Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bhawanpreet Lakha | 2064 | 89.47% | 1 | 6.67% |
Harry Wentland | 102 | 4.42% | 2 | 13.33% |
Yue Hin Lau | 48 | 2.08% | 3 | 20.00% |
Zi Yu Liao | 39 | 1.69% | 1 | 6.67% |
Michael Strauss | 29 | 1.26% | 1 | 6.67% |
Gary Kattan | 11 | 0.48% | 1 | 6.67% |
Alex Hung | 4 | 0.17% | 1 | 6.67% |
Krunoslav Kovac | 3 | 0.13% | 1 | 6.67% |
Vitaly Prosyak | 2 | 0.09% | 1 | 6.67% |
Revalla Hari Krishna | 2 | 0.09% | 1 | 6.67% |
Srinivasan S | 2 | 0.09% | 1 | 6.67% |
Jingwen Zhu | 1 | 0.04% | 1 | 6.67% |
Total | 2307 | 15 |
/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "core_types.h" #include "reg_helper.h" #include "dcn30/dcn30_dpp.h" #include "basics/conversion.h" #include "dcn30/dcn30_cm_common.h" #define REG(reg)\ dpp->tf_regs->reg #define CTX \ dpp->base.ctx #undef FN #define FN(reg_name, field_name) \ dpp->tf_shift->field_name, dpp->tf_mask->field_name static void dpp3_enable_cm_block( struct dpp *dpp_base) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); unsigned int cm_bypass_mode = 0; // debug option: put CM in bypass mode if (dpp_base->ctx->dc->debug.cm_in_bypass) cm_bypass_mode = 1; REG_UPDATE(CM_CONTROL, CM_BYPASS, cm_bypass_mode); } static enum dc_lut_mode dpp30_get_gamcor_current(struct dpp *dpp_base) { enum dc_lut_mode mode = LUT_BYPASS; uint32_t state_mode; uint32_t lut_mode; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_GET(CM_GAMCOR_CONTROL, CM_GAMCOR_MODE_CURRENT, &state_mode); if (state_mode == 2) {//Programmable RAM LUT REG_GET(CM_GAMCOR_CONTROL, CM_GAMCOR_SELECT_CURRENT, &lut_mode); if (lut_mode == 0) mode = LUT_RAM_A; else mode = LUT_RAM_B; } return mode; } static void dpp3_program_gammcor_lut( struct dpp *dpp_base, const struct pwl_result_data *rgb, uint32_t num, bool is_ram_a) { uint32_t i; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); uint32_t last_base_value_red = rgb[num-1].red_reg + rgb[num-1].delta_red_reg; uint32_t last_base_value_green = rgb[num-1].green_reg + rgb[num-1].delta_green_reg; uint32_t last_base_value_blue = rgb[num-1].blue_reg + rgb[num-1].delta_blue_reg; /*fill in the LUT with all base values to be used by pwl module * HW auto increments the LUT index: back-to-back write */ if (is_rgb_equal(rgb, num)) { for (i = 0 ; i < num; i++) REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, rgb[i].red_reg); REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, last_base_value_red); } else { REG_UPDATE(CM_GAMCOR_LUT_CONTROL, CM_GAMCOR_LUT_WRITE_COLOR_MASK, 4); for (i = 0 ; i < num; i++) REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, rgb[i].red_reg); REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, last_base_value_red); REG_SET(CM_GAMCOR_LUT_INDEX, 0, CM_GAMCOR_LUT_INDEX, 0); REG_UPDATE(CM_GAMCOR_LUT_CONTROL, CM_GAMCOR_LUT_WRITE_COLOR_MASK, 2); for (i = 0 ; i < num; i++) REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, rgb[i].green_reg); REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, last_base_value_green); REG_SET(CM_GAMCOR_LUT_INDEX, 0, CM_GAMCOR_LUT_INDEX, 0); REG_UPDATE(CM_GAMCOR_LUT_CONTROL, CM_GAMCOR_LUT_WRITE_COLOR_MASK, 1); for (i = 0 ; i < num; i++) REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, rgb[i].blue_reg); REG_SET(CM_GAMCOR_LUT_DATA, 0, CM_GAMCOR_LUT_DATA, last_base_value_blue); } } static void dpp3_power_on_gamcor_lut( struct dpp *dpp_base, bool power_on) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.cm) { if (power_on) { REG_UPDATE(CM_MEM_PWR_CTRL, GAMCOR_MEM_PWR_FORCE, 0); REG_WAIT(CM_MEM_PWR_STATUS, GAMCOR_MEM_PWR_STATE, 0, 1, 5); } else { dpp_base->ctx->dc->optimized_required = true; dpp_base->deferred_reg_writes.bits.disable_gamcor = true; } } else REG_SET(CM_MEM_PWR_CTRL, 0, GAMCOR_MEM_PWR_DIS, power_on == true ? 0:1); } void dpp3_program_cm_dealpha( struct dpp *dpp_base, uint32_t enable, uint32_t additive_blending) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_SET_2(CM_DEALPHA, 0, CM_DEALPHA_EN, enable, CM_DEALPHA_ABLND, additive_blending); } void dpp3_program_cm_bias( struct dpp *dpp_base, struct CM_bias_params *bias_params) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_SET(CM_BIAS_CR_R, 0, CM_BIAS_CR_R, bias_params->cm_bias_cr_r); REG_SET_2(CM_BIAS_Y_G_CB_B, 0, CM_BIAS_Y_G, bias_params->cm_bias_y_g, CM_BIAS_CB_B, bias_params->cm_bias_cb_b); } static void dpp3_gamcor_reg_field( struct dcn3_dpp *dpp, struct dcn3_xfer_func_reg *reg) { reg->shifts.field_region_start_base = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_START_BASE_B; reg->masks.field_region_start_base = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_START_BASE_B; reg->shifts.field_offset = dpp->tf_shift->CM_GAMCOR_RAMA_OFFSET_B; reg->masks.field_offset = dpp->tf_mask->CM_GAMCOR_RAMA_OFFSET_B; reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION0_LUT_OFFSET; reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION0_LUT_OFFSET; reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION1_LUT_OFFSET; reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION1_LUT_OFFSET; reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->shifts.field_region_end = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_END_B; reg->masks.field_region_end = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_END_B; reg->shifts.field_region_end_slope = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_END_SLOPE_B; reg->masks.field_region_end_slope = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_END_SLOPE_B; reg->shifts.field_region_end_base = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_END_BASE_B; reg->masks.field_region_end_base = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_END_BASE_B; reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_START_SLOPE_B; reg->masks.field_region_linear_slope = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_START_SLOPE_B; reg->shifts.exp_region_start = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_START_B; reg->masks.exp_region_start = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_START_B; reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_GAMCOR_RAMA_EXP_REGION_START_SEGMENT_B; reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_GAMCOR_RAMA_EXP_REGION_START_SEGMENT_B; } static void dpp3_configure_gamcor_lut( struct dpp *dpp_base, bool is_ram_a) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_UPDATE(CM_GAMCOR_LUT_CONTROL, CM_GAMCOR_LUT_WRITE_COLOR_MASK, 7); REG_UPDATE(CM_GAMCOR_LUT_CONTROL, CM_GAMCOR_LUT_HOST_SEL, is_ram_a == true ? 0:1); REG_SET(CM_GAMCOR_LUT_INDEX, 0, CM_GAMCOR_LUT_INDEX, 0); } bool dpp3_program_gamcor_lut( struct dpp *dpp_base, const struct pwl_params *params) { enum dc_lut_mode current_mode; enum dc_lut_mode next_mode; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); struct dcn3_xfer_func_reg gam_regs; dpp3_enable_cm_block(dpp_base); if (params == NULL) { //bypass if we have no pwl data REG_SET(CM_GAMCOR_CONTROL, 0, CM_GAMCOR_MODE, 0); if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.cm) dpp3_power_on_gamcor_lut(dpp_base, false); return false; } dpp3_power_on_gamcor_lut(dpp_base, true); REG_SET(CM_GAMCOR_CONTROL, 0, CM_GAMCOR_MODE, 2); current_mode = dpp30_get_gamcor_current(dpp_base); if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A) next_mode = LUT_RAM_B; else next_mode = LUT_RAM_A; dpp3_power_on_gamcor_lut(dpp_base, true); dpp3_configure_gamcor_lut(dpp_base, next_mode == LUT_RAM_A); if (next_mode == LUT_RAM_B) { gam_regs.start_cntl_b = REG(CM_GAMCOR_RAMB_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_GAMCOR_RAMB_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_GAMCOR_RAMB_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_GAMCOR_RAMB_START_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_GAMCOR_RAMB_START_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_GAMCOR_RAMB_START_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_GAMCOR_RAMB_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_GAMCOR_RAMB_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_GAMCOR_RAMB_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_GAMCOR_RAMB_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_GAMCOR_RAMB_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_GAMCOR_RAMB_END_CNTL2_R); gam_regs.region_start = REG(CM_GAMCOR_RAMB_REGION_0_1); gam_regs.region_end = REG(CM_GAMCOR_RAMB_REGION_32_33); //New registers in DCN3AG/DCN GAMCOR block gam_regs.offset_b = REG(CM_GAMCOR_RAMB_OFFSET_B); gam_regs.offset_g = REG(CM_GAMCOR_RAMB_OFFSET_G); gam_regs.offset_r = REG(CM_GAMCOR_RAMB_OFFSET_R); gam_regs.start_base_cntl_b = REG(CM_GAMCOR_RAMB_START_BASE_CNTL_B); gam_regs.start_base_cntl_g = REG(CM_GAMCOR_RAMB_START_BASE_CNTL_G); gam_regs.start_base_cntl_r = REG(CM_GAMCOR_RAMB_START_BASE_CNTL_R); } else { gam_regs.start_cntl_b = REG(CM_GAMCOR_RAMA_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_GAMCOR_RAMA_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_GAMCOR_RAMA_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_GAMCOR_RAMA_START_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_GAMCOR_RAMA_START_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_GAMCOR_RAMA_START_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_GAMCOR_RAMA_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_GAMCOR_RAMA_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_GAMCOR_RAMA_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_GAMCOR_RAMA_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_GAMCOR_RAMA_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_GAMCOR_RAMA_END_CNTL2_R); gam_regs.region_start = REG(CM_GAMCOR_RAMA_REGION_0_1); gam_regs.region_end = REG(CM_GAMCOR_RAMA_REGION_32_33); //New registers in DCN3AG/DCN GAMCOR block gam_regs.offset_b = REG(CM_GAMCOR_RAMA_OFFSET_B); gam_regs.offset_g = REG(CM_GAMCOR_RAMA_OFFSET_G); gam_regs.offset_r = REG(CM_GAMCOR_RAMA_OFFSET_R); gam_regs.start_base_cntl_b = REG(CM_GAMCOR_RAMA_START_BASE_CNTL_B); gam_regs.start_base_cntl_g = REG(CM_GAMCOR_RAMA_START_BASE_CNTL_G); gam_regs.start_base_cntl_r = REG(CM_GAMCOR_RAMA_START_BASE_CNTL_R); } //get register fields dpp3_gamcor_reg_field(dpp, &gam_regs); //program register set for LUTA/LUTB cm_helper_program_gamcor_xfer_func(dpp_base->ctx, params, &gam_regs); dpp3_program_gammcor_lut(dpp_base, params->rgb_resulted, params->hw_points_num, next_mode == LUT_RAM_A); //select Gamma LUT to use for next frame REG_UPDATE(CM_GAMCOR_CONTROL, CM_GAMCOR_SELECT, next_mode == LUT_RAM_A ? 0:1); return true; } void dpp3_set_hdr_multiplier( struct dpp *dpp_base, uint32_t multiplier) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_UPDATE(CM_HDR_MULT_COEF, CM_HDR_MULT_COEF, multiplier); } static void program_gamut_remap( struct dcn3_dpp *dpp, const uint16_t *regval, int select) { uint16_t selection = 0; struct color_matrices_reg gam_regs; if (regval == NULL || select == GAMUT_REMAP_BYPASS) { REG_SET(CM_GAMUT_REMAP_CONTROL, 0, CM_GAMUT_REMAP_MODE, 0); return; } switch (select) { case GAMUT_REMAP_COEFF: selection = 1; break; /*this corresponds to GAMUT_REMAP coefficients set B *we don't have common coefficient sets in dcn3ag/dcn3 */ case GAMUT_REMAP_COMA_COEFF: selection = 2; break; default: break; } gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12; if (select == GAMUT_REMAP_COEFF) { gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12); gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34); cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); } else if (select == GAMUT_REMAP_COMA_COEFF) { gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_B_C11_C12); gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_B_C33_C34); cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); } //select coefficient set to use REG_SET( CM_GAMUT_REMAP_CONTROL, 0, CM_GAMUT_REMAP_MODE, selection); } void dpp3_cm_set_gamut_remap( struct dpp *dpp_base, const struct dpp_grph_csc_adjustment *adjust) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); int i = 0; int gamut_mode; if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW) /* Bypass if type is bypass or hw */ program_gamut_remap(dpp, NULL, GAMUT_REMAP_BYPASS); else { struct fixed31_32 arr_matrix[12]; uint16_t arr_reg_val[12]; for (i = 0; i < 12; i++) arr_matrix[i] = adjust->temperature_matrix[i]; convert_float_matrix( arr_reg_val, arr_matrix, 12); //current coefficient set in use REG_GET(CM_GAMUT_REMAP_CONTROL, CM_GAMUT_REMAP_MODE_CURRENT, &gamut_mode); if (gamut_mode == 0) gamut_mode = 1; //use coefficient set A else if (gamut_mode == 1) gamut_mode = 2; else gamut_mode = 1; //follow dcn2 approach for now - using only coefficient set A program_gamut_remap(dpp, arr_reg_val, gamut_mode); } } static void read_gamut_remap(struct dcn3_dpp *dpp, uint16_t *regval, int *select) { struct color_matrices_reg gam_regs; uint32_t selection; //current coefficient set in use REG_GET(CM_GAMUT_REMAP_CONTROL, CM_GAMUT_REMAP_MODE_CURRENT, &selection); *select = selection; gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12; if (*select == GAMUT_REMAP_COEFF) { gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12); gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34); cm_helper_read_color_matrices(dpp->base.ctx, regval, &gam_regs); } else if (*select == GAMUT_REMAP_COMA_COEFF) { gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_B_C11_C12); gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_B_C33_C34); cm_helper_read_color_matrices(dpp->base.ctx, regval, &gam_regs); } } void dpp3_cm_get_gamut_remap(struct dpp *dpp_base, struct dpp_grph_csc_adjustment *adjust) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); uint16_t arr_reg_val[12] = {0}; int select; read_gamut_remap(dpp, arr_reg_val, &select); if (select == GAMUT_REMAP_BYPASS) { adjust->gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS; return; } adjust->gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW; convert_hw_matrix(adjust->temperature_matrix, arr_reg_val, ARRAY_SIZE(arr_reg_val)); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1