MST: starting TM on aconnector: %p [id: %d]\n", aconnector, aconnector->base.base.id); ret = drm_dp_mst_topology_mgr_set_mst(&aconnector->mst_mgr, true); if (ret < 0) { DRM_ERROR("DM_MST: Failed to set the device into MST mode!"); return false; } DRM_INFO("DM_MST: DP%x, %d-lane link detected\n", aconnector->mst_mgr.dpcd[0], aconnector->mst_mgr.dpcd[2] & DP_MAX_LANE_COUNT_MASK); return true; } bool dm_helpers_dp_mst_stop_top_mgr( struct dc_context *ctx, struct dc_link *link) { struct amdgpu_dm_connector *aconnector = link->priv; if (!aconnector) { DRM_ERROR("Failed to find connector for link!"); return false; } DRM_INFO("DM_MST: stopping TM on aconnector: %p [id: %d]\n", aconnector, aconnector->base.base.id); if (aconnector->mst_mgr.mst_state == true) { drm_dp_mst_topology_mgr_set_mst(&aconnector->mst_mgr, false); link->cur_link_settings.lane_count = 0; } return false; } bool dm_helpers_dp_read_dpcd( struct dc_context *ctx, const struct dc_link *link, uint32_t address, uint8_t *data, uint32_t size) { struct amdgpu_dm_connector *aconnector = link->priv; if (!aconnector) return false; return drm_dp_dpcd_read(&aconnector->dm_dp_aux.aux, address, data, size) == size; } bool dm_helpers_dp_write_dpcd( struct dc_context *ctx, const struct dc_link *link, uint32_t address, const uint8_t *data, uint32_t size) { struct amdgpu_dm_connector *aconnector = link->priv; if (!aconnector) { DRM_ERROR("Failed to find connector for link!"); return false; } return drm_dp_dpcd_write(&aconnector->dm_dp_aux.aux, address, (uint8_t *)data, size) > 0; } bool dm_helpers_submit_i2c( struct dc_context *ctx, const struct dc_link *link, struct i2c_command *cmd) { struct amdgpu_dm_connector *aconnector = link->priv; struct i2c_msg *msgs; int i = 0; int num = cmd->number_of_payloads; bool result; if (!aconnector) { DRM_ERROR("Failed to find connector for link!"); return false; } msgs = kcalloc(num, sizeof(struct i2c_msg), GFP_KERNEL); if (!msgs) return false; for (i = 0; i < num; i++) { msgs[i].flags = cmd->payloads[i].write ? 0 : I2C_M_RD; msgs[i].addr = cmd->payloads[i].address; msgs[i].len = cmd->payloads[i].length; msgs[i].buf = cmd->payloads[i].data; } result = i2c_transfer(&aconnector->i2c->base, msgs, num) == num; kfree(msgs); return result; } static bool execute_synaptics_rc_command(struct drm_dp_aux *aux, bool is_write_cmd, unsigned char cmd, unsigned int length, unsigned int offset, unsigned char *data) { bool success = false; unsigned char rc_data[16] = {0}; unsigned char rc_offset[4] = {0}; unsigned char rc_length[2] = {0}; unsigned char rc_cmd = 0; unsigned char rc_result = 0xFF; unsigned char i = 0; int ret; if (is_write_cmd) { // write rc data memmove(rc_data, data, length); ret = drm_dp_dpcd_write(aux, SYNAPTICS_RC_DATA, rc_data, sizeof(rc_data)); } // write rc offset rc_offset[0] = (unsigned char) offset & 0xFF; rc_offset[1] = (unsigned char) (offset >> 8) & 0xFF; rc_offset[2] = (unsigned char) (offset >> 16) & 0xFF; rc_offset[3] = (unsigned char) (offset >> 24) & 0xFF; ret = drm_dp_dpcd_write(aux, SYNAPTICS_RC_OFFSET, rc_offset, sizeof(rc_offset)); // write rc length rc_length[0] = (unsigned char) length & 0xFF; rc_length[1] = (unsigned char) (length >> 8) & 0xFF; ret = drm_dp_dpcd_write(aux, SYNAPTICS_RC_LENGTH, rc_length, sizeof(rc_length)); // write rc cmd rc_cmd = cmd | 0x80; ret = drm_dp_dpcd_write(aux, SYNAPTICS_RC_COMMAND, &rc_cmd, sizeof(rc_cmd)); if (ret < 0) { DRM_ERROR("%s: write cmd ..., err = %d\n", __func__, ret); return false; } // poll until active is 0 for (i = 0; i < 10; i++) { drm_dp_dpcd_read(aux, SYNAPTICS_RC_COMMAND, &rc_cmd, sizeof(rc_cmd)); if (rc_cmd == cmd) // active is 0 break; msleep(10); } // read rc result drm_dp_dpcd_read(aux, SYNAPTICS_RC_RESULT, &rc_result, sizeof(rc_result)); success = (rc_result == 0); if (success && !is_write_cmd) { // read rc data drm_dp_dpcd_read(aux, SYNAPTICS_RC_DATA, data, length); } drm_dbg_dp(aux->drm_dev, "success = %d\n", success); return success; } static void apply_synaptics_fifo_reset_wa(struct drm_dp_aux *aux) { unsigned char data[16] = {0}; drm_dbg_dp(aux->drm_dev, "Start\n"); // Step 2 data[0] = 'P'; data[1] = 'R'; data[2] = 'I'; data[3] = 'U'; data[4] = 'S'; if (!execute_synaptics_rc_command(aux, true, 0x01, 5, 0, data)) return; // Step 3 and 4 if (!execute_synaptics_rc_command(aux, false, 0x31, 4, 0x220998, data)) return; data[0] &= (~(1 << 1)); // set bit 1 to 0 if (!execute_synaptics_rc_command(aux, true, 0x21, 4, 0x220998, data)) return; if (!execute_synaptics_rc_command(aux, false, 0x31, 4, 0x220D98, data)) return; data[0] &= (~(1 << 1)); // set bit 1 to 0 if (!execute_synaptics_rc_command(aux, true, 0x21, 4, 0x220D98, data)) return; if (!execute_synaptics_rc_command(aux, false, 0x31, 4, 0x221198, data)) return; data[0] &= (~(1 << 1)); // set bit 1 to 0 if (!execute_synaptics_rc_command(aux, true, 0x21, 4, 0x221198, data)) return; // Step 3 and 5 if (!execute_synaptics_rc_command(aux, false, 0x31, 4, 0x220998, data)) return; data[0] |= (1 << 1); // set bit 1 to 1 if (!execute_synaptics_rc_command(aux, true, 0x21, 4, 0x220998, data)) return; if (!execute_synaptics_rc_command(aux, false, 0x31, 4, 0x220D98, data)) return; data[0] |= (1 << 1); // set bit 1 to 1 if (!execute_synaptics_rc_command(aux, false, 0x31, 4, 0x221198, data)) return; data[0] |= (1 << 1); // set bit 1 to 1 if (!execute_synaptics_rc_command(aux, true, 0x21, 4, 0x221198, data)) return; // Step 6 if (!execute_synaptics_rc_command(aux, true, 0x02, 0, 0, NULL)) return; drm_dbg_dp(aux->drm_dev, "Done\n"); } /* MST Dock */ static const uint8_t SYNAPTICS_DEVICE_ID[] = "SYNA"; static uint8_t write_dsc_enable_synaptics_non_virtual_dpcd_mst( struct drm_dp_aux *aux, const struct dc_stream_state *stream, bool enable) { uint8_t ret = 0; drm_dbg_dp(aux->drm_dev, "Configure DSC to non-virtual dpcd synaptics\n"); if (enable) { /* When DSC is enabled on previous boot and reboot with the hub, * there is a chance that Synaptics hub gets stuck during reboot sequence. * Applying a workaround to reset Synaptics SDP fifo before enabling the first stream */ if (!stream->link->link_status.link_active && memcmp(stream->link->dpcd_caps.branch_dev_name, (int8_t *)SYNAPTICS_DEVICE_ID, 4) == 0) apply_synaptics_fifo_reset_wa(aux); ret = drm_dp_dpcd_write(aux, DP_DSC_ENABLE, &enable, 1); DRM_INFO("Send DSC enable to synaptics\n"); } else { /* Synaptics hub not support virtual dpcd, * external monitor occur garbage while disable DSC, * Disable DSC only when entire link status turn to false, */ if (!stream->link->link_status.link_active) { ret = drm_dp_dpcd_write(aux, DP_DSC_ENABLE, &enable, 1); DRM_INFO("Send DSC disable to synaptics\n"); } } return ret; } bool dm_helpers_dp_write_dsc_enable( struct dc_context *ctx, const struct dc_stream_state *stream, bool enable) { static const uint8_t DSC_DISABLE; static const uint8_t DSC_DECODING = 0x01; static const uint8_t DSC_PASSTHROUGH = 0x02; struct amdgpu_dm_connector *aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context; struct drm_device *dev = aconnector->base.dev; struct drm_dp_mst_port *port; uint8_t enable_dsc = enable ? DSC_DECODING : DSC_DISABLE; uint8_t enable_passthrough = enable ? DSC_PASSTHROUGH : DSC_DISABLE; uint8_t ret = 0; if (!stream) return false; if (stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) { if (!aconnector->dsc_aux) return false; // apply w/a to synaptics if (needs_dsc_aux_workaround(aconnector->dc_link) && (aconnector->mst_downstream_port_present.byte & 0x7) != 0x3) return write_dsc_enable_synaptics_non_virtual_dpcd_mst( aconnector->dsc_aux, stream, enable_dsc); port = aconnector->mst_output_port; if (enable) { if (port->passthrough_aux) { ret = drm_dp_dpcd_write(port->passthrough_aux, DP_DSC_ENABLE, &enable_passthrough, 1); drm_dbg_dp(dev, "Sent DSC pass-through enable to virtual dpcd port, ret = %u\n", ret); } ret = drm_dp_dpcd_write(aconnector->dsc_aux, DP_DSC_ENABLE, &enable_dsc, 1); drm_dbg_dp(dev, "Sent DSC decoding enable to %s port, ret = %u\n", (port->passthrough_aux) ? "remote RX" : "virtual dpcd", ret); } else { ret = drm_dp_dpcd_write(aconnector->dsc_aux, DP_DSC_ENABLE, &enable_dsc, 1); drm_dbg_dp(dev, "Sent DSC decoding disable to %s port, ret = %u\n", (port->passthrough_aux) ? "remote RX" : "virtual dpcd", ret); if (port->passthrough_aux) { ret = drm_dp_dpcd_write(port->passthrough_aux, DP_DSC_ENABLE, &enable_passthrough, 1); drm_dbg_dp(dev, "Sent DSC pass-through disable to virtual dpcd port, ret = %u\n", ret); } } } if (stream->signal == SIGNAL_TYPE_DISPLAY_PORT || stream->signal == SIGNAL_TYPE_EDP) { if (stream->sink->link->dpcd_caps.dongle_type == DISPLAY_DONGLE_NONE) { ret = dm_helpers_dp_write_dpcd(ctx, stream->link, DP_DSC_ENABLE, &enable_dsc, 1); drm_dbg_dp(dev, "Send DSC %s to SST RX\n", enable_dsc ? "enable" : "disable"); } else if (stream->sink->link->dpcd_caps.dongle_type == DISPLAY_DONGLE_DP_HDMI_CONVERTER) { ret = dm_helpers_dp_write_dpcd(ctx, stream->link, DP_DSC_ENABLE, &enable_dsc, 1); drm_dbg_dp(dev, "Send DSC %s to DP-HDMI PCON\n", enable_dsc ? "enable" : "disable"); } } return ret; } bool dm_helpers_is_dp_sink_present(struct dc_link *link) { bool dp_sink_present; struct amdgpu_dm_connector *aconnector = link->priv; if (!aconnector) { BUG_ON("Failed to find connector for link!"); return true; } mutex_lock(&aconnector->dm_dp_aux.aux.hw_mutex); dp_sink_present = dc_link_is_dp_sink_present(link); mutex_unlock(&aconnector->dm_dp_aux.aux.hw_mutex); return dp_sink_present; } enum dc_edid_status dm_helpers_read_local_edid( struct dc_context *ctx, struct dc_link *link, struct dc_sink *sink) { struct amdgpu_dm_connector *aconnector = link->priv; struct drm_connector *connector = &aconnector->base; struct i2c_adapter *ddc; int retry = 3; enum dc_edid_status edid_status; struct edid *edid; if (link->aux_mode) ddc = &aconnector->dm_dp_aux.aux.ddc; else ddc = &aconnector->i2c->base; /* some dongles read edid incorrectly the first time, * do check sum and retry to make sure read correct edid. */ do { edid = drm_get_edid(&aconnector->base, ddc); /* DP Compliance Test 4.2.2.6 */ if (link->aux_mode && connector->edid_corrupt) drm_dp_send_real_edid_checksum(&aconnector->dm_dp_aux.aux, connector->real_edid_checksum); if (!edid && connector->edid_corrupt) { connector->edid_corrupt = false; return EDID_BAD_CHECKSUM; } if (!edid) return EDID_NO_RESPONSE; sink->dc_edid.length = EDID_LENGTH * (edid->extensions + 1); memmove(sink->dc_edid.raw_edid, (uint8_t *)edid, sink->dc_edid.length); /* We don't need the original edid anymore */ kfree(edid); edid_status = dm_helpers_parse_edid_caps( link, &sink->dc_edid, &sink->edid_caps); } while (edid_status == EDID_BAD_CHECKSUM && --retry > 0); if (edid_status != EDID_OK) DRM_ERROR("EDID err: %d, on connector: %s", edid_status, aconnector->base.name); if (link->aux_mode) { union test_request test_request = {0}; union test_response test_response = {0}; dm_helpers_dp_read_dpcd(ctx, link, DP_TEST_REQUEST, &test_request.raw, sizeof(union test_request)); if (!test_request.bits.EDID_READ) return edid_status; test_response.bits.EDID_CHECKSUM_WRITE = 1; dm_helpers_dp_write_dpcd(ctx, link, DP_TEST_EDID_CHECKSUM, &sink->dc_edid.raw_edid[sink->dc_edid.length-1], 1); dm_helpers_dp_write_dpcd(ctx, link, DP_TEST_RESPONSE, &test_response.raw, sizeof(test_response)); } return edid_status; } int dm_helper_dmub_aux_transfer_sync( struct dc_context *ctx, const struct dc_link *link, struct aux_payload *payload, enum aux_return_code_type *operation_result) { if (!link->hpd_status) { *operation_result = AUX_RET_ERROR_HPD_DISCON; return -1; } return amdgpu_dm_process_dmub_aux_transfer_sync(ctx, link->link_index, payload, operation_result); } int dm_helpers_dmub_set_config_sync(struct dc_context *ctx, const struct dc_link *link, struct set_config_cmd_payload *payload, enum set_config_status *operation_result) { return amdgpu_dm_process_dmub_set_config_sync(ctx, link->link_index, payload, operation_result); } void dm_set_dcn_clocks(struct dc_context *ctx, struct dc_clocks *clks) { /* TODO: something */ } void dm_helpers_smu_timeout(struct dc_context *ctx, unsigned int msg_id, unsigned int param, unsigned int timeout_us) { // TODO: //amdgpu_device_gpu_recover(dc_context->driver-context, NULL); } void dm_helpers_init_panel_settings( struct dc_context *ctx, struct dc_panel_config *panel_config, struct dc_sink *sink) { // Extra Panel Power Sequence panel_config->pps.extra_t3_ms = sink->edid_caps.panel_patch.extra_t3_ms; panel_config->pps.extra_t7_ms = sink->edid_caps.panel_patch.extra_t7_ms; panel_config->pps.extra_delay_backlight_off = sink->edid_caps.panel_patch.extra_delay_backlight_off; panel_config->pps.extra_post_t7_ms = 0; panel_config->pps.extra_pre_t11_ms = 0; panel_config->pps.extra_t12_ms = sink->edid_caps.panel_patch.extra_t12_ms; panel_config->pps.extra_post_OUI_ms = 0; // Feature DSC panel_config->dsc.disable_dsc_edp = false; panel_config->dsc.force_dsc_edp_policy = 0; } void dm_helpers_override_panel_settings( struct dc_context *ctx, struct dc_panel_config *panel_config) { // Feature DSC if (amdgpu_dc_debug_mask & DC_DISABLE_DSC) panel_config->dsc.disable_dsc_edp = true; } void *dm_helpers_allocate_gpu_mem( struct dc_context *ctx, enum dc_gpu_mem_alloc_type type, size_t size, long long *addr) { struct amdgpu_device *adev = ctx->driver_context; struct dal_allocation *da; u32 domain = (type == DC_MEM_ALLOC_TYPE_GART) ? AMDGPU_GEM_DOMAIN_GTT : AMDGPU_GEM_DOMAIN_VRAM; int ret; da = kzalloc(sizeof(struct dal_allocation), GFP_KERNEL); if (!da) return NULL; ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE, domain, &da->bo, &da->gpu_addr, &da->cpu_ptr); *addr = da->gpu_addr; if (ret) { kfree(da); return NULL; } /* add da to list in dm */ list_add(&da->list, &adev->dm.da_list); return da->cpu_ptr; } void dm_helpers_free_gpu_mem( struct dc_context *ctx, enum dc_gpu_mem_alloc_type type, void *pvMem) { struct amdgpu_device *adev = ctx->driver_context; struct dal_allocation *da; /* walk the da list in DM */ list_for_each_entry(da, &adev->dm.da_list, list) { if (pvMem == da->cpu_ptr) { amdgpu_bo_free_kernel(&da->bo, &da->gpu_addr, &da->cpu_ptr); list_del(&da->list); kfree(da); break; } } } bool dm_helpers_dmub_outbox_interrupt_control(struct dc_context *ctx, bool enable) { enum dc_irq_source irq_source; bool ret; irq_source = DC_IRQ_SOURCE_DMCUB_OUTBOX; ret = dc_interrupt_set(ctx->dc, irq_source, enable); DRM_DEBUG_DRIVER("Dmub trace irq %sabling: r=%d\n", enable ? "en" : "dis", ret); return ret; } void dm_helpers_mst_enable_stream_features(const struct dc_stream_state *stream) { /* TODO: virtual DPCD */ struct dc_link *link = stream->link; union down_spread_ctrl old_downspread; union down_spread_ctrl new_downspread; if (link->aux_access_disabled) return; if (!dm_helpers_dp_read_dpcd(link->ctx, link, DP_DOWNSPREAD_CTRL, &old_downspread.raw, sizeof(old_downspread))) return; new_downspread.raw = old_downspread.raw; new_downspread.bits.IGNORE_MSA_TIMING_PARAM = (stream->ignore_msa_timing_param) ? 1 : 0; if (new_downspread.raw != old_downspread.raw) dm_helpers_dp_write_dpcd(link->ctx, link, DP_DOWNSPREAD_CTRL, &new_downspread.raw, sizeof(new_downspread)); } bool dm_helpers_dp_handle_test_pattern_request( struct dc_context *ctx, const struct dc_link *link, union link_test_pattern dpcd_test_pattern, union test_misc dpcd_test_params) { enum dp_test_pattern test_pattern; enum dp_test_pattern_color_space test_pattern_color_space = DP_TEST_PATTERN_COLOR_SPACE_UNDEFINED; enum dc_color_depth requestColorDepth = COLOR_DEPTH_UNDEFINED; enum dc_pixel_encoding requestPixelEncoding = PIXEL_ENCODING_UNDEFINED; struct pipe_ctx *pipes = link->dc->current_state->res_ctx.pipe_ctx; struct pipe_ctx *pipe_ctx = NULL; struct amdgpu_dm_connector *aconnector = link->priv; struct drm_device *dev = aconnector->base.dev; int i; for (i = 0; i < MAX_PIPES; i++) { if (pipes[i].stream == NULL) continue; if (pipes[i].stream->link == link && !pipes[i].top_pipe && !pipes[i].prev_odm_pipe) { pipe_ctx = &pipes[i]; break; } } if (pipe_ctx == NULL) return false; switch (dpcd_test_pattern.bits.PATTERN) { case LINK_TEST_PATTERN_COLOR_RAMP: test_pattern = DP_TEST_PATTERN_COLOR_RAMP; break; case LINK_TEST_PATTERN_VERTICAL_BARS: test_pattern = DP_TEST_PATTERN_VERTICAL_BARS; break; /* black and white */ case LINK_TEST_PATTERN_COLOR_SQUARES: test_pattern = (dpcd_test_params.bits.DYN_RANGE == TEST_DYN_RANGE_VESA ? DP_TEST_PATTERN_COLOR_SQUARES : DP_TEST_PATTERN_COLOR_SQUARES_CEA); break; default: test_pattern = DP_TEST_PATTERN_VIDEO_MODE; break; } if (dpcd_test_params.bits.CLR_FORMAT == 0) test_pattern_color_space = DP_TEST_PATTERN_COLOR_SPACE_RGB; else test_pattern_color_space = dpcd_test_params.bits.YCBCR_COEFS ? DP_TEST_PATTERN_COLOR_SPACE_YCBCR709 : DP_TEST_PATTERN_COLOR_SPACE_YCBCR601; switch (dpcd_test_params.bits.BPC) { case 0: // 6 bits requestColorDepth = COLOR_DEPTH_666; break; case 1: // 8 bits requestColorDepth = COLOR_DEPTH_888; break; case 2: // 10 bits requestColorDepth = COLOR_DEPTH_101010; break; case 3: // 12 bits requestColorDepth = COLOR_DEPTH_121212; break; default: break; } switch (dpcd_test_params.bits.CLR_FORMAT) { case 0: requestPixelEncoding = PIXEL_ENCODING_RGB; break; case 1: requestPixelEncoding = PIXEL_ENCODING_YCBCR422; break; case 2: requestPixelEncoding = PIXEL_ENCODING_YCBCR444; break; default: requestPixelEncoding = PIXEL_ENCODING_RGB; break; } if ((requestColorDepth != COLOR_DEPTH_UNDEFINED && pipe_ctx->stream->timing.display_color_depth != requestColorDepth) || (requestPixelEncoding != PIXEL_ENCODING_UNDEFINED && pipe_ctx->stream->timing.pixel_encoding != requestPixelEncoding)) { drm_dbg(dev, "original bpc %d pix encoding %d, changing to %d %d\n", pipe_ctx->stream->timing.display_color_depth, pipe_ctx->stream->timing.pixel_encoding, requestColorDepth, requestPixelEncoding); pipe_ctx->stream->timing.display_color_depth = requestColorDepth; pipe_ctx->stream->timing.pixel_encoding = requestPixelEncoding; dc_link_update_dsc_config(pipe_ctx); aconnector->timing_changed = true; /* store current timing */ if (aconnector->timing_requested) *aconnector->timing_requested = pipe_ctx->stream->timing; else drm_err(dev, "timing storage failed\n"); } pipe_ctx->stream->test_pattern.type = test_pattern; pipe_ctx->stream->test_pattern.color_space = test_pattern_color_space; dc_link_dp_set_test_pattern( (struct dc_link *) link, test_pattern, test_pattern_color_space, NULL, NULL, 0); return false; } void dm_set_phyd32clk(struct dc_context *ctx, int freq_khz) { // TODO } void dm_helpers_enable_periodic_detection(struct dc_context *ctx, bool enable) { /* TODO: add periodic detection implementation */ } void dm_helpers_dp_mst_update_branch_bandwidth( struct dc_context *ctx, struct dc_link *link) { // TODO } static bool dm_is_freesync_pcon_whitelist(const uint32_t branch_dev_id) { bool ret_val = false; switch (branch_dev_id) { case DP_BRANCH_DEVICE_ID_0060AD: case DP_BRANCH_DEVICE_ID_00E04C: case DP_BRANCH_DEVICE_ID_90CC24: ret_val = true; break; default: break; } return ret_val; } enum adaptive_sync_type dm_get_adaptive_sync_support_type(struct dc_link *link) { struct dpcd_caps *dpcd_caps = &link->dpcd_caps; enum adaptive_sync_type as_type = ADAPTIVE_SYNC_TYPE_NONE; switch (dpcd_caps->dongle_type) { case DISPLAY_DONGLE_DP_HDMI_CONVERTER: if (dpcd_caps->adaptive_sync_caps.dp_adap_sync_caps.bits.ADAPTIVE_SYNC_SDP_SUPPORT == true && dpcd_caps->allow_invalid_MSA_timing_param == true && dm_is_freesync_pcon_whitelist(dpcd_caps->branch_dev_id)) as_type = FREESYNC_TYPE_PCON_IN_WHITELIST; break; default: break; } return as_type; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1