Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
rodrigosiqueira | 8815 | 39.16% | 17 | 10.69% |
Wenjing Liu | 3276 | 14.55% | 15 | 9.43% |
Alvin lee | 3160 | 14.04% | 45 | 28.30% |
Aurabindo Pillai | 1316 | 5.85% | 2 | 1.26% |
Samson Tam | 1088 | 4.83% | 6 | 3.77% |
Bhawanpreet Lakha | 1039 | 4.62% | 3 | 1.89% |
Dillon Varone | 943 | 4.19% | 17 | 10.69% |
Austin Zheng | 843 | 3.74% | 3 | 1.89% |
Qingqing Zhuo | 491 | 2.18% | 1 | 0.63% |
George Shen | 301 | 1.34% | 6 | 3.77% |
Alex Deucher | 209 | 0.93% | 2 | 1.26% |
Anthony Koo | 197 | 0.88% | 3 | 1.89% |
Vladimir Stempen | 163 | 0.72% | 3 | 1.89% |
Harry Wentland | 126 | 0.56% | 3 | 1.89% |
Taimur Hassan | 92 | 0.41% | 1 | 0.63% |
Dmytro Laktyushkin | 88 | 0.39% | 2 | 1.26% |
Jun Lei | 71 | 0.32% | 2 | 1.26% |
Ao Zhong | 34 | 0.15% | 1 | 0.63% |
Sung Joon Kim | 29 | 0.13% | 1 | 0.63% |
Leo (Hanghong) Ma | 28 | 0.12% | 1 | 0.63% |
Ethan Bitnun | 24 | 0.11% | 1 | 0.63% |
Martin Leung | 21 | 0.09% | 1 | 0.63% |
Ethan Wellenreiter | 20 | 0.09% | 1 | 0.63% |
Jasdeep Dhillon | 20 | 0.09% | 1 | 0.63% |
Eric Yang | 19 | 0.08% | 2 | 1.26% |
David Francis | 14 | 0.06% | 1 | 0.63% |
Randy Dunlap | 9 | 0.04% | 1 | 0.63% |
Julian Parkin | 9 | 0.04% | 1 | 0.63% |
Yongqiang Sun | 8 | 0.04% | 1 | 0.63% |
David Galiffi | 8 | 0.04% | 1 | 0.63% |
Jerry (Fangzhi) Zuo | 7 | 0.03% | 1 | 0.63% |
Tom Chung | 7 | 0.03% | 1 | 0.63% |
Srinivasan S | 6 | 0.03% | 2 | 1.26% |
Leo (Sunpeng) Li | 6 | 0.03% | 1 | 0.63% |
Joshua Aberback | 6 | 0.03% | 1 | 0.63% |
Andrey Grodzovsky | 6 | 0.03% | 1 | 0.63% |
Alex Hung | 4 | 0.02% | 1 | 0.63% |
Bob zhou | 4 | 0.02% | 1 | 0.63% |
Sohaib Nadeem | 2 | 0.01% | 1 | 0.63% |
Eric Bernstein | 1 | 0.00% | 1 | 0.63% |
Tom Rix | 1 | 0.00% | 1 | 0.63% |
Relja Vojvodic | 1 | 0.00% | 1 | 0.63% |
Asher.Song | 1 | 0.00% | 1 | 0.63% |
Total | 22513 | 159 |
// SPDX-License-Identifier: MIT /* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dcn32_fpu.h" #include "dcn32/dcn32_resource.h" #include "dcn20/dcn20_resource.h" #include "display_mode_vba_util_32.h" #include "dml/dcn32/display_mode_vba_32.h" // We need this includes for WATERMARKS_* defines #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h" #include "dcn30/dcn30_resource.h" #include "link.h" #include "dc_state_priv.h" #define DC_LOGGER_INIT(logger) static const struct subvp_high_refresh_list subvp_high_refresh_list = { .min_refresh = 120, .max_refresh = 175, .res = { {.width = 3840, .height = 2160, }, {.width = 3440, .height = 1440, }, {.width = 2560, .height = 1440, }, {.width = 1920, .height = 1080, }}, }; static const struct subvp_active_margin_list subvp_active_margin_list = { .min_refresh = 55, .max_refresh = 65, .res = { {.width = 2560, .height = 1440, }, {.width = 1920, .height = 1080, }}, }; struct _vcs_dpi_ip_params_st dcn3_2_ip = { .gpuvm_enable = 0, .gpuvm_max_page_table_levels = 4, .hostvm_enable = 0, .rob_buffer_size_kbytes = 128, .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE, .config_return_buffer_size_in_kbytes = 1280, .compressed_buffer_segment_size_in_kbytes = 64, .meta_fifo_size_in_kentries = 22, .zero_size_buffer_entries = 512, .compbuf_reserved_space_64b = 256, .compbuf_reserved_space_zs = 64, .dpp_output_buffer_pixels = 2560, .opp_output_buffer_lines = 1, .pixel_chunk_size_kbytes = 8, .alpha_pixel_chunk_size_kbytes = 4, .min_pixel_chunk_size_bytes = 1024, .dcc_meta_buffer_size_bytes = 6272, .meta_chunk_size_kbytes = 2, .min_meta_chunk_size_bytes = 256, .writeback_chunk_size_kbytes = 8, .ptoi_supported = false, .num_dsc = 4, .maximum_dsc_bits_per_component = 12, .maximum_pixels_per_line_per_dsc_unit = 6016, .dsc422_native_support = true, .is_line_buffer_bpp_fixed = true, .line_buffer_fixed_bpp = 57, .line_buffer_size_bits = 1171920, .max_line_buffer_lines = 32, .writeback_interface_buffer_size_kbytes = 90, .max_num_dpp = 4, .max_num_otg = 4, .max_num_hdmi_frl_outputs = 1, .max_num_wb = 1, .max_dchub_pscl_bw_pix_per_clk = 4, .max_pscl_lb_bw_pix_per_clk = 2, .max_lb_vscl_bw_pix_per_clk = 4, .max_vscl_hscl_bw_pix_per_clk = 4, .max_hscl_ratio = 6, .max_vscl_ratio = 6, .max_hscl_taps = 8, .max_vscl_taps = 8, .dpte_buffer_size_in_pte_reqs_luma = 64, .dpte_buffer_size_in_pte_reqs_chroma = 34, .dispclk_ramp_margin_percent = 1, .max_inter_dcn_tile_repeaters = 8, .cursor_buffer_size = 16, .cursor_chunk_size = 2, .writeback_line_buffer_buffer_size = 0, .writeback_min_hscl_ratio = 1, .writeback_min_vscl_ratio = 1, .writeback_max_hscl_ratio = 1, .writeback_max_vscl_ratio = 1, .writeback_max_hscl_taps = 1, .writeback_max_vscl_taps = 1, .dppclk_delay_subtotal = 47, .dppclk_delay_scl = 50, .dppclk_delay_scl_lb_only = 16, .dppclk_delay_cnvc_formatter = 28, .dppclk_delay_cnvc_cursor = 6, .dispclk_delay_subtotal = 125, .dynamic_metadata_vm_enabled = false, .odm_combine_4to1_supported = false, .dcc_supported = true, .max_num_dp2p0_outputs = 2, .max_num_dp2p0_streams = 4, }; struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = { .clock_limits = { { .state = 0, .dcfclk_mhz = 1564.0, .fabricclk_mhz = 2500.0, .dispclk_mhz = 2150.0, .dppclk_mhz = 2150.0, .phyclk_mhz = 810.0, .phyclk_d18_mhz = 667.0, .phyclk_d32_mhz = 625.0, .socclk_mhz = 1200.0, .dscclk_mhz = 716.667, .dram_speed_mts = 18000.0, .dtbclk_mhz = 1564.0, }, }, .num_states = 1, .sr_exit_time_us = 42.97, .sr_enter_plus_exit_time_us = 49.94, .sr_exit_z8_time_us = 285.0, .sr_enter_plus_exit_z8_time_us = 320, .writeback_latency_us = 12.0, .round_trip_ping_latency_dcfclk_cycles = 263, .urgent_latency_pixel_data_only_us = 4.0, .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, .urgent_latency_vm_data_only_us = 4.0, .fclk_change_latency_us = 25, .usr_retraining_latency_us = 2, .smn_latency_us = 2, .mall_allocated_for_dcn_mbytes = 64, .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, .pct_ideal_sdp_bw_after_urgent = 90.0, .pct_ideal_fabric_bw_after_urgent = 67.0, .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0, .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented .pct_ideal_dram_bw_after_urgent_strobe = 67.0, .max_avg_sdp_bw_use_normal_percent = 80.0, .max_avg_fabric_bw_use_normal_percent = 60.0, .max_avg_dram_bw_use_normal_strobe_percent = 50.0, .max_avg_dram_bw_use_normal_percent = 15.0, .num_chans = 24, .dram_channel_width_bytes = 2, .fabric_datapath_to_dcn_data_return_bytes = 64, .return_bus_width_bytes = 64, .downspread_percent = 0.38, .dcn_downspread_percent = 0.5, .dram_clock_change_latency_us = 400, .dispclk_dppclk_vco_speed_mhz = 4300.0, .do_urgent_latency_adjustment = true, .urgent_latency_adjustment_fabric_clock_component_us = 1.0, .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000, }; static bool dcn32_apply_merge_split_flags_helper(struct dc *dc, struct dc_state *context, bool *repopulate_pipes, int *split, bool *merge); void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr) { /* defaults */ double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us; double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us; double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us; double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us; /* For min clocks use as reported by PM FW and report those as min */ uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz; uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz; uint16_t setb_min_uclk_mhz = min_uclk_mhz; uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz; dc_assert_fp_enabled(); /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */ if (dcfclk_mhz_for_the_second_state) clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state; else clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz; if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz) setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz; /* Set A - Normal - default values */ clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true; clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE; clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF; clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz; clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF; /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */ clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true; clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE; clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF; clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz; clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF; /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */ /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */ if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) { clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true; clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50; clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE; clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF; clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz; clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF; clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16; clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50; clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16; clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9; clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16; clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8; clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16; clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5; } /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */ /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */ clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true; clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us; clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL; clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF; clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz; clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF; } /* * Finds dummy_latency_index when MCLK switching using firmware based * vblank stretch is enabled. This function will iterate through the * table of dummy pstate latencies until the lowest value that allows * dm_allow_self_refresh_and_mclk_switch to happen is found */ int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt, int vlevel) { const int max_latency_table_entries = 4; struct vba_vars_st *vba = &context->bw_ctx.dml.vba; int dummy_latency_index = 0; enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; dc_assert_fp_enabled(); while (dummy_latency_index < max_latency_table_entries) { if (temp_clock_change_support != dm_dram_clock_change_unsupported) vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support; context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false); /* for subvp + DRR case, if subvp pipes are still present we support pstate */ if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported && dcn32_subvp_in_use(dc, context)) vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support; if (vlevel < context->bw_ctx.dml.vba.soc.num_states && vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) break; dummy_latency_index++; } if (dummy_latency_index == max_latency_table_entries) { ASSERT(dummy_latency_index != max_latency_table_entries); /* If the execution gets here, it means dummy p_states are * not possible. This should never happen and would mean * something is severely wrong. * Here we reset dummy_latency_index to 3, because it is * better to have underflows than system crashes. */ dummy_latency_index = max_latency_table_entries - 1; } return dummy_latency_index; } /** * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes * and populate pipe_ctx with those params. * @dc: [in] current dc state * @context: [in] new dc state * @pipes: [in] DML pipe params array * @pipe_cnt: [in] DML pipe count * * This function must be called AFTER the phantom pipes are added to context * and run through DML (so that the DLG params for the phantom pipes can be * populated), and BEFORE we program the timing for the phantom pipes. */ void dcn32_helper_populate_phantom_dlg_params(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt) { uint32_t i, pipe_idx; dc_assert_fp_enabled(); for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->stream) continue; if (pipe->plane_state && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) { pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest; } pipe_idx++; } } static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry) { float memory_bw_kbytes_sec; float fabric_bw_kbytes_sec; float sdp_bw_kbytes_sec; float limiting_bw_kbytes_sec; memory_bw_kbytes_sec = entry->dram_speed_mts * dcn3_2_soc.num_chans * dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); fabric_bw_kbytes_sec = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); sdp_bw_kbytes_sec = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); limiting_bw_kbytes_sec = memory_bw_kbytes_sec; if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec) limiting_bw_kbytes_sec = fabric_bw_kbytes_sec; if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec) limiting_bw_kbytes_sec = sdp_bw_kbytes_sec; return limiting_bw_kbytes_sec; } static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry) { if (entry->dcfclk_mhz > 0) { float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans * dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); } else if (entry->fabricclk_mhz > 0) { float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans * dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); } else if (entry->dram_speed_mts > 0) { float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans * dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); } } static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, struct _vcs_dpi_voltage_scaling_st *entry) { int i = 0; int index = 0; dc_assert_fp_enabled(); if (*num_entries == 0) { table[0] = *entry; (*num_entries)++; } else { while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) { index++; if (index >= *num_entries) break; } for (i = *num_entries; i > index; i--) table[i] = table[i - 1]; table[index] = *entry; (*num_entries)++; } } /** * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream * @dc: current dc state * @context: new dc state * @ref_pipe: Main pipe for the phantom stream * @phantom_stream: target phantom stream state * @pipes: DML pipe params * @pipe_cnt: number of DML pipes * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe) * * Set timing params of the phantom stream based on calculated output from DML. * This function first gets the DML pipe index using the DC pipe index, then * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of * lines required for SubVP MCLK switching and assigns to the phantom stream * accordingly. * * - The number of SubVP lines calculated in DML does not take into account * FW processing delays and required pstate allow width, so we must include * that separately. * * - Set phantom backporch = vstartup of main pipe */ void dcn32_set_phantom_stream_timing(struct dc *dc, struct dc_state *context, struct pipe_ctx *ref_pipe, struct dc_stream_state *phantom_stream, display_e2e_pipe_params_st *pipes, unsigned int pipe_cnt, unsigned int dc_pipe_idx) { unsigned int i, pipe_idx; struct pipe_ctx *pipe; uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines; unsigned int num_dpp; unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel; unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel]; struct vba_vars_st *vba = &context->bw_ctx.dml.vba; struct dc_stream_state *main_stream = ref_pipe->stream; dc_assert_fp_enabled(); // Find DML pipe index (pipe_idx) using dc_pipe_idx for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->stream) continue; if (i == dc_pipe_idx) break; pipe_idx++; } // Calculate lines required for pstate allow width and FW processing delays pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us + dc->caps.subvp_pstate_allow_width_us) / 1000000) * (ref_pipe->stream->timing.pix_clk_100hz * 100) / (double)ref_pipe->stream->timing.h_total; // Update clks_cfg for calling into recalculate pipes[0].clks_cfg.voltage = vlevel; pipes[0].clks_cfg.dcfclk_mhz = dcfclk; pipes[0].clks_cfg.socclk_mhz = socclk; // DML calculation for MALL region doesn't take into account FW delay // and required pstate allow width for multi-display cases /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned * to 2 swaths (i.e. 16 lines) */ phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) + pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines; // W/A for DCC corruption with certain high resolution timings. // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive. num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]]; phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0; /* dc->debug.subvp_extra_lines 0 by default*/ phantom_vactive += dc->debug.subvp_extra_lines; // For backporch of phantom pipe, use vstartup of the main pipe phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); phantom_stream->dst.y = 0; phantom_stream->dst.height = phantom_vactive; /* When scaling, DML provides the end to end required number of lines for MALL. * dst.height is always correct for this case, but src.height is not which causes a * delta between main and phantom pipe scaling outputs. Need to adjust src.height on * phantom for this case. */ phantom_stream->src.y = 0; phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height; phantom_stream->timing.v_addressable = phantom_vactive; phantom_stream->timing.v_front_porch = 1; phantom_stream->timing.v_total = phantom_stream->timing.v_addressable + phantom_stream->timing.v_front_porch + phantom_stream->timing.v_sync_width + phantom_bp; phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing } /** * dcn32_get_num_free_pipes - Calculate number of free pipes * @dc: current dc state * @context: new dc state * * This function assumes that a "used" pipe is a pipe that has * both a stream and a plane assigned to it. * * Return: Number of free pipes available in the context */ static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context) { unsigned int i; unsigned int free_pipes = 0; unsigned int num_pipes = 0; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->stream && !pipe->top_pipe) { while (pipe) { num_pipes++; pipe = pipe->bottom_pipe; } } } free_pipes = dc->res_pool->pipe_count - num_pipes; return free_pipes; } /** * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP. * @dc: current dc state * @context: new dc state * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned * * We enter this function if we are Sub-VP capable (i.e. enough pipes available) * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if * we are forcing SubVP P-State switching on the current config. * * The number of pipes used for the chosen surface must be less than or equal to the * number of free pipes available. * * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK). * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't * support MCLK switching naturally [i.e. ACTIVE or VBLANK]). * * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false. */ static bool dcn32_assign_subvp_pipe(struct dc *dc, struct dc_state *context, unsigned int *index) { unsigned int i, pipe_idx; unsigned int max_frame_time = 0; bool valid_assignment_found = false; unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context); struct vba_vars_st *vba = &context->bw_ctx.dml.vba; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; unsigned int num_pipes = 0; unsigned int refresh_rate = 0; if (!pipe->stream) continue; // Round up refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 + pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1) / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total); /* SubVP pipe candidate requirements: * - Refresh rate < 120hz * - Not able to switch in vactive naturally (switching in active means the * DET provides enough buffer to hide the P-State switch latency -- trying * to combine this with SubVP can cause issues with the scheduling). * - Not TMZ surface */ if (pipe->plane_state && !pipe->top_pipe && !pipe->prev_odm_pipe && !dcn32_is_center_timing(pipe) && !(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) && (!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE && (refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) && !pipe->plane_state->address.tmz_surface && (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 || (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 && dcn32_allow_subvp_with_active_margin(pipe)))) { while (pipe) { num_pipes++; pipe = pipe->bottom_pipe; } pipe = &context->res_ctx.pipe_ctx[i]; if (num_pipes <= free_pipes) { struct dc_stream_state *stream = pipe->stream; unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total / (double)(stream->timing.pix_clk_100hz * 100)) * 1000000; if (frame_us > max_frame_time) { *index = i; max_frame_time = frame_us; valid_assignment_found = true; } } } pipe_idx++; } return valid_assignment_found; } /** * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP. * @dc: current dc state * @context: new dc state * * This function returns true if there are enough free pipes * to create the required phantom pipes for any given stream * (that does not already have phantom pipe assigned). * * e.g. For a 2 stream config where the first stream uses one * pipe and the second stream uses 2 pipes (i.e. pipe split), * this function will return true because there is 1 remaining * pipe which can be used as the phantom pipe for the non pipe * split pipe. * * Return: * True if there are enough free pipes to assign phantom pipes to at least one * stream that does not already have phantom pipes assigned. Otherwise false. */ static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context) { unsigned int i, split_cnt, free_pipes; unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1 bool subvp_possible = false; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; // Find the minimum pipe split count for non SubVP pipes if (resource_is_pipe_type(pipe, OPP_HEAD) && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE) { split_cnt = 0; while (pipe) { split_cnt++; pipe = pipe->bottom_pipe; } if (split_cnt < min_pipe_split) min_pipe_split = split_cnt; } } free_pipes = dcn32_get_num_free_pipes(dc, context); // SubVP only possible if at least one pipe is being used (i.e. free_pipes // should not equal to the pipe_count) if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count) subvp_possible = true; return subvp_possible; } /** * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable * @dc: current dc state * @context: new dc state * * High level algorithm: * 1. Find longest microschedule length (in us) between the two SubVP pipes * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both * pipes still allows for the maximum microschedule to fit in the active * region for both pipes. * * Return: True if the SubVP + SubVP config is schedulable, false otherwise */ static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context) { struct pipe_ctx *subvp_pipes[2] = {0}; struct dc_stream_state *phantom = NULL; uint32_t microschedule_lines = 0; uint32_t index = 0; uint32_t i; uint32_t max_microschedule_us = 0; int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; uint32_t time_us = 0; /* Loop to calculate the maximum microschedule time between the two SubVP pipes, * and also to store the two main SubVP pipe pointers in subvp_pipes[2]. */ if (pipe->stream && pipe->plane_state && !pipe->top_pipe && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) { phantom = dc_state_get_paired_subvp_stream(context, pipe->stream); microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) + phantom->timing.v_addressable; // Round up when calculating microschedule time (+ 1 at the end) time_us = (microschedule_lines * phantom->timing.h_total) / (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 + dc->caps.subvp_prefetch_end_to_mall_start_us + dc->caps.subvp_fw_processing_delay_us + 1; if (time_us > max_microschedule_us) max_microschedule_us = time_us; subvp_pipes[index] = pipe; index++; // Maximum 2 SubVP pipes if (index == 2) break; } } vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) / (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) / (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) * subvp_pipes[0]->stream->timing.h_total) / (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) * subvp_pipes[1]->stream->timing.h_total) / (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us && (vactive2_us - vblank1_us) / 2 > max_microschedule_us) return true; return false; } /** * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable * @dc: current dc state * @context: new dc state * * High level algorithm: * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching * (the margin is equal to the MALL region + DRR margin (500us)) * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame)) * then report the configuration as supported * * Return: True if the SubVP + DRR config is schedulable, false otherwise */ static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context) { bool schedulable = false; uint32_t i; struct pipe_ctx *pipe = NULL; struct pipe_ctx *drr_pipe = NULL; struct dc_crtc_timing *main_timing = NULL; struct dc_crtc_timing *phantom_timing = NULL; struct dc_crtc_timing *drr_timing = NULL; int16_t prefetch_us = 0; int16_t mall_region_us = 0; int16_t drr_frame_us = 0; // nominal frame time int16_t subvp_active_us = 0; int16_t stretched_drr_us = 0; int16_t drr_stretched_vblank_us = 0; int16_t max_vblank_mallregion = 0; struct dc_stream_state *phantom_stream; bool subvp_found = false; bool drr_found = false; // Find SubVP pipe for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; // We check for master pipe, but it shouldn't matter since we only need // the pipe for timing info (stream should be same for any pipe splits) if (!resource_is_pipe_type(pipe, OTG_MASTER) || !resource_is_pipe_type(pipe, DPP_PIPE)) continue; // Find the SubVP pipe if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) { subvp_found = true; break; } } // Find the DRR pipe for (i = 0; i < dc->res_pool->pipe_count; i++) { drr_pipe = &context->res_ctx.pipe_ctx[i]; // We check for master pipe only if (!resource_is_pipe_type(drr_pipe, OTG_MASTER) || !resource_is_pipe_type(drr_pipe, DPP_PIPE)) continue; if (dc_state_get_pipe_subvp_type(context, drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param && (drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) { drr_found = true; break; } } if (subvp_found && drr_found) { phantom_stream = dc_state_get_paired_subvp_stream(context, pipe->stream); main_timing = &pipe->stream->timing; phantom_timing = &phantom_stream->timing; drr_timing = &drr_pipe->stream->timing; prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + dc->caps.subvp_prefetch_end_to_mall_start_us; subvp_active_us = main_timing->v_addressable * main_timing->h_total / (double)(main_timing->pix_clk_100hz * 100) * 1000000; drr_frame_us = drr_timing->v_total * drr_timing->h_total / (double)(drr_timing->pix_clk_100hz * 100) * 1000000; // P-State allow width and FW delays already included phantom_timing->v_addressable mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US; drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total / (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us); max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us; } /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, * and the max of (VBLANK blanking time, MALL region)). */ if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 && subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0) schedulable = true; return schedulable; } /** * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable * @dc: current dc state * @context: new dc state * * High level algorithm: * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time)) * then report the configuration as supported * 3. If the VBLANK display is DRR, then take the DRR static schedulability path * * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise */ static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context) { struct pipe_ctx *pipe = NULL; struct pipe_ctx *subvp_pipe = NULL; bool found = false; bool schedulable = false; uint32_t i = 0; uint8_t vblank_index = 0; uint16_t prefetch_us = 0; uint16_t mall_region_us = 0; uint16_t vblank_frame_us = 0; uint16_t subvp_active_us = 0; uint16_t vblank_blank_us = 0; uint16_t max_vblank_mallregion = 0; struct dc_crtc_timing *main_timing = NULL; struct dc_crtc_timing *phantom_timing = NULL; struct dc_crtc_timing *vblank_timing = NULL; struct dc_stream_state *phantom_stream; enum mall_stream_type pipe_mall_type; /* For SubVP + VBLANK/DRR cases, we assume there can only be * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK * is supported, it is either a single VBLANK case or two VBLANK * displays which are synchronized (in which case they have identical * timings). */ for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe); // We check for master pipe, but it shouldn't matter since we only need // the pipe for timing info (stream should be same for any pipe splits) if (!resource_is_pipe_type(pipe, OTG_MASTER) || !resource_is_pipe_type(pipe, DPP_PIPE)) continue; if (!found && pipe_mall_type == SUBVP_NONE) { // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe). vblank_index = i; found = true; } if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN) subvp_pipe = pipe; } if (found) { phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream); main_timing = &subvp_pipe->stream->timing; phantom_timing = &phantom_stream->timing; vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing; // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe // Also include the prefetch end to mallstart delay time prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + dc->caps.subvp_prefetch_end_to_mall_start_us; // P-State allow width and FW delays already included phantom_timing->v_addressable mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total / (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total / (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; subvp_active_us = main_timing->v_addressable * main_timing->h_total / (double)(main_timing->pix_clk_100hz * 100) * 1000000; max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us; // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, // and the max of (VBLANK blanking time, MALL region) // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0) if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0) schedulable = true; } return schedulable; } /** * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible * * @dc: Current DC state * @context: New DC state to be programmed * * SubVP + SubVP is admissible under the following conditions: * - All SubVP pipes are < 120Hz OR * - All SubVP pipes are >= 120hz * * Return: True if admissible, false otherwise */ static bool subvp_subvp_admissable(struct dc *dc, struct dc_state *context) { bool result = false; uint32_t i; uint8_t subvp_count = 0; uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0; uint64_t refresh_rate = 0; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->stream) continue; if (pipe->plane_state && !pipe->top_pipe && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) { refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 + pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1); refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total); refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total); if ((uint32_t)refresh_rate < min_refresh) min_refresh = (uint32_t)refresh_rate; if ((uint32_t)refresh_rate > max_refresh) max_refresh = (uint32_t)refresh_rate; subvp_count++; } } if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) || (min_refresh >= subvp_high_refresh_list.min_refresh && max_refresh <= subvp_high_refresh_list.max_refresh))) result = true; return result; } /** * subvp_validate_static_schedulability - Check which SubVP case is calculated * and handle static analysis based on the case. * @dc: current dc state * @context: new dc state * @vlevel: Voltage level calculated by DML * * Three cases: * 1. SubVP + SubVP * 2. SubVP + VBLANK (DRR checked internally) * 3. SubVP + VACTIVE (currently unsupported) * * Return: True if statically schedulable, false otherwise */ static bool subvp_validate_static_schedulability(struct dc *dc, struct dc_state *context, int vlevel) { bool schedulable = false; struct vba_vars_st *vba = &context->bw_ctx.dml.vba; uint32_t i, pipe_idx; uint8_t subvp_count = 0; uint8_t vactive_count = 0; uint8_t non_subvp_pipes = 0; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe); if (!pipe->stream) continue; if (pipe->plane_state && !pipe->top_pipe) { if (pipe_mall_type == SUBVP_MAIN) subvp_count++; if (pipe_mall_type == SUBVP_NONE) non_subvp_pipes++; } // Count how many planes that aren't SubVP/phantom are capable of VACTIVE // switching (SubVP + VACTIVE unsupported). In situations where we force // SubVP for a VACTIVE plane, we don't want to increment the vactive_count. if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 && pipe_mall_type == SUBVP_NONE) { vactive_count++; } pipe_idx++; } if (subvp_count == 2) { // Static schedulability check for SubVP + SubVP case schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context); } else if (subvp_count == 1 && non_subvp_pipes == 0) { // Single SubVP configs will be supported by default as long as it's suppported by DML schedulable = true; } else if (subvp_count == 1 && non_subvp_pipes == 1) { if (dcn32_subvp_drr_admissable(dc, context)) schedulable = subvp_drr_schedulable(dc, context); else if (dcn32_subvp_vblank_admissable(dc, context, vlevel)) schedulable = subvp_vblank_schedulable(dc, context); } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp && vactive_count > 0) { // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default. // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count. // SubVP + VACTIVE currently unsupported schedulable = false; } return schedulable; } static void assign_subvp_index(struct dc *dc, struct dc_state *context) { int i; int index = 0; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) { pipe_ctx->subvp_index = index++; } else { pipe_ctx->subvp_index = 0; } } } struct pipe_slice_table { struct { struct dc_stream_state *stream; int slice_count; } odm_combines[MAX_STREAMS]; int odm_combine_count; struct { struct pipe_ctx *pri_pipe; struct dc_plane_state *plane; int slice_count; } mpc_combines[MAX_PLANES]; int mpc_combine_count; }; static void update_slice_table_for_stream(struct pipe_slice_table *table, struct dc_stream_state *stream, int diff) { int i; for (i = 0; i < table->odm_combine_count; i++) { if (table->odm_combines[i].stream == stream) { table->odm_combines[i].slice_count += diff; break; } } if (i == table->odm_combine_count) { table->odm_combine_count++; table->odm_combines[i].stream = stream; table->odm_combines[i].slice_count = diff; } } static void update_slice_table_for_plane(struct pipe_slice_table *table, struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff) { int i; struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe); for (i = 0; i < table->mpc_combine_count; i++) { if (table->mpc_combines[i].plane == plane && table->mpc_combines[i].pri_pipe == pri_dpp_pipe) { table->mpc_combines[i].slice_count += diff; break; } } if (i == table->mpc_combine_count) { table->mpc_combine_count++; table->mpc_combines[i].plane = plane; table->mpc_combines[i].pri_pipe = pri_dpp_pipe; table->mpc_combines[i].slice_count = diff; } } static void init_pipe_slice_table_from_context( struct pipe_slice_table *table, struct dc_state *context) { int i, j; struct pipe_ctx *otg_master; struct pipe_ctx *dpp_pipes[MAX_PIPES]; struct dc_stream_state *stream; int count; memset(table, 0, sizeof(*table)); for (i = 0; i < context->stream_count; i++) { stream = context->streams[i]; otg_master = resource_get_otg_master_for_stream( &context->res_ctx, stream); count = resource_get_odm_slice_count(otg_master); update_slice_table_for_stream(table, stream, count); count = resource_get_dpp_pipes_for_opp_head(otg_master, &context->res_ctx, dpp_pipes); for (j = 0; j < count; j++) if (dpp_pipes[j]->plane_state) update_slice_table_for_plane(table, dpp_pipes[j], dpp_pipes[j]->plane_state, 1); } } static bool update_pipe_slice_table_with_split_flags( struct pipe_slice_table *table, struct dc *dc, struct dc_state *context, struct vba_vars_st *vba, int split[MAX_PIPES], bool merge[MAX_PIPES]) { /* NOTE: we are deprecating the support for the concept of pipe splitting * or pipe merging. Instead we append slices to the end and remove * slices from the end. The following code converts a pipe split or * merge to an append or remove operation. * * For example: * When split flags describe the following pipe connection transition * * from: * pipe 0 (split=2) -> pipe 1 (split=2) * to: (old behavior) * pipe 0 -> pipe 2 -> pipe 1 -> pipe 3 * * the code below actually does: * pipe 0 -> pipe 1 -> pipe 2 -> pipe 3 * * This is the new intended behavior and for future DCNs we will retire * the old concept completely. */ struct pipe_ctx *pipe; bool odm; int dc_pipe_idx, dml_pipe_idx = 0; bool updated = false; for (dc_pipe_idx = 0; dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) { pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; if (resource_is_pipe_type(pipe, FREE_PIPE)) continue; if (merge[dc_pipe_idx]) { if (resource_is_pipe_type(pipe, OPP_HEAD)) /* merging OPP head means reducing ODM slice * count by 1 */ update_slice_table_for_stream(table, pipe->stream, -1); else if (resource_is_pipe_type(pipe, DPP_PIPE) && resource_get_odm_slice_index(resource_get_opp_head(pipe)) == 0) /* merging DPP pipe of the first ODM slice means * reducing MPC slice count by 1 */ update_slice_table_for_plane(table, pipe, pipe->plane_state, -1); updated = true; } if (split[dc_pipe_idx]) { odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] != dm_odm_combine_mode_disabled; if (odm && resource_is_pipe_type(pipe, OPP_HEAD)) update_slice_table_for_stream( table, pipe->stream, split[dc_pipe_idx] - 1); else if (!odm && resource_is_pipe_type(pipe, DPP_PIPE)) update_slice_table_for_plane(table, pipe, pipe->plane_state, split[dc_pipe_idx] - 1); updated = true; } dml_pipe_idx++; } return updated; } static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context, struct pipe_slice_table *table) { int i; for (i = 0; i < table->odm_combine_count; i++) resource_update_pipes_for_stream_with_slice_count(context, dc->current_state, dc->res_pool, table->odm_combines[i].stream, table->odm_combines[i].slice_count); for (i = 0; i < table->mpc_combine_count; i++) resource_update_pipes_for_plane_with_slice_count(context, dc->current_state, dc->res_pool, table->mpc_combines[i].plane, table->mpc_combines[i].slice_count); } static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context, struct vba_vars_st *vba, int split[MAX_PIPES], bool merge[MAX_PIPES]) { struct pipe_slice_table slice_table; bool updated; init_pipe_slice_table_from_context(&slice_table, context); updated = update_pipe_slice_table_with_split_flags( &slice_table, dc, context, vba, split, merge); update_pipes_with_slice_table(dc, context, &slice_table); return updated; } static bool should_apply_odm_power_optimization(struct dc *dc, struct dc_state *context, struct vba_vars_st *v, int *split, bool *merge) { struct dc_stream_state *stream = context->streams[0]; struct pipe_slice_table slice_table; int i; /* * this debug flag allows us to disable ODM power optimization feature * unconditionally. we force the feature off if this is set to false. */ if (!dc->debug.enable_single_display_2to1_odm_policy) return false; /* current design and test coverage is only limited to allow ODM power * optimization for single stream. Supporting it for multiple streams * use case would require additional algorithm to decide how to * optimize power consumption when there are not enough free pipes to * allocate for all the streams. This level of optimization would * require multiple attempts of revalidation to make an optimized * decision. Unfortunately We do not support revalidation flow in * current version of DML. */ if (context->stream_count != 1) return false; /* * Our hardware doesn't support ODM for HDMI TMDS */ if (dc_is_hdmi_signal(stream->signal)) return false; /* * ODM Combine 2:1 requires horizontal timing divisible by 2 so each * ODM segment has the same size. */ if (!is_h_timing_divisible_by_2(stream)) return false; /* * No power benefits if the timing's pixel clock is not high enough to * raise display clock from minimum power state. */ if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ) return false; if (dc->config.enable_windowed_mpo_odm) { /* * ODM power optimization should only be allowed if the feature * can be seamlessly toggled off within an update. This would * require that the feature is applied on top of a minimal * state. A minimal state is defined as a state validated * without the need of pipe split. Therefore, when transition to * toggle the feature off, the same stream and plane * configuration can be supported by the pipe resource in the * first ODM slice alone without the need to acquire extra * resources. */ init_pipe_slice_table_from_context(&slice_table, context); update_pipe_slice_table_with_split_flags( &slice_table, dc, context, v, split, merge); for (i = 0; i < slice_table.mpc_combine_count; i++) if (slice_table.mpc_combines[i].slice_count > 1) return false; for (i = 0; i < slice_table.odm_combine_count; i++) if (slice_table.odm_combines[i].slice_count > 1) return false; } else { /* * the new ODM power optimization feature reduces software * design limitation and allows ODM power optimization to be * supported even with presence of overlay planes. The new * feature is enabled based on enable_windowed_mpo_odm flag. If * the flag is not set, we limit our feature scope due to * previous software design limitation */ if (context->stream_status[0].plane_count != 1) return false; if (memcmp(&context->stream_status[0].plane_states[0]->clip_rect, &stream->src, sizeof(struct rect)) != 0) return false; if (stream->src.width >= 5120 && stream->src.width > stream->dst.width) return false; } return true; } static void try_odm_power_optimization_and_revalidate( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int *split, bool *merge, unsigned int *vlevel, int pipe_cnt) { int i; unsigned int new_vlevel; unsigned int cur_policy[MAX_PIPES]; for (i = 0; i < pipe_cnt; i++) { cur_policy[i] = pipes[i].pipe.dest.odm_combine_policy; pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1; } new_vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); if (new_vlevel < context->bw_ctx.dml.soc.num_states) { memset(split, 0, MAX_PIPES * sizeof(int)); memset(merge, 0, MAX_PIPES * sizeof(bool)); *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, new_vlevel, split, merge); context->bw_ctx.dml.vba.VoltageLevel = *vlevel; } else { for (i = 0; i < pipe_cnt; i++) pipes[i].pipe.dest.odm_combine_policy = cur_policy[i]; } } static bool is_test_pattern_enabled( struct dc_state *context) { int i; for (i = 0; i < context->stream_count; i++) { if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) return true; } return false; } static bool dcn32_full_validate_bw_helper(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int *vlevel, int *split, bool *merge, int *pipe_cnt, bool *repopulate_pipes) { struct vba_vars_st *vba = &context->bw_ctx.dml.vba; unsigned int dc_pipe_idx = 0; int i = 0; bool found_supported_config = false; int vlevel_temp = 0; dc_assert_fp_enabled(); /* * DML favors voltage over p-state, but we're more interested in * supporting p-state over voltage. We can't support p-state in * prefetch mode > 0 so try capping the prefetch mode to start. * Override present for testing. */ if (dc->debug.dml_disallow_alternate_prefetch_modes) context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_uclk_fclk_and_stutter; else context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_uclk_fclk_and_stutter_if_possible; *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); /* This may adjust vlevel and maxMpcComb */ if (*vlevel < context->bw_ctx.dml.soc.num_states) { *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); vba->VoltageLevel = *vlevel; } /* Apply split and merge flags before checking for subvp */ if (!dcn32_apply_merge_split_flags_helper(dc, context, repopulate_pipes, split, merge)) return false; memset(split, 0, MAX_PIPES * sizeof(int)); memset(merge, 0, MAX_PIPES * sizeof(bool)); /* Conditions for setting up phantom pipes for SubVP: * 1. Not force disable SubVP * 2. Full update (i.e. !fast_validate) * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?) * 4. Display configuration passes validation * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch) */ if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) && !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) && (*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] && vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) || vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported || dc->debug.force_subvp_mclk_switch)) { vlevel_temp = *vlevel; while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) && dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) { /* For the case where *vlevel = num_states, bandwidth validation has failed for this config. * Adding phantom pipes won't change the validation result, so change the DML input param * for P-State support before adding phantom pipes and recalculating the DML result. * However, this case is only applicable for SubVP + DRR cases because the prefetch mode * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched * enough to support MCLK switching. */ if (*vlevel == context->bw_ctx.dml.soc.num_states && context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final == dm_prefetch_support_uclk_fclk_and_stutter) { context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter; /* There are params (such as FabricClock) that need to be recalculated * after validation fails (otherwise it will be 0). Calculation for * phantom vactive requires call into DML, so we must ensure all the * vba params are valid otherwise we'll get incorrect phantom vactive. */ *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); } dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx); *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false); // Populate dppclk to trigger a recalculate in dml_get_voltage_level // so the phantom pipe DLG params can be assigned correctly. pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0); *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); /* Check that vlevel requested supports pstate or not * if not, select the lowest vlevel that supports it */ for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) { if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) { *vlevel = i; break; } } if (*vlevel < context->bw_ctx.dml.soc.num_states && subvp_validate_static_schedulability(dc, context, *vlevel)) found_supported_config = true; if (found_supported_config) { // For SubVP + DRR cases, we can force the lowest vlevel that supports the mode if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) { /* find lowest vlevel that supports the config */ for (i = *vlevel; i >= 0; i--) { if (vba->ModeSupport[i][vba->maxMpcComb]) { *vlevel = i; } else { break; } } } } } if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp]) found_supported_config = false; // If SubVP pipe config is unsupported (or cannot be used for UCLK switching) // remove phantom pipes and repopulate dml pipes if (!found_supported_config) { dc_state_remove_phantom_streams_and_planes(dc, context); dc_state_release_phantom_streams_and_planes(dc, context); vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported; *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false); *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); /* This may adjust vlevel and maxMpcComb */ if (*vlevel < context->bw_ctx.dml.soc.num_states) { *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); vba->VoltageLevel = *vlevel; } } else { // Most populate phantom DLG params before programming hardware / timing for phantom pipe dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt); /* Call validate_apply_pipe_split flags after calling DML getters for * phantom dlg params, or some of the VBA params indicating pipe split * can be overwritten by the getters. * * When setting up SubVP config, all pipes are merged before attempting to * add phantom pipes. If pipe split (ODM / MPC) is required, both the main * and phantom pipes will be split in the regular pipe splitting sequence. */ *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); vba->VoltageLevel = *vlevel; // Note: We can't apply the phantom pipes to hardware at this time. We have to wait // until driver has acquired the DMCUB lock to do it safely. assign_subvp_index(dc, context); } } if (should_apply_odm_power_optimization(dc, context, vba, split, merge)) try_odm_power_optimization_and_revalidate( dc, context, pipes, split, merge, vlevel, *pipe_cnt); return true; } static bool is_dtbclk_required(struct dc *dc, struct dc_state *context) { int i; for (i = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i])) return true; } return false; } static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start) { struct dc_crtc_timing patched_crtc_timing; uint32_t asic_blank_end = 0; uint32_t asic_blank_start = 0; uint32_t newVstartup = 0; patched_crtc_timing = *dc_crtc_timing; if (patched_crtc_timing.flags.INTERLACE == 1) { if (patched_crtc_timing.v_front_porch < 2) patched_crtc_timing.v_front_porch = 2; } else { if (patched_crtc_timing.v_front_porch < 1) patched_crtc_timing.v_front_porch = 1; } /* blank_start = frame end - front porch */ asic_blank_start = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch; /* blank_end = blank_start - active */ asic_blank_end = asic_blank_start - patched_crtc_timing.v_border_bottom - patched_crtc_timing.v_addressable - patched_crtc_timing.v_border_top; newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start); *vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start); } static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt, int vlevel) { int i, pipe_idx, active_hubp_count = 0; bool usr_retraining_support = false; bool unbounded_req_enabled = false; struct vba_vars_st *vba = &context->bw_ctx.dml.vba; dc_assert_fp_enabled(); /* Writeback MCIF_WB arbitration parameters */ dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt); context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000; context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000; context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000; context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000; context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000; context->bw_ctx.bw.dcn.clk.p_state_change_support = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != dm_dram_clock_change_unsupported; /* Pstate change might not be supported by hardware, but it might be * possible with firmware driven vertical blank stretching. */ context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching; context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context); context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000; if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported) context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false; else context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true; usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; ASSERT(usr_retraining_support); if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz) context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz; unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt); if (unbounded_req_enabled && pipe_cnt > 1) { // Unbounded requesting should not ever be used when more than 1 pipe is enabled. ASSERT(false); unbounded_req_enabled = false; } context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0; context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0; context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; if (context->res_ctx.pipe_ctx[i].plane_state) active_hubp_count++; pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) { // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0; context->res_ctx.pipe_ctx[i].unbounded_req = false; } else { context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled; } if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; if (context->res_ctx.pipe_ctx[i].plane_state) context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; else context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0; context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest; context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0) context->res_ctx.pipe_ctx[i].has_vactive_margin = true; else context->res_ctx.pipe_ctx[i].has_vactive_margin = false; /* MALL Allocation Sizes */ /* count from active, top pipes per plane only */ if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state && (context->res_ctx.pipe_ctx[i].top_pipe == NULL || context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) && context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { /* SS: all active surfaces stored in MALL */ if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) { context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes; if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) { /* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */ context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes; } } else { /* SUBVP: phantom surfaces only stored in MALL */ context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes; } } if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid) dcn20_adjust_freesync_v_startup( &context->res_ctx.pipe_ctx[i].stream->timing, &context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start); pipe_idx++; } /* If DCN isn't making memory requests we can allow pstate change and lower clocks */ if (!active_hubp_count) { context->bw_ctx.bw.dcn.clk.socclk_khz = 0; context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0; context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0; context->bw_ctx.bw.dcn.clk.dramclk_khz = 0; context->bw_ctx.bw.dcn.clk.fclk_khz = 0; context->bw_ctx.bw.dcn.clk.p_state_change_support = true; context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true; } /*save a original dppclock copy*/ context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz; context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz; context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz * 1000; context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz * 1000; context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context); context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes; for (i = 0; i < dc->res_pool->pipe_count; i++) { if (context->res_ctx.pipe_ctx[i].stream) context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb; } for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml, &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes, pipe_cnt, pipe_idx); context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs, &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); pipe_idx++; } } static struct pipe_ctx *dcn32_find_split_pipe( struct dc *dc, struct dc_state *context, int old_index) { struct pipe_ctx *pipe = NULL; int i; if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { pipe = &context->res_ctx.pipe_ctx[old_index]; pipe->pipe_idx = old_index; } if (!pipe) for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { if (context->res_ctx.pipe_ctx[i].stream == NULL) { pipe = &context->res_ctx.pipe_ctx[i]; pipe->pipe_idx = i; break; } } } /* * May need to fix pipes getting tossed from 1 opp to another on flip * Add for debugging transient underflow during topology updates: * ASSERT(pipe); */ if (!pipe) for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { if (context->res_ctx.pipe_ctx[i].stream == NULL) { pipe = &context->res_ctx.pipe_ctx[i]; pipe->pipe_idx = i; break; } } return pipe; } static bool dcn32_split_stream_for_mpc_or_odm( const struct dc *dc, struct resource_context *res_ctx, struct pipe_ctx *pri_pipe, struct pipe_ctx *sec_pipe, bool odm) { int pipe_idx = sec_pipe->pipe_idx; const struct resource_pool *pool = dc->res_pool; DC_LOGGER_INIT(dc->ctx->logger); if (odm && pri_pipe->plane_state) { /* ODM + window MPO, where MPO window is on left half only */ if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) { DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n", __func__, pri_pipe->pipe_idx); return true; } /* ODM + window MPO, where MPO window is on right half only */ if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) { DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n", __func__, pri_pipe->pipe_idx); return true; } } *sec_pipe = *pri_pipe; sec_pipe->pipe_idx = pipe_idx; sec_pipe->plane_res.mi = pool->mis[pipe_idx]; sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; sec_pipe->stream_res.dsc = NULL; if (odm) { if (pri_pipe->next_odm_pipe) { ASSERT(pri_pipe->next_odm_pipe != sec_pipe); sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; } if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; } if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; } pri_pipe->next_odm_pipe = sec_pipe; sec_pipe->prev_odm_pipe = pri_pipe; ASSERT(sec_pipe->top_pipe == NULL); if (!sec_pipe->top_pipe) sec_pipe->stream_res.opp = pool->opps[pipe_idx]; else sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; if (sec_pipe->stream->timing.flags.DSC == 1) { dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); ASSERT(sec_pipe->stream_res.dsc); if (sec_pipe->stream_res.dsc == NULL) return false; } } else { if (pri_pipe->bottom_pipe) { ASSERT(pri_pipe->bottom_pipe != sec_pipe); sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; sec_pipe->bottom_pipe->top_pipe = sec_pipe; } pri_pipe->bottom_pipe = sec_pipe; sec_pipe->top_pipe = pri_pipe; ASSERT(pri_pipe->plane_state); } return true; } static bool dcn32_apply_merge_split_flags_helper( struct dc *dc, struct dc_state *context, bool *repopulate_pipes, int *split, bool *merge) { int i, pipe_idx; bool newly_split[MAX_PIPES] = { false }; struct vba_vars_st *vba = &context->bw_ctx.dml.vba; if (dc->config.enable_windowed_mpo_odm) { if (update_pipes_with_split_flags( dc, context, vba, split, merge)) *repopulate_pipes = true; } else { /* the code below will be removed once windowed mpo odm is fully * enabled. */ /* merge pipes if necessary */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; /*skip pipes that don't need merging*/ if (!merge[i]) continue; /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ if (pipe->prev_odm_pipe) { /*split off odm pipe*/ pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; if (pipe->next_odm_pipe) pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/ if (pipe->bottom_pipe) { if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) { /*MPC split rules will handle this case*/ pipe->bottom_pipe->top_pipe = NULL; } else { /* when merging an ODM pipes, the bottom MPC pipe must now point to * the previous ODM pipe and its associated stream assets */ if (pipe->prev_odm_pipe->bottom_pipe) { /* 3 plane MPO*/ pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe; pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe; } else { /* 2 plane MPO*/ pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe; pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe; } memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource)); } } if (pipe->top_pipe) { pipe->top_pipe->bottom_pipe = NULL; } pipe->bottom_pipe = NULL; pipe->next_odm_pipe = NULL; pipe->plane_state = NULL; pipe->stream = NULL; pipe->top_pipe = NULL; pipe->prev_odm_pipe = NULL; if (pipe->stream_res.dsc) dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); memset(&pipe->link_res, 0, sizeof(pipe->link_res)); *repopulate_pipes = true; } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { struct pipe_ctx *top_pipe = pipe->top_pipe; struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; top_pipe->bottom_pipe = bottom_pipe; if (bottom_pipe) bottom_pipe->top_pipe = top_pipe; pipe->top_pipe = NULL; pipe->bottom_pipe = NULL; pipe->plane_state = NULL; pipe->stream = NULL; memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); memset(&pipe->link_res, 0, sizeof(pipe->link_res)); *repopulate_pipes = true; } else ASSERT(0); /* Should never try to merge master pipe */ } for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; struct pipe_ctx *hsplit_pipe = NULL; bool odm; int old_index = -1; if (!pipe->stream || newly_split[i]) continue; pipe_idx++; odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; if (!pipe->plane_state && !odm) continue; if (split[i]) { if (odm) { if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; else if (old_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->pipe_idx; } else { if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; else if (old_pipe->bottom_pipe && old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->pipe_idx; } hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index); ASSERT(hsplit_pipe); if (!hsplit_pipe) return false; if (!dcn32_split_stream_for_mpc_or_odm( dc, &context->res_ctx, pipe, hsplit_pipe, odm)) return false; newly_split[hsplit_pipe->pipe_idx] = true; *repopulate_pipes = true; } if (split[i] == 4) { struct pipe_ctx *pipe_4to1; if (odm && old_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->pipe_idx; else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->pipe_idx; else old_index = -1; pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); ASSERT(pipe_4to1); if (!pipe_4to1) return false; if (!dcn32_split_stream_for_mpc_or_odm( dc, &context->res_ctx, pipe, pipe_4to1, odm)) return false; newly_split[pipe_4to1->pipe_idx] = true; if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; else old_index = -1; pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); ASSERT(pipe_4to1); if (!pipe_4to1) return false; if (!dcn32_split_stream_for_mpc_or_odm( dc, &context->res_ctx, hsplit_pipe, pipe_4to1, odm)) return false; newly_split[pipe_4to1->pipe_idx] = true; } if (odm) dcn20_build_mapped_resource(dc, context, pipe->stream); } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->plane_state) { if (!resource_build_scaling_params(pipe)) return false; } } for (i = 0; i < context->stream_count; i++) { struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(&context->res_ctx, context->streams[i]); if (otg_master) resource_build_test_pattern_params(&context->res_ctx, otg_master); } } return true; } bool dcn32_internal_validate_bw(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int *pipe_cnt_out, int *vlevel_out, bool fast_validate) { bool out = false; bool repopulate_pipes = false; int split[MAX_PIPES] = { 0 }; bool merge[MAX_PIPES] = { false }; int pipe_cnt, i, pipe_idx; int vlevel = context->bw_ctx.dml.soc.num_states; struct vba_vars_st *vba = &context->bw_ctx.dml.vba; dc_assert_fp_enabled(); ASSERT(pipes); if (!pipes) return false; /* For each full update, remove all existing phantom pipes first */ dc_state_remove_phantom_streams_and_planes(dc, context); dc_state_release_phantom_streams_and_planes(dc, context); dc->res_pool->funcs->update_soc_for_wm_a(dc, context); pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); if (!pipe_cnt) { out = true; goto validate_out; } dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context); if (!fast_validate) { if (!dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt, &repopulate_pipes)) goto validate_fail; } if (fast_validate || (dc->debug.dml_disallow_alternate_prefetch_modes && (vlevel == context->bw_ctx.dml.soc.num_states || vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) { /* * If dml_disallow_alternate_prefetch_modes is false, then we have already * tried alternate prefetch modes during full validation. * * If mode is unsupported or there is no p-state support, then * fall back to favouring voltage. * * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2) */ context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_none; context->bw_ctx.dml.validate_max_state = fast_validate; vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); context->bw_ctx.dml.validate_max_state = false; if (vlevel < context->bw_ctx.dml.soc.num_states) { memset(split, 0, sizeof(split)); memset(merge, 0, sizeof(merge)); vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); /* dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML */ vba->VoltageLevel = vlevel; } } dml_log_mode_support_params(&context->bw_ctx.dml); if (vlevel == context->bw_ctx.dml.soc.num_states) goto validate_fail; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; if (!pipe->stream) continue; if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled && !dc->config.enable_windowed_mpo_odm && pipe->plane_state && mpo_pipe && memcmp(&mpo_pipe->plane_state->clip_rect, &pipe->stream->src, sizeof(struct rect)) != 0) { ASSERT(mpo_pipe->plane_state != pipe->plane_state); goto validate_fail; } pipe_idx++; } if (!dcn32_apply_merge_split_flags_helper(dc, context, &repopulate_pipes, split, merge)) goto validate_fail; /* Actual dsc count per stream dsc validation*/ if (!dcn20_validate_dsc(dc, context)) { vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; goto validate_fail; } if (repopulate_pipes) { int flag_max_mpc_comb = vba->maxMpcComb; int flag_vlevel = vlevel; int i; pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); if (!dc->config.enable_windowed_mpo_odm) dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes); /* repopulate_pipes = 1 means the pipes were either split or merged. In this case * we have to re-calculate the DET allocation and run through DML once more to * ensure all the params are calculated correctly. We do not need to run the * pipe split check again after this call (pipes are already split / merged). * */ context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_uclk_fclk_and_stutter_if_possible; vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); if (vlevel == context->bw_ctx.dml.soc.num_states) { /* failed after DET size changes */ goto validate_fail; } else if (flag_max_mpc_comb == 0 && flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) { /* check the context constructed with pipe split flags is still valid*/ bool flags_valid = false; for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) { if (vba->ModeSupport[i][flag_max_mpc_comb]) { vba->maxMpcComb = flag_max_mpc_comb; vba->VoltageLevel = i; vlevel = i; flags_valid = true; break; } } /* this should never happen */ if (!flags_valid) goto validate_fail; } } *vlevel_out = vlevel; *pipe_cnt_out = pipe_cnt; out = true; goto validate_out; validate_fail: out = false; validate_out: return out; } void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt, int vlevel) { int i, pipe_idx, vlevel_temp = 0; double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz; double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed; double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation; bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != dm_dram_clock_change_unsupported; unsigned int dummy_latency_index = 0; int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed; bool subvp_in_use = dcn32_subvp_in_use(dc, context); unsigned int min_dram_speed_mts_margin; bool need_fclk_lat_as_dummy = false; bool is_subvp_p_drr = false; struct dc_stream_state *fpo_candidate_stream = NULL; dc_assert_fp_enabled(); /* need to find dummy latency index for subvp */ if (subvp_in_use) { /* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */ if (!pstate_en) { context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp; context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter; pstate_en = true; is_subvp_p_drr = true; } dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc, context, pipes, pipe_cnt, vlevel); /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is * scheduled correctly to account for dummy pstate. */ if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) { need_fclk_lat_as_dummy = true; context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; } context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false); maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; if (is_subvp_p_drr) { context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp; } } context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false; for (i = 0; i < context->stream_count; i++) { if (context->streams[i]) context->streams[i]->fpo_in_use = false; } if (!pstate_en || (!dc->debug.disable_fpo_optimizations && pstate_en && vlevel != 0)) { /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */ fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context); if (fpo_candidate_stream) { fpo_candidate_stream->fpo_in_use = true; context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true; } if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) { dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc, context, pipes, pipe_cnt, vlevel); /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch * we reinstate the original dram_clock_change_latency_us on the context * and all variables that may have changed up to this point, except the * newly found dummy_latency_index */ context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so * prefetch is scheduled correctly to account for dummy pstate. */ if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) { need_fclk_lat_as_dummy = true; context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; } dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false); if (vlevel_temp < vlevel) { vlevel = vlevel_temp; maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; pstate_en = true; context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank; } else { /* Restore FCLK latency and re-run validation to go back to original validation * output if we find that enabling FPO does not give us any benefit (i.e. lower * voltage level) */ context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false; for (i = 0; i < context->stream_count; i++) { if (context->streams[i]) context->streams[i]->fpo_in_use = false; } context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us; dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false); } } } /* Set B: * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present, * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark * calculations to cover bootup clocks. * DCFCLK: soc.clock_limits[2] when available * UCLK: soc.clock_limits[2] when available */ if (dcn3_2_soc.num_states > 2) { vlevel_temp = 2; dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz; } else dcfclk = 615; //DCFCLK Vmin_lv pipes[0].clks_cfg.voltage = vlevel_temp; pipes[0].clks_cfg.dcfclk_mhz = dcfclk; pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) { context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us; context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us; context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us; context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us; } context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; /* Set D: * All clocks min. * DCFCLK: Min, as reported by PM FW when available * UCLK : Min, as reported by PM FW when available * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr) */ /* if (dcn3_2_soc.num_states > 2) { vlevel_temp = 0; dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz; } else dcfclk = 615; //DCFCLK Vmin_lv pipes[0].clks_cfg.voltage = vlevel_temp; pipes[0].clks_cfg.dcfclk_mhz = dcfclk; pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) { context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us; context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us; context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us; context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us; } context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; */ /* Set C, for Dummy P-State: * All clocks min. * DCFCLK: Min, as reported by PM FW, when available * UCLK : Min, as reported by PM FW, when available * pstate latency as per UCLK state dummy pstate latency */ // For Set A and Set C use values from validation pipes[0].clks_cfg.voltage = vlevel; pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation; pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) { pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching; } if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) { min_dram_speed_mts = dram_speed_from_validation; min_dram_speed_mts_margin = 160; context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us; if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] == dm_dram_clock_change_unsupported) { int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1; min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16; } if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) { /* find largest table entry that is lower than dram speed, * but lower than DPM0 still uses DPM0 */ for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--) if (min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts) break; } context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us; context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us; context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us; } context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state. * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM * value. */ context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) { /* The only difference between A and C is p-state latency, if p-state is not supported * with full p-state latency we want to calculate DLG based on dummy p-state latency, * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30. */ context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0; /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported */ context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; } else { /* Set A: * All clocks min. * DCFCLK: Min, as reported by PM FW, when available * UCLK: Min, as reported by PM FW, when available */ /* For set A set the correct latency values (i.e. non-dummy values) unconditionally */ context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us; context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us; context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; } /* Make set D = set A since we do not optimized watermarks for MALL */ context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt); pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); if (dc->config.forced_clocks) { pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz; pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz; } if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000) pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0; if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0; pipe_idx++; } context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod; /* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */ if (need_fclk_lat_as_dummy) context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); if (!pstate_en) /* Restore full p-state latency */ context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; /* revert fclk lat changes if required */ if (need_fclk_lat_as_dummy) context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us; } static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, unsigned int *optimal_dcfclk, unsigned int *optimal_fclk) { double bw_from_dram, bw_from_dram1, bw_from_dram2; bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans * dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100); bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans * dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100); bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; if (optimal_fclk) *optimal_fclk = bw_from_dram / (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); if (optimal_dcfclk) *optimal_dcfclk = bw_from_dram / (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); } static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, unsigned int index) { int i; if (*num_entries == 0) return; for (i = index; i < *num_entries - 1; i++) { table[i] = table[i + 1]; } memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st)); } void dcn32_patch_dpm_table(struct clk_bw_params *bw_params) { int i; unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0; for (i = 0; i < MAX_NUM_DPM_LVL; i++) { if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz) max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz) max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz) max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; } /* Scan through clock values we currently have and if they are 0, * then populate it with dcn3_2_soc.clock_limits[] value. * * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being * 0, will cause it to skip building the clock table. */ if (max_dcfclk_mhz == 0) bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; if (max_dispclk_mhz == 0) bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; if (max_dtbclk_mhz == 0) bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz; if (max_uclk_mhz == 0) bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16; } static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry, struct _vcs_dpi_voltage_scaling_st *second_entry) { struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry; *first_entry = *second_entry; *second_entry = temp_entry; } /* * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK */ static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) { unsigned int start_index = 0; unsigned int end_index = 0; unsigned int current_bw = 0; for (int i = 0; i < (*num_entries - 1); i++) { if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) { current_bw = table[i].net_bw_in_kbytes_sec; start_index = i; end_index = ++i; while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw)) end_index = ++i; } if (start_index != end_index) { for (int j = start_index; j < end_index; j++) { for (int k = start_index; k < end_index; k++) { if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz) swap_table_entries(&table[k], &table[k+1]); } } } start_index = 0; end_index = 0; } } /* * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing * and remove entries that do not */ static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) { for (int i = 0; i < (*num_entries - 1); i++) { if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) { if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) || (table[i].fabricclk_mhz > table[i+1].fabricclk_mhz)) remove_entry_from_table_at_index(table, num_entries, i); } } } /* * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings * Input: * max_clk_limit - struct containing the desired clock timings * Output: * curr_clk_limit - struct containing the timings that need to be overwritten * Return: 0 upon success, non-zero for failure */ static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit, struct clk_limit_table_entry *curr_clk_limit) { if (NULL == max_clk_limit || NULL == curr_clk_limit) return -1; //invalid parameters //only overwrite if desired max clock frequency is initialized if (max_clk_limit->dcfclk_mhz != 0) curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz; if (max_clk_limit->fclk_mhz != 0) curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz; if (max_clk_limit->memclk_mhz != 0) curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz; if (max_clk_limit->socclk_mhz != 0) curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz; if (max_clk_limit->dtbclk_mhz != 0) curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz; if (max_clk_limit->dispclk_mhz != 0) curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz; return 0; } static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params, struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) { int i, j; struct _vcs_dpi_voltage_scaling_st entry = {0}; struct clk_limit_table_entry max_clk_data = {0}; unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299; static const unsigned int num_dcfclk_stas = 5; unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; unsigned int num_uclk_dpms = 0; unsigned int num_fclk_dpms = 0; unsigned int num_dcfclk_dpms = 0; unsigned int num_dc_uclk_dpms = 0; unsigned int num_dc_fclk_dpms = 0; unsigned int num_dc_dcfclk_dpms = 0; for (i = 0; i < MAX_NUM_DPM_LVL; i++) { if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz) max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz) max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz) max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz) max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz) max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz) max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz) max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; if (bw_params->clk_table.entries[i].memclk_mhz > 0) { num_uclk_dpms++; if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz) num_dc_uclk_dpms++; } if (bw_params->clk_table.entries[i].fclk_mhz > 0) { num_fclk_dpms++; if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz) num_dc_fclk_dpms++; } if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) { num_dcfclk_dpms++; if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz) num_dc_dcfclk_dpms++; } } if (!disable_dc_mode_overwrite) { //Overwrite max frequencies with max DC mode frequencies for DC mode systems override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data); num_uclk_dpms = num_dc_uclk_dpms; num_fclk_dpms = num_dc_fclk_dpms; num_dcfclk_dpms = num_dc_dcfclk_dpms; bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms; bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms; } if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz) min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz; if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz) return -1; if (max_clk_data.dppclk_mhz == 0) max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz; if (max_clk_data.fclk_mhz == 0) max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz * dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / dcn3_2_soc.pct_ideal_fabric_bw_after_urgent; if (max_clk_data.phyclk_mhz == 0) max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; *num_entries = 0; entry.dispclk_mhz = max_clk_data.dispclk_mhz; entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3; entry.dppclk_mhz = max_clk_data.dppclk_mhz; entry.dtbclk_mhz = max_clk_data.dtbclk_mhz; entry.phyclk_mhz = max_clk_data.phyclk_mhz; entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; // Insert all the DCFCLK STAs for (i = 0; i < num_dcfclk_stas; i++) { entry.dcfclk_mhz = dcfclk_sta_targets[i]; entry.fabricclk_mhz = 0; entry.dram_speed_mts = 0; get_optimal_ntuple(&entry); entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); insert_entry_into_table_sorted(table, num_entries, &entry); } // Insert the max DCFCLK entry.dcfclk_mhz = max_clk_data.dcfclk_mhz; entry.fabricclk_mhz = 0; entry.dram_speed_mts = 0; get_optimal_ntuple(&entry); entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); insert_entry_into_table_sorted(table, num_entries, &entry); // Insert the UCLK DPMS for (i = 0; i < num_uclk_dpms; i++) { entry.dcfclk_mhz = 0; entry.fabricclk_mhz = 0; entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16; get_optimal_ntuple(&entry); entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); insert_entry_into_table_sorted(table, num_entries, &entry); } // If FCLK is coarse grained, insert individual DPMs. if (num_fclk_dpms > 2) { for (i = 0; i < num_fclk_dpms; i++) { entry.dcfclk_mhz = 0; entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; entry.dram_speed_mts = 0; get_optimal_ntuple(&entry); entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); insert_entry_into_table_sorted(table, num_entries, &entry); } } // If FCLK fine grained, only insert max else { entry.dcfclk_mhz = 0; entry.fabricclk_mhz = max_clk_data.fclk_mhz; entry.dram_speed_mts = 0; get_optimal_ntuple(&entry); entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry); insert_entry_into_table_sorted(table, num_entries, &entry); } // At this point, the table contains all "points of interest" based on // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock // ratios (by derate, are exact). // Remove states that require higher clocks than are supported for (i = *num_entries - 1; i >= 0 ; i--) { if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz || table[i].fabricclk_mhz > max_clk_data.fclk_mhz || table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16) remove_entry_from_table_at_index(table, num_entries, i); } // Insert entry with all max dc limits without bandwidth matching if (!disable_dc_mode_overwrite) { struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry; max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz; max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz; max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16; max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry); insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry); sort_entries_with_same_bw(table, num_entries); remove_inconsistent_entries(table, num_entries); } // At this point, the table only contains supported points of interest // it could be used as is, but some states may be redundant due to // coarse grained nature of some clocks, so we want to round up to // coarse grained DPMs and remove duplicates. // Round up UCLKs for (i = *num_entries - 1; i >= 0 ; i--) { for (j = 0; j < num_uclk_dpms; j++) { if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) { table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16; break; } } } // If FCLK is coarse grained, round up to next DPMs if (num_fclk_dpms > 2) { for (i = *num_entries - 1; i >= 0 ; i--) { for (j = 0; j < num_fclk_dpms; j++) { if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) { table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz; break; } } } } // Otherwise, round up to minimum. else { for (i = *num_entries - 1; i >= 0 ; i--) { if (table[i].fabricclk_mhz < min_fclk_mhz) { table[i].fabricclk_mhz = min_fclk_mhz; } } } // Round DCFCLKs up to minimum for (i = *num_entries - 1; i >= 0 ; i--) { if (table[i].dcfclk_mhz < min_dcfclk_mhz) { table[i].dcfclk_mhz = min_dcfclk_mhz; } } // Remove duplicate states, note duplicate states are always neighbouring since table is sorted. i = 0; while (i < *num_entries - 1) { if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz && table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz && table[i].dram_speed_mts == table[i + 1].dram_speed_mts) remove_entry_from_table_at_index(table, num_entries, i + 1); else i++; } // Fix up the state indicies for (i = *num_entries - 1; i >= 0 ; i--) { table[i].state = i; } return 0; } /* * dcn32_update_bw_bounding_box * * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from * spreadsheet with actual values as per dGPU SKU: * - with passed few options from dc->config * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might * need to get it from PM FW) * - with passed latency values (passed in ns units) in dc-> bb override for * debugging purposes * - with passed latencies from VBIOS (in 100_ns units) if available for * certain dGPU SKU * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU * of the same ASIC) * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM * FW for different clocks (which might differ for certain dGPU SKU of the * same ASIC) */ void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params) { dc_assert_fp_enabled(); /* Overrides from dc->config options */ dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk; /* Override from passed dc->bb_overrides if available*/ if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns && dc->bb_overrides.sr_exit_time_ns) { dc->dml2_options.bbox_overrides.sr_exit_latency_us = dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0; } if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000) != dc->bb_overrides.sr_enter_plus_exit_time_ns && dc->bb_overrides.sr_enter_plus_exit_time_ns) { dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us = dcn3_2_soc.sr_enter_plus_exit_time_us = dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0; } if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns && dc->bb_overrides.urgent_latency_ns) { dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0; dc->dml2_options.bbox_overrides.urgent_latency_us = dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0; } if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000) != dc->bb_overrides.dram_clock_change_latency_ns && dc->bb_overrides.dram_clock_change_latency_ns) { dc->dml2_options.bbox_overrides.dram_clock_change_latency_us = dcn3_2_soc.dram_clock_change_latency_us = dc->bb_overrides.dram_clock_change_latency_ns / 1000.0; } if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000) != dc->bb_overrides.fclk_clock_change_latency_ns && dc->bb_overrides.fclk_clock_change_latency_ns) { dc->dml2_options.bbox_overrides.fclk_change_latency_us = dcn3_2_soc.fclk_change_latency_us = dc->bb_overrides.fclk_clock_change_latency_ns / 1000; } if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000) != dc->bb_overrides.dummy_clock_change_latency_ns && dc->bb_overrides.dummy_clock_change_latency_ns) { dcn3_2_soc.dummy_pstate_latency_us = dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0; } /* Override from VBIOS if VBIOS bb_info available */ if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { struct bp_soc_bb_info bb_info = {0}; if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { if (bb_info.dram_clock_change_latency_100ns > 0) dc->dml2_options.bbox_overrides.dram_clock_change_latency_us = dcn3_2_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10; if (bb_info.dram_sr_enter_exit_latency_100ns > 0) dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us = dcn3_2_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10; if (bb_info.dram_sr_exit_latency_100ns > 0) dc->dml2_options.bbox_overrides.sr_exit_latency_us = dcn3_2_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10; } } /* Override from VBIOS for num_chan */ if (dc->ctx->dc_bios->vram_info.num_chans) { dc->dml2_options.bbox_overrides.dram_num_chan = dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc, dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel); } if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) dc->dml2_options.bbox_overrides.dram_chanel_width_bytes = dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; /* DML DSC delay factor workaround */ dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0; dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0; /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */ dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0; dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0; dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0; /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */ if (bw_params->clk_table.entries[0].memclk_mhz) { if (dc->debug.use_legacy_soc_bb_mechanism) { unsigned int i = 0, j = 0, num_states = 0; unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; unsigned int min_dcfclk = UINT_MAX; /* Set 199 as first value in STA target array to have a minimum DCFCLK value. * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */ unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0; unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0; for (i = 0; i < MAX_NUM_DPM_LVL; i++) { if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 && bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk) min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz; if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; } if (min_dcfclk > dcfclk_sta_targets[0]) dcfclk_sta_targets[0] = min_dcfclk; if (!max_dcfclk_mhz) max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; if (!max_dispclk_mhz) max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; if (!max_dppclk_mhz) max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz; if (!max_phyclk_mhz) max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz; num_dcfclk_sta_targets++; } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates for (i = 0; i < num_dcfclk_sta_targets; i++) { if (dcfclk_sta_targets[i] > max_dcfclk_mhz) { dcfclk_sta_targets[i] = max_dcfclk_mhz; break; } } // Update size of array since we "removed" duplicates num_dcfclk_sta_targets = i + 1; } num_uclk_states = bw_params->clk_table.num_entries; // Calculate optimal dcfclk for each uclk for (i = 0; i < num_uclk_states; i++) { dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, &optimal_dcfclk_for_uclk[i], NULL); if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; } } // Calculate optimal uclk for each dcfclk sta target for (i = 0; i < num_dcfclk_sta_targets; i++) { for (j = 0; j < num_uclk_states; j++) { if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { optimal_uclk_for_dcfclk_sta_targets[i] = bw_params->clk_table.entries[j].memclk_mhz * 16; break; } } } i = 0; j = 0; // create the final dcfclk and uclk table while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; } else { if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; } else { j = num_uclk_states; } } } while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; } while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; } dcn3_2_soc.num_states = num_states; for (i = 0; i < dcn3_2_soc.num_states; i++) { dcn3_2_soc.clock_limits[i].state = i; dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; /* Fill all states with max values of all these clocks */ dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz; dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz; dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz; dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3; /* Populate from bw_params for DTBCLK, SOCCLK */ if (i > 0) { if (!bw_params->clk_table.entries[i].dtbclk_mhz) { dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz; } else { dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; } } else if (bw_params->clk_table.entries[i].dtbclk_mhz) { dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; } if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0) dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz; else dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz; if (!dram_speed_mts[i] && i > 0) dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts; else dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */ /* PHYCLK_D18, PHYCLK_D32 */ dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; } } else { build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params, dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states); } /* Re-init DML with updated bb */ dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); if (dc->current_state) dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); } if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) { unsigned int i = 0; dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries; dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels; for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) { if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz) dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz = dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz; } for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) { if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz) dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz = dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz; } for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) { if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz) dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz; } for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) { if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz) dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz = dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz; } for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) { if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz) dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz = dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz; } for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) { if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) { dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz = dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz; dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz = dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz; } } } } void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes, int pipe_cnt) { dc_assert_fp_enabled(); pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0; pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0; } bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe) { bool allow = false; uint32_t refresh_rate = 0; uint32_t min_refresh = subvp_active_margin_list.min_refresh; uint32_t max_refresh = subvp_active_margin_list.max_refresh; uint32_t i; for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) { uint32_t width = subvp_active_margin_list.res[i].width; uint32_t height = subvp_active_margin_list.res[i].height; refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 + pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1); refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total); refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total); if (refresh_rate >= min_refresh && refresh_rate <= max_refresh && dcn32_check_native_scaling_for_res(pipe, width, height)) { allow = true; break; } } return allow; } /** * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp * * @dc: Current DC state * @context: New DC state to be programmed * @pipe: Pipe to be considered for use in subvp * * On high refresh rate display configs, we will allow subvp under the following conditions: * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440 * 2. Refresh rate is between 120hz - 165hz * 3. No scaling * 4. Freesync is inactive * 5. For single display cases, freesync must be disabled * * Return: True if pipe can be used for subvp, false otherwise */ bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe) { bool allow = false; uint32_t refresh_rate = 0; uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh; uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh; uint32_t min_refresh = subvp_max_refresh; uint32_t i; /* Only allow SubVP on high refresh displays if all connected displays * are considered "high refresh" (i.e. >= 120hz). We do not want to * allow combinations such as 120hz (SubVP) + 60hz (SubVP). */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (!pipe_ctx->stream) continue; refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 + pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1) / (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total); if (refresh_rate < min_refresh) min_refresh = refresh_rate; } if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream && pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) { refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 + pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1) / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total); if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) { for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) { uint32_t width = subvp_high_refresh_list.res[i].width; uint32_t height = subvp_high_refresh_list.res[i].height; if (dcn32_check_native_scaling_for_res(pipe, width, height)) { if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) { allow = true; break; } } } } } return allow; } /** * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy * * @dc: Current DC state * @context: New DC state to be programmed * * Return: Max vratio for prefetch */ double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context) { double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4 int i; /* For single display MPO configs, allow the max vratio to be 8 * if any plane is YUV420 format */ if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) { for (i = 0; i < context->stream_status[0].plane_count; i++) { if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr || context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) { max_vratio_pre = __DML_MAX_VRATIO_PRE__; } } } return max_vratio_pre; } /** * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case * * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config). * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has * ActiveMargin <= 0 to be the FPO stream candidate if found. * * * @dc: current dc state * @context: new dc state * @fpo_candidate_stream: pointer to FPO stream candidate if one is found * * Return: void */ void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream) { unsigned int i, pipe_idx; const struct vba_vars_st *vba = &context->bw_ctx.dml.vba; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; /* In DCN32/321, FPO uses per-pipe P-State force. * If there's no planes, HUBP is power gated and * therefore programming UCLK_PSTATE_FORCE does * nothing (P-State will always be asserted naturally * on a pipe that has HUBP power gated. Therefore we * only want to enable FPO if the FPO pipe has both * a stream and a plane. */ if (!pipe->stream || !pipe->plane_state) continue; if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) { *fpo_candidate_stream = pipe->stream; break; } pipe_idx++; } } /** * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE * * @dc: current dc state * @context: new dc state * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found" * * Return: True if VACTIVE display is found, false otherwise */ bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, uint32_t vactive_margin_req_us) { unsigned int i, pipe_idx; const struct vba_vars_st *vba = &context->bw_ctx.dml.vba; bool vactive_found = false; unsigned int blank_us = 0; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->stream) continue; blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total / (double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000; if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] >= vactive_margin_req_us && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed) && blank_us < dc->debug.fpo_vactive_max_blank_us) { vactive_found = true; break; } pipe_idx++; } return vactive_found; } void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb) { dc_assert_fp_enabled(); dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0; } void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context) { // WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue) if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) && dc->dml.soc.num_chans <= 8) { int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 && num_mclk_levels > 1) { context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16; context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; } } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1