Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 4906 | 80.60% | 5 | 14.29% |
Noah Abradjian | 478 | 7.85% | 4 | 11.43% |
Yue Hin Lau | 439 | 7.21% | 10 | 28.57% |
Bhawanpreet Lakha | 118 | 1.94% | 1 | 2.86% |
Dmytro Laktyushkin | 43 | 0.71% | 1 | 2.86% |
Qingqing Zhuo | 30 | 0.49% | 1 | 2.86% |
Krunoslav Kovac | 23 | 0.38% | 2 | 5.71% |
Yongqiang Sun | 10 | 0.16% | 1 | 2.86% |
SivapiriyanKumarasamy | 10 | 0.16% | 1 | 2.86% |
Leo (Sunpeng) Li | 9 | 0.15% | 1 | 2.86% |
Reza Amini | 6 | 0.10% | 1 | 2.86% |
Alvin lee | 5 | 0.08% | 1 | 2.86% |
Alex Hung | 4 | 0.07% | 1 | 2.86% |
Vitaly Prosyak | 2 | 0.03% | 1 | 2.86% |
Gary Kattan | 1 | 0.02% | 1 | 2.86% |
Eric Bernstein | 1 | 0.02% | 1 | 2.86% |
Xingyue Tao | 1 | 0.02% | 1 | 2.86% |
Revalla Hari Krishna | 1 | 0.02% | 1 | 2.86% |
Total | 6087 | 35 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "core_types.h" #include "reg_helper.h" #include "dcn20/dcn20_dpp.h" #include "basics/conversion.h" #include "dcn10/dcn10_cm_common.h" #define REG(reg)\ dpp->tf_regs->reg #define IND_REG(index) \ (index) #define CTX \ dpp->base.ctx #undef FN #define FN(reg_name, field_name) \ dpp->tf_shift->field_name, dpp->tf_mask->field_name static void dpp2_enable_cm_block( struct dpp *dpp_base) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); unsigned int cm_bypass_mode = 0; //Temp, put CM in bypass mode if (dpp_base->ctx->dc->debug.cm_in_bypass) cm_bypass_mode = 1; REG_UPDATE(CM_CONTROL, CM_BYPASS, cm_bypass_mode); } static bool dpp2_degamma_ram_inuse( struct dpp *dpp_base, bool *ram_a_inuse) { bool ret = false; uint32_t status_reg = 0; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_GET(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_CONFIG_STATUS, &status_reg); if (status_reg == 3) { *ram_a_inuse = true; ret = true; } else if (status_reg == 4) { *ram_a_inuse = false; ret = true; } return ret; } static void dpp2_program_degamma_lut( struct dpp *dpp_base, const struct pwl_result_data *rgb, uint32_t num, bool is_ram_a) { uint32_t i; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_EN_MASK, 7); REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1); REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0); for (i = 0 ; i < num; i++) { REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].delta_red_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].delta_green_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg); } } void dpp2_set_degamma_pwl( struct dpp *dpp_base, const struct pwl_params *params) { bool is_ram_a = true; dpp1_power_on_degamma_lut(dpp_base, true); dpp2_enable_cm_block(dpp_base); dpp2_degamma_ram_inuse(dpp_base, &is_ram_a); if (is_ram_a == true) dpp1_program_degamma_lutb_settings(dpp_base, params); else dpp1_program_degamma_luta_settings(dpp_base, params); dpp2_program_degamma_lut(dpp_base, params->rgb_resulted, params->hw_points_num, !is_ram_a); dpp1_degamma_ram_select(dpp_base, !is_ram_a); } void dpp2_set_degamma( struct dpp *dpp_base, enum ipp_degamma_mode mode) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); dpp2_enable_cm_block(dpp_base); switch (mode) { case IPP_DEGAMMA_MODE_BYPASS: /* Setting de gamma bypass for now */ REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0); break; case IPP_DEGAMMA_MODE_HW_sRGB: REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1); break; case IPP_DEGAMMA_MODE_HW_xvYCC: REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2); break; case IPP_DEGAMMA_MODE_USER_PWL: REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3); break; default: BREAK_TO_DEBUGGER(); break; } } static void program_gamut_remap( struct dcn20_dpp *dpp, const uint16_t *regval, enum dcn20_gamut_remap_select select) { uint32_t cur_select = 0; struct color_matrices_reg gam_regs; if (regval == NULL || select == DCN2_GAMUT_REMAP_BYPASS) { REG_SET(CM_GAMUT_REMAP_CONTROL, 0, CM_GAMUT_REMAP_MODE, 0); return; } /* determine which gamut_remap coefficients (A or B) we are using * currently. select the alternate set to double buffer * the update so gamut_remap is updated on frame boundary */ IX_REG_GET(CM_TEST_DEBUG_INDEX, CM_TEST_DEBUG_DATA, CM_TEST_DEBUG_DATA_STATUS_IDX, CM_TEST_DEBUG_DATA_GAMUT_REMAP_MODE, &cur_select); /* value stored in dbg reg will be 1 greater than mode we want */ if (cur_select != DCN2_GAMUT_REMAP_COEF_A) select = DCN2_GAMUT_REMAP_COEF_A; else select = DCN2_GAMUT_REMAP_COEF_B; gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12; if (select == DCN2_GAMUT_REMAP_COEF_A) { gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12); gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34); } else { gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_B_C11_C12); gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_B_C33_C34); } cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); REG_SET( CM_GAMUT_REMAP_CONTROL, 0, CM_GAMUT_REMAP_MODE, select); } void dpp2_cm_set_gamut_remap( struct dpp *dpp_base, const struct dpp_grph_csc_adjustment *adjust) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); int i = 0; if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW) /* Bypass if type is bypass or hw */ program_gamut_remap(dpp, NULL, DCN2_GAMUT_REMAP_BYPASS); else { struct fixed31_32 arr_matrix[12]; uint16_t arr_reg_val[12]; for (i = 0; i < 12; i++) arr_matrix[i] = adjust->temperature_matrix[i]; convert_float_matrix( arr_reg_val, arr_matrix, 12); program_gamut_remap(dpp, arr_reg_val, DCN2_GAMUT_REMAP_COEF_A); } } static void read_gamut_remap(struct dcn20_dpp *dpp, uint16_t *regval, enum dcn20_gamut_remap_select *select) { struct color_matrices_reg gam_regs; uint32_t selection; IX_REG_GET(CM_TEST_DEBUG_INDEX, CM_TEST_DEBUG_DATA, CM_TEST_DEBUG_DATA_STATUS_IDX, CM_TEST_DEBUG_DATA_GAMUT_REMAP_MODE, &selection); *select = selection; gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12; if (*select == DCN2_GAMUT_REMAP_COEF_A) { gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12); gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34); cm_helper_read_color_matrices(dpp->base.ctx, regval, &gam_regs); } else if (*select == DCN2_GAMUT_REMAP_COEF_B) { gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_B_C11_C12); gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_B_C33_C34); cm_helper_read_color_matrices(dpp->base.ctx, regval, &gam_regs); } } void dpp2_cm_get_gamut_remap(struct dpp *dpp_base, struct dpp_grph_csc_adjustment *adjust) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); uint16_t arr_reg_val[12] = {0}; enum dcn20_gamut_remap_select select; read_gamut_remap(dpp, arr_reg_val, &select); if (select == DCN2_GAMUT_REMAP_BYPASS) { adjust->gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS; return; } adjust->gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW; convert_hw_matrix(adjust->temperature_matrix, arr_reg_val, ARRAY_SIZE(arr_reg_val)); } void dpp2_program_input_csc( struct dpp *dpp_base, enum dc_color_space color_space, enum dcn20_input_csc_select input_select, const struct out_csc_color_matrix *tbl_entry) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); int i; int arr_size = sizeof(dpp_input_csc_matrix)/sizeof(struct dpp_input_csc_matrix); const uint16_t *regval = NULL; uint32_t cur_select = 0; enum dcn20_input_csc_select select; struct color_matrices_reg icsc_regs; if (input_select == DCN2_ICSC_SELECT_BYPASS) { REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0); return; } if (tbl_entry == NULL) { for (i = 0; i < arr_size; i++) if (dpp_input_csc_matrix[i].color_space == color_space) { regval = dpp_input_csc_matrix[i].regval; break; } if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } } else { regval = tbl_entry->regval; } /* determine which CSC coefficients (A or B) we are using * currently. select the alternate set to double buffer * the CSC update so CSC is updated on frame boundary */ IX_REG_GET(CM_TEST_DEBUG_INDEX, CM_TEST_DEBUG_DATA, CM_TEST_DEBUG_DATA_STATUS_IDX, CM_TEST_DEBUG_DATA_ICSC_MODE, &cur_select); if (cur_select != DCN2_ICSC_SELECT_ICSC_A) select = DCN2_ICSC_SELECT_ICSC_A; else select = DCN2_ICSC_SELECT_ICSC_B; icsc_regs.shifts.csc_c11 = dpp->tf_shift->CM_ICSC_C11; icsc_regs.masks.csc_c11 = dpp->tf_mask->CM_ICSC_C11; icsc_regs.shifts.csc_c12 = dpp->tf_shift->CM_ICSC_C12; icsc_regs.masks.csc_c12 = dpp->tf_mask->CM_ICSC_C12; if (select == DCN2_ICSC_SELECT_ICSC_A) { icsc_regs.csc_c11_c12 = REG(CM_ICSC_C11_C12); icsc_regs.csc_c33_c34 = REG(CM_ICSC_C33_C34); } else { icsc_regs.csc_c11_c12 = REG(CM_ICSC_B_C11_C12); icsc_regs.csc_c33_c34 = REG(CM_ICSC_B_C33_C34); } cm_helper_program_color_matrices( dpp->base.ctx, regval, &icsc_regs); REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, select); } static void dpp20_power_on_blnd_lut( struct dpp *dpp_base, bool power_on) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_SET(CM_MEM_PWR_CTRL, 0, BLNDGAM_MEM_PWR_FORCE, power_on == true ? 0:1); } static void dpp20_configure_blnd_lut( struct dpp *dpp_base, bool is_ram_a) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_UPDATE(CM_BLNDGAM_LUT_WRITE_EN_MASK, CM_BLNDGAM_LUT_WRITE_EN_MASK, 7); REG_UPDATE(CM_BLNDGAM_LUT_WRITE_EN_MASK, CM_BLNDGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1); REG_SET(CM_BLNDGAM_LUT_INDEX, 0, CM_BLNDGAM_LUT_INDEX, 0); } static void dpp20_program_blnd_pwl( struct dpp *dpp_base, const struct pwl_result_data *rgb, uint32_t num) { uint32_t i; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); for (i = 0 ; i < num; i++) { REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].red_reg); REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].green_reg); REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].blue_reg); REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].delta_red_reg); REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].delta_green_reg); REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].delta_blue_reg); } } static void dcn20_dpp_cm_get_reg_field( struct dcn20_dpp *dpp, struct xfer_func_reg *reg) { reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->shifts.field_region_end = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_END_B; reg->masks.field_region_end = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_END_B; reg->shifts.field_region_end_slope = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_END_SLOPE_B; reg->masks.field_region_end_slope = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_END_SLOPE_B; reg->shifts.field_region_end_base = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_END_BASE_B; reg->masks.field_region_end_base = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_END_BASE_B; reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B; reg->masks.field_region_linear_slope = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B; reg->shifts.exp_region_start = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_START_B; reg->masks.exp_region_start = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_START_B; reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_START_SEGMENT_B; reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_START_SEGMENT_B; } /*program blnd lut RAM A*/ static void dpp20_program_blnd_luta_settings( struct dpp *dpp_base, const struct pwl_params *params) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); struct xfer_func_reg gam_regs; dcn20_dpp_cm_get_reg_field(dpp, &gam_regs); gam_regs.start_cntl_b = REG(CM_BLNDGAM_RAMA_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_BLNDGAM_RAMA_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_BLNDGAM_RAMA_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_BLNDGAM_RAMA_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_BLNDGAM_RAMA_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_BLNDGAM_RAMA_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_BLNDGAM_RAMA_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_BLNDGAM_RAMA_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_BLNDGAM_RAMA_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_BLNDGAM_RAMA_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_BLNDGAM_RAMA_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_BLNDGAM_RAMA_END_CNTL2_R); gam_regs.region_start = REG(CM_BLNDGAM_RAMA_REGION_0_1); gam_regs.region_end = REG(CM_BLNDGAM_RAMA_REGION_32_33); cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); } /*program blnd lut RAM B*/ static void dpp20_program_blnd_lutb_settings( struct dpp *dpp_base, const struct pwl_params *params) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); struct xfer_func_reg gam_regs; dcn20_dpp_cm_get_reg_field(dpp, &gam_regs); gam_regs.start_cntl_b = REG(CM_BLNDGAM_RAMB_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_BLNDGAM_RAMB_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_BLNDGAM_RAMB_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_BLNDGAM_RAMB_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_BLNDGAM_RAMB_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_BLNDGAM_RAMB_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_BLNDGAM_RAMB_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_BLNDGAM_RAMB_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_BLNDGAM_RAMB_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_BLNDGAM_RAMB_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_BLNDGAM_RAMB_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_BLNDGAM_RAMB_END_CNTL2_R); gam_regs.region_start = REG(CM_BLNDGAM_RAMB_REGION_0_1); gam_regs.region_end = REG(CM_BLNDGAM_RAMB_REGION_32_33); cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); } static enum dc_lut_mode dpp20_get_blndgam_current(struct dpp *dpp_base) { enum dc_lut_mode mode; uint32_t state_mode; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_GET(CM_BLNDGAM_LUT_WRITE_EN_MASK, CM_BLNDGAM_CONFIG_STATUS, &state_mode); switch (state_mode) { case 0: mode = LUT_BYPASS; break; case 1: mode = LUT_RAM_A; break; case 2: mode = LUT_RAM_B; break; default: mode = LUT_BYPASS; break; } return mode; } bool dpp20_program_blnd_lut( struct dpp *dpp_base, const struct pwl_params *params) { enum dc_lut_mode current_mode; enum dc_lut_mode next_mode; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); if (params == NULL) { REG_SET(CM_BLNDGAM_CONTROL, 0, CM_BLNDGAM_LUT_MODE, 0); return false; } current_mode = dpp20_get_blndgam_current(dpp_base); if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A) next_mode = LUT_RAM_B; else next_mode = LUT_RAM_A; dpp20_power_on_blnd_lut(dpp_base, true); dpp20_configure_blnd_lut(dpp_base, next_mode == LUT_RAM_A); if (next_mode == LUT_RAM_A) dpp20_program_blnd_luta_settings(dpp_base, params); else dpp20_program_blnd_lutb_settings(dpp_base, params); dpp20_program_blnd_pwl( dpp_base, params->rgb_resulted, params->hw_points_num); REG_SET(CM_BLNDGAM_CONTROL, 0, CM_BLNDGAM_LUT_MODE, next_mode == LUT_RAM_A ? 1:2); return true; } static void dpp20_program_shaper_lut( struct dpp *dpp_base, const struct pwl_result_data *rgb, uint32_t num) { uint32_t i, red, green, blue; uint32_t red_delta, green_delta, blue_delta; uint32_t red_value, green_value, blue_value; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); for (i = 0 ; i < num; i++) { red = rgb[i].red_reg; green = rgb[i].green_reg; blue = rgb[i].blue_reg; red_delta = rgb[i].delta_red_reg; green_delta = rgb[i].delta_green_reg; blue_delta = rgb[i].delta_blue_reg; red_value = ((red_delta & 0x3ff) << 14) | (red & 0x3fff); green_value = ((green_delta & 0x3ff) << 14) | (green & 0x3fff); blue_value = ((blue_delta & 0x3ff) << 14) | (blue & 0x3fff); REG_SET(CM_SHAPER_LUT_DATA, 0, CM_SHAPER_LUT_DATA, red_value); REG_SET(CM_SHAPER_LUT_DATA, 0, CM_SHAPER_LUT_DATA, green_value); REG_SET(CM_SHAPER_LUT_DATA, 0, CM_SHAPER_LUT_DATA, blue_value); } } static enum dc_lut_mode dpp20_get_shaper_current(struct dpp *dpp_base) { enum dc_lut_mode mode; uint32_t state_mode; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_GET(CM_SHAPER_LUT_WRITE_EN_MASK, CM_SHAPER_CONFIG_STATUS, &state_mode); switch (state_mode) { case 0: mode = LUT_BYPASS; break; case 1: mode = LUT_RAM_A; break; case 2: mode = LUT_RAM_B; break; default: mode = LUT_BYPASS; break; } return mode; } static void dpp20_configure_shaper_lut( struct dpp *dpp_base, bool is_ram_a) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_UPDATE(CM_SHAPER_LUT_WRITE_EN_MASK, CM_SHAPER_LUT_WRITE_EN_MASK, 7); REG_UPDATE(CM_SHAPER_LUT_WRITE_EN_MASK, CM_SHAPER_LUT_WRITE_SEL, is_ram_a == true ? 0:1); REG_SET(CM_SHAPER_LUT_INDEX, 0, CM_SHAPER_LUT_INDEX, 0); } /*program shaper RAM A*/ static void dpp20_program_shaper_luta_settings( struct dpp *dpp_base, const struct pwl_params *params) { const struct gamma_curve *curve; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_SET_2(CM_SHAPER_RAMA_START_CNTL_B, 0, CM_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x, CM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0); REG_SET_2(CM_SHAPER_RAMA_START_CNTL_G, 0, CM_SHAPER_RAMA_EXP_REGION_START_G, params->corner_points[0].green.custom_float_x, CM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_G, 0); REG_SET_2(CM_SHAPER_RAMA_START_CNTL_R, 0, CM_SHAPER_RAMA_EXP_REGION_START_R, params->corner_points[0].red.custom_float_x, CM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_R, 0); REG_SET_2(CM_SHAPER_RAMA_END_CNTL_B, 0, CM_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x, CM_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y); REG_SET_2(CM_SHAPER_RAMA_END_CNTL_G, 0, CM_SHAPER_RAMA_EXP_REGION_END_G, params->corner_points[1].green.custom_float_x, CM_SHAPER_RAMA_EXP_REGION_END_BASE_G, params->corner_points[1].green.custom_float_y); REG_SET_2(CM_SHAPER_RAMA_END_CNTL_R, 0, CM_SHAPER_RAMA_EXP_REGION_END_R, params->corner_points[1].red.custom_float_x, CM_SHAPER_RAMA_EXP_REGION_END_BASE_R, params->corner_points[1].red.custom_float_y); curve = params->arr_curve_points; REG_SET_4(CM_SHAPER_RAMA_REGION_0_1, 0, CM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_2_3, 0, CM_SHAPER_RAMA_EXP_REGION2_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION2_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION3_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION3_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_4_5, 0, CM_SHAPER_RAMA_EXP_REGION4_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION4_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION5_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION5_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_6_7, 0, CM_SHAPER_RAMA_EXP_REGION6_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION6_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION7_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION7_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_8_9, 0, CM_SHAPER_RAMA_EXP_REGION8_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION8_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION9_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION9_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_10_11, 0, CM_SHAPER_RAMA_EXP_REGION10_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION10_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION11_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION11_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_12_13, 0, CM_SHAPER_RAMA_EXP_REGION12_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION12_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION13_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION13_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_14_15, 0, CM_SHAPER_RAMA_EXP_REGION14_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION14_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION15_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION15_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_16_17, 0, CM_SHAPER_RAMA_EXP_REGION16_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION16_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION17_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION17_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_18_19, 0, CM_SHAPER_RAMA_EXP_REGION18_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION18_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION19_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION19_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_20_21, 0, CM_SHAPER_RAMA_EXP_REGION20_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION20_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION21_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION21_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_22_23, 0, CM_SHAPER_RAMA_EXP_REGION22_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION22_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION23_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION23_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_24_25, 0, CM_SHAPER_RAMA_EXP_REGION24_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION24_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION25_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION25_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_26_27, 0, CM_SHAPER_RAMA_EXP_REGION26_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION26_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION27_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION27_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_28_29, 0, CM_SHAPER_RAMA_EXP_REGION28_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION28_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION29_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION29_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_30_31, 0, CM_SHAPER_RAMA_EXP_REGION30_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION30_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION31_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION31_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_32_33, 0, CM_SHAPER_RAMA_EXP_REGION32_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION32_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION33_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION33_NUM_SEGMENTS, curve[1].segments_num); } /*program shaper RAM B*/ static void dpp20_program_shaper_lutb_settings( struct dpp *dpp_base, const struct pwl_params *params) { const struct gamma_curve *curve; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_SET_2(CM_SHAPER_RAMB_START_CNTL_B, 0, CM_SHAPER_RAMB_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x, CM_SHAPER_RAMB_EXP_REGION_START_SEGMENT_B, 0); REG_SET_2(CM_SHAPER_RAMB_START_CNTL_G, 0, CM_SHAPER_RAMB_EXP_REGION_START_G, params->corner_points[0].green.custom_float_x, CM_SHAPER_RAMB_EXP_REGION_START_SEGMENT_G, 0); REG_SET_2(CM_SHAPER_RAMB_START_CNTL_R, 0, CM_SHAPER_RAMB_EXP_REGION_START_R, params->corner_points[0].red.custom_float_x, CM_SHAPER_RAMB_EXP_REGION_START_SEGMENT_R, 0); REG_SET_2(CM_SHAPER_RAMB_END_CNTL_B, 0, CM_SHAPER_RAMB_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x, CM_SHAPER_RAMB_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y); REG_SET_2(CM_SHAPER_RAMB_END_CNTL_G, 0, CM_SHAPER_RAMB_EXP_REGION_END_G, params->corner_points[1].green.custom_float_x, CM_SHAPER_RAMB_EXP_REGION_END_BASE_G, params->corner_points[1].green.custom_float_y); REG_SET_2(CM_SHAPER_RAMB_END_CNTL_R, 0, CM_SHAPER_RAMB_EXP_REGION_END_R, params->corner_points[1].red.custom_float_x, CM_SHAPER_RAMB_EXP_REGION_END_BASE_R, params->corner_points[1].red.custom_float_y); curve = params->arr_curve_points; REG_SET_4(CM_SHAPER_RAMB_REGION_0_1, 0, CM_SHAPER_RAMB_EXP_REGION0_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION1_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_2_3, 0, CM_SHAPER_RAMB_EXP_REGION2_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION2_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION3_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION3_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_4_5, 0, CM_SHAPER_RAMB_EXP_REGION4_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION4_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION5_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION5_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_6_7, 0, CM_SHAPER_RAMB_EXP_REGION6_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION6_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION7_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION7_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_8_9, 0, CM_SHAPER_RAMB_EXP_REGION8_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION8_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION9_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION9_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_10_11, 0, CM_SHAPER_RAMB_EXP_REGION10_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION10_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION11_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION11_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_12_13, 0, CM_SHAPER_RAMB_EXP_REGION12_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION12_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION13_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION13_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_14_15, 0, CM_SHAPER_RAMB_EXP_REGION14_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION14_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION15_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION15_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_16_17, 0, CM_SHAPER_RAMB_EXP_REGION16_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION16_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION17_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION17_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_18_19, 0, CM_SHAPER_RAMB_EXP_REGION18_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION18_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION19_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION19_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_20_21, 0, CM_SHAPER_RAMB_EXP_REGION20_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION20_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION21_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION21_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_22_23, 0, CM_SHAPER_RAMB_EXP_REGION22_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION22_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION23_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION23_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_24_25, 0, CM_SHAPER_RAMB_EXP_REGION24_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION24_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION25_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION25_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_26_27, 0, CM_SHAPER_RAMB_EXP_REGION26_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION26_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION27_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION27_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_28_29, 0, CM_SHAPER_RAMB_EXP_REGION28_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION28_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION29_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION29_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_30_31, 0, CM_SHAPER_RAMB_EXP_REGION30_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION30_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION31_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION31_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_32_33, 0, CM_SHAPER_RAMB_EXP_REGION32_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION32_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION33_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION33_NUM_SEGMENTS, curve[1].segments_num); } bool dpp20_program_shaper( struct dpp *dpp_base, const struct pwl_params *params) { enum dc_lut_mode current_mode; enum dc_lut_mode next_mode; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); if (params == NULL) { REG_SET(CM_SHAPER_CONTROL, 0, CM_SHAPER_LUT_MODE, 0); return false; } current_mode = dpp20_get_shaper_current(dpp_base); if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A) next_mode = LUT_RAM_B; else next_mode = LUT_RAM_A; dpp20_configure_shaper_lut(dpp_base, next_mode == LUT_RAM_A); if (next_mode == LUT_RAM_A) dpp20_program_shaper_luta_settings(dpp_base, params); else dpp20_program_shaper_lutb_settings(dpp_base, params); dpp20_program_shaper_lut( dpp_base, params->rgb_resulted, params->hw_points_num); REG_SET(CM_SHAPER_CONTROL, 0, CM_SHAPER_LUT_MODE, next_mode == LUT_RAM_A ? 1:2); return true; } static enum dc_lut_mode get3dlut_config( struct dpp *dpp_base, bool *is_17x17x17, bool *is_12bits_color_channel) { uint32_t i_mode, i_enable_10bits, lut_size; enum dc_lut_mode mode; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_GET_2(CM_3DLUT_READ_WRITE_CONTROL, CM_3DLUT_CONFIG_STATUS, &i_mode, CM_3DLUT_30BIT_EN, &i_enable_10bits); switch (i_mode) { case 0: mode = LUT_BYPASS; break; case 1: mode = LUT_RAM_A; break; case 2: mode = LUT_RAM_B; break; default: mode = LUT_BYPASS; break; } if (i_enable_10bits > 0) *is_12bits_color_channel = false; else *is_12bits_color_channel = true; REG_GET(CM_3DLUT_MODE, CM_3DLUT_SIZE, &lut_size); if (lut_size == 0) *is_17x17x17 = true; else *is_17x17x17 = false; return mode; } /* * select ramA or ramB, or bypass * select color channel size 10 or 12 bits * select 3dlut size 17x17x17 or 9x9x9 */ static void dpp20_set_3dlut_mode( struct dpp *dpp_base, enum dc_lut_mode mode, bool is_color_channel_12bits, bool is_lut_size17x17x17) { uint32_t lut_mode; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); if (mode == LUT_BYPASS) lut_mode = 0; else if (mode == LUT_RAM_A) lut_mode = 1; else lut_mode = 2; REG_UPDATE_2(CM_3DLUT_MODE, CM_3DLUT_MODE, lut_mode, CM_3DLUT_SIZE, is_lut_size17x17x17 == true ? 0 : 1); } static void dpp20_select_3dlut_ram( struct dpp *dpp_base, enum dc_lut_mode mode, bool is_color_channel_12bits) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_UPDATE_2(CM_3DLUT_READ_WRITE_CONTROL, CM_3DLUT_RAM_SEL, mode == LUT_RAM_A ? 0 : 1, CM_3DLUT_30BIT_EN, is_color_channel_12bits == true ? 0:1); } static void dpp20_set3dlut_ram12( struct dpp *dpp_base, const struct dc_rgb *lut, uint32_t entries) { uint32_t i, red, green, blue, red1, green1, blue1; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); for (i = 0 ; i < entries; i += 2) { red = lut[i].red<<4; green = lut[i].green<<4; blue = lut[i].blue<<4; red1 = lut[i+1].red<<4; green1 = lut[i+1].green<<4; blue1 = lut[i+1].blue<<4; REG_SET_2(CM_3DLUT_DATA, 0, CM_3DLUT_DATA0, red, CM_3DLUT_DATA1, red1); REG_SET_2(CM_3DLUT_DATA, 0, CM_3DLUT_DATA0, green, CM_3DLUT_DATA1, green1); REG_SET_2(CM_3DLUT_DATA, 0, CM_3DLUT_DATA0, blue, CM_3DLUT_DATA1, blue1); } } /* * load selected lut with 10 bits color channels */ static void dpp20_set3dlut_ram10( struct dpp *dpp_base, const struct dc_rgb *lut, uint32_t entries) { uint32_t i, red, green, blue, value; struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); for (i = 0; i < entries; i++) { red = lut[i].red; green = lut[i].green; blue = lut[i].blue; value = (red<<20) | (green<<10) | blue; REG_SET(CM_3DLUT_DATA_30BIT, 0, CM_3DLUT_DATA_30BIT, value); } } static void dpp20_select_3dlut_ram_mask( struct dpp *dpp_base, uint32_t ram_selection_mask) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_UPDATE(CM_3DLUT_READ_WRITE_CONTROL, CM_3DLUT_WRITE_EN_MASK, ram_selection_mask); REG_SET(CM_3DLUT_INDEX, 0, CM_3DLUT_INDEX, 0); } bool dpp20_program_3dlut( struct dpp *dpp_base, const struct tetrahedral_params *params) { enum dc_lut_mode mode; bool is_17x17x17; bool is_12bits_color_channel; const struct dc_rgb *lut0; const struct dc_rgb *lut1; const struct dc_rgb *lut2; const struct dc_rgb *lut3; int lut_size0; int lut_size; if (params == NULL) { dpp20_set_3dlut_mode(dpp_base, LUT_BYPASS, false, false); return false; } mode = get3dlut_config(dpp_base, &is_17x17x17, &is_12bits_color_channel); if (mode == LUT_BYPASS || mode == LUT_RAM_B) mode = LUT_RAM_A; else mode = LUT_RAM_B; is_17x17x17 = !params->use_tetrahedral_9; is_12bits_color_channel = params->use_12bits; if (is_17x17x17) { lut0 = params->tetrahedral_17.lut0; lut1 = params->tetrahedral_17.lut1; lut2 = params->tetrahedral_17.lut2; lut3 = params->tetrahedral_17.lut3; lut_size0 = sizeof(params->tetrahedral_17.lut0)/ sizeof(params->tetrahedral_17.lut0[0]); lut_size = sizeof(params->tetrahedral_17.lut1)/ sizeof(params->tetrahedral_17.lut1[0]); } else { lut0 = params->tetrahedral_9.lut0; lut1 = params->tetrahedral_9.lut1; lut2 = params->tetrahedral_9.lut2; lut3 = params->tetrahedral_9.lut3; lut_size0 = sizeof(params->tetrahedral_9.lut0)/ sizeof(params->tetrahedral_9.lut0[0]); lut_size = sizeof(params->tetrahedral_9.lut1)/ sizeof(params->tetrahedral_9.lut1[0]); } dpp20_select_3dlut_ram(dpp_base, mode, is_12bits_color_channel); dpp20_select_3dlut_ram_mask(dpp_base, 0x1); if (is_12bits_color_channel) dpp20_set3dlut_ram12(dpp_base, lut0, lut_size0); else dpp20_set3dlut_ram10(dpp_base, lut0, lut_size0); dpp20_select_3dlut_ram_mask(dpp_base, 0x2); if (is_12bits_color_channel) dpp20_set3dlut_ram12(dpp_base, lut1, lut_size); else dpp20_set3dlut_ram10(dpp_base, lut1, lut_size); dpp20_select_3dlut_ram_mask(dpp_base, 0x4); if (is_12bits_color_channel) dpp20_set3dlut_ram12(dpp_base, lut2, lut_size); else dpp20_set3dlut_ram10(dpp_base, lut2, lut_size); dpp20_select_3dlut_ram_mask(dpp_base, 0x8); if (is_12bits_color_channel) dpp20_set3dlut_ram12(dpp_base, lut3, lut_size); else dpp20_set3dlut_ram10(dpp_base, lut3, lut_size); dpp20_set_3dlut_mode(dpp_base, mode, is_12bits_color_channel, is_17x17x17); return true; } void dpp2_set_hdr_multiplier( struct dpp *dpp_base, uint32_t multiplier) { struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base); REG_UPDATE(CM_HDR_MULT_COEF, CM_HDR_MULT_COEF, multiplier); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1