Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Melissa Wen | 5975 | 43.41% | 1 | 0.53% |
Harry Wentland | 4385 | 31.86% | 8 | 4.23% |
Dmytro Laktyushkin | 533 | 3.87% | 24 | 12.70% |
Krunoslav Kovac | 375 | 2.72% | 1 | 0.53% |
Bhawanpreet Lakha | 364 | 2.64% | 12 | 6.35% |
Jun Lei | 234 | 1.70% | 6 | 3.17% |
Charlene Liu | 188 | 1.37% | 6 | 3.17% |
Leo (Sunpeng) Li | 181 | 1.32% | 3 | 1.59% |
Wenjing Liu | 158 | 1.15% | 11 | 5.82% |
Anthony Koo | 131 | 0.95% | 5 | 2.65% |
Hansen | 115 | 0.84% | 1 | 0.53% |
Eric Yang | 111 | 0.81% | 8 | 4.23% |
rodrigosiqueira | 100 | 0.73% | 6 | 3.17% |
Nicholas Kazlauskas | 96 | 0.70% | 5 | 2.65% |
Alvin lee | 58 | 0.42% | 5 | 2.65% |
Samson Tam | 54 | 0.39% | 2 | 1.06% |
Yogesh Mohan Marimuthu | 49 | 0.36% | 1 | 0.53% |
Josip Pavic | 41 | 0.30% | 1 | 0.53% |
Isabel Zhang | 39 | 0.28% | 2 | 1.06% |
Dillon Varone | 37 | 0.27% | 1 | 0.53% |
Sebastian Andrzej Siewior | 37 | 0.27% | 1 | 0.53% |
Alex Deucher | 35 | 0.25% | 7 | 3.70% |
Dale Zhao | 34 | 0.25% | 1 | 0.53% |
Aurabindo Pillai | 28 | 0.20% | 4 | 2.12% |
Martin Leung | 27 | 0.20% | 2 | 1.06% |
Aidan Wood | 23 | 0.17% | 1 | 0.53% |
Ilya Bakoulin | 22 | 0.16% | 2 | 1.06% |
Anson Jacob | 22 | 0.16% | 1 | 0.53% |
Nikola Cornij | 20 | 0.15% | 3 | 1.59% |
David Galiffi | 19 | 0.14% | 2 | 1.06% |
Andrey Grodzovsky | 19 | 0.14% | 2 | 1.06% |
Zhan Liu | 16 | 0.12% | 2 | 1.06% |
Tony Cheng | 15 | 0.11% | 2 | 1.06% |
Joshua Aberback | 14 | 0.10% | 5 | 2.65% |
Roman Li | 14 | 0.10% | 1 | 0.53% |
Mounika Adhuri | 14 | 0.10% | 2 | 1.06% |
abdoulaye berthe | 14 | 0.10% | 2 | 1.06% |
Nirmoy Das | 13 | 0.09% | 2 | 1.06% |
Yu-ting Shen | 13 | 0.09% | 2 | 1.06% |
Jerry (Fangzhi) Zuo | 13 | 0.09% | 3 | 1.59% |
Michael Strauss | 12 | 0.09% | 1 | 0.53% |
Jasdeep Dhillon | 10 | 0.07% | 1 | 0.53% |
Chris Park | 10 | 0.07% | 1 | 0.53% |
Guilherme G. Piccoli | 10 | 0.07% | 1 | 0.53% |
Atufa Khan | 9 | 0.07% | 1 | 0.53% |
Ashley Thomas | 8 | 0.06% | 1 | 0.53% |
Yongqiang Sun | 8 | 0.06% | 2 | 1.06% |
David Francis | 7 | 0.05% | 1 | 0.53% |
Mikita Lipski | 6 | 0.04% | 1 | 0.53% |
Bindu Ramamurthy | 5 | 0.04% | 1 | 0.53% |
Daniel Kolesa | 5 | 0.04% | 1 | 0.53% |
Sung Lee | 5 | 0.04% | 3 | 1.59% |
Aric Cyr | 5 | 0.04% | 2 | 1.06% |
Timothy Pearson | 4 | 0.03% | 2 | 1.06% |
Qingqing Zhuo | 4 | 0.03% | 3 | 1.59% |
Wesley Chalmers | 4 | 0.03% | 2 | 1.06% |
Arnd Bergmann | 3 | 0.02% | 1 | 0.53% |
Jimmy Kizito | 3 | 0.02% | 1 | 0.53% |
Jing Zhou | 3 | 0.02% | 1 | 0.53% |
Yue Hin Lau | 2 | 0.01% | 1 | 0.53% |
Noah Abradjian | 1 | 0.01% | 1 | 0.53% |
Hamza Mahfooz | 1 | 0.01% | 1 | 0.53% |
Rikard Falkeborn | 1 | 0.01% | 1 | 0.53% |
Joseph Gravenor | 1 | 0.01% | 1 | 0.53% |
Meenakshikumar Somasundaram | 1 | 0.01% | 1 | 0.53% |
Total | 13764 | 189 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * Copyright 2019 Raptor Engineering, LLC * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dc.h" #include "dcn20/dcn20_init.h" #include "resource.h" #include "include/irq_service_interface.h" #include "dcn20/dcn20_resource.h" #include "dml/dcn20/dcn20_fpu.h" #include "dcn10/dcn10_hubp.h" #include "dcn10/dcn10_ipp.h" #include "dcn20/dcn20_hubbub.h" #include "dcn20/dcn20_mpc.h" #include "dcn20/dcn20_hubp.h" #include "irq/dcn20/irq_service_dcn20.h" #include "dcn20/dcn20_dpp.h" #include "dcn20/dcn20_optc.h" #include "dcn20/dcn20_hwseq.h" #include "dce110/dce110_hwseq.h" #include "dcn10/dcn10_resource.h" #include "dcn20/dcn20_opp.h" #include "dcn20/dcn20_dsc.h" #include "dcn20/dcn20_link_encoder.h" #include "dcn20/dcn20_stream_encoder.h" #include "dce/dce_clock_source.h" #include "dce/dce_audio.h" #include "dce/dce_hwseq.h" #include "virtual/virtual_stream_encoder.h" #include "dce110/dce110_resource.h" #include "dml/display_mode_vba.h" #include "dcn20/dcn20_dccg.h" #include "dcn20/dcn20_vmid.h" #include "dce/dce_panel_cntl.h" #include "dcn20/dcn20_dwb.h" #include "dcn20/dcn20_mmhubbub.h" #include "navi10_ip_offset.h" #include "dcn/dcn_2_0_0_offset.h" #include "dcn/dcn_2_0_0_sh_mask.h" #include "dpcs/dpcs_2_0_0_offset.h" #include "dpcs/dpcs_2_0_0_sh_mask.h" #include "nbio/nbio_2_3_offset.h" #include "mmhub/mmhub_2_0_0_offset.h" #include "mmhub/mmhub_2_0_0_sh_mask.h" #include "reg_helper.h" #include "dce/dce_abm.h" #include "dce/dce_dmcu.h" #include "dce/dce_aux.h" #include "dce/dce_i2c.h" #include "vm_helper.h" #include "link_enc_cfg.h" #include "link.h" #define DC_LOGGER_INIT(logger) #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #endif enum dcn20_clk_src_array_id { DCN20_CLK_SRC_PLL0, DCN20_CLK_SRC_PLL1, DCN20_CLK_SRC_PLL2, DCN20_CLK_SRC_PLL3, DCN20_CLK_SRC_PLL4, DCN20_CLK_SRC_PLL5, DCN20_CLK_SRC_TOTAL }; /* begin ********************* * macros to expend register list macro defined in HW object header file */ /* DCN */ #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg #define BASE(seg) BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #define SRI(reg_name, block, id)\ .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRI2_DWB(reg_name, block, id)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #define SF_DWB(reg_name, field_name, post_fix)\ .field_name = reg_name ## __ ## field_name ## post_fix #define SF_DWB2(reg_name, block, id, field_name, post_fix) \ .field_name = reg_name ## __ ## field_name ## post_fix #define SRIR(var_name, reg_name, block, id)\ .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define DCCG_SRII(reg_name, block, id)\ .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define VUPDATE_SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ mm ## reg_name ## _ ## block ## id /* NBIO */ #define NBIO_BASE_INNER(seg) \ NBIO_BASE__INST0_SEG ## seg #define NBIO_BASE(seg) \ NBIO_BASE_INNER(seg) #define NBIO_SR(reg_name)\ .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name /* MMHUB */ #define MMHUB_BASE_INNER(seg) \ MMHUB_BASE__INST0_SEG ## seg #define MMHUB_BASE(seg) \ MMHUB_BASE_INNER(seg) #define MMHUB_SR(reg_name)\ .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ mmMM ## reg_name static const struct bios_registers bios_regs = { NBIO_SR(BIOS_SCRATCH_3), NBIO_SR(BIOS_SCRATCH_6) }; #define clk_src_regs(index, pllid)\ [index] = {\ CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ } static const struct dce110_clk_src_regs clk_src_regs[] = { clk_src_regs(0, A), clk_src_regs(1, B), clk_src_regs(2, C), clk_src_regs(3, D), clk_src_regs(4, E), clk_src_regs(5, F) }; static const struct dce110_clk_src_shift cs_shift = { CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dce110_clk_src_mask cs_mask = { CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; static const struct dce_dmcu_registers dmcu_regs = { DMCU_DCN10_REG_LIST() }; static const struct dce_dmcu_shift dmcu_shift = { DMCU_MASK_SH_LIST_DCN10(__SHIFT) }; static const struct dce_dmcu_mask dmcu_mask = { DMCU_MASK_SH_LIST_DCN10(_MASK) }; static const struct dce_abm_registers abm_regs = { ABM_DCN20_REG_LIST() }; static const struct dce_abm_shift abm_shift = { ABM_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dce_abm_mask abm_mask = { ABM_MASK_SH_LIST_DCN20(_MASK) }; #define audio_regs(id)\ [id] = {\ AUD_COMMON_REG_LIST(id)\ } static const struct dce_audio_registers audio_regs[] = { audio_regs(0), audio_regs(1), audio_regs(2), audio_regs(3), audio_regs(4), audio_regs(5), audio_regs(6), }; #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) static const struct dce_audio_shift audio_shift = { DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) }; static const struct dce_audio_mask audio_mask = { DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) }; #define stream_enc_regs(id)\ [id] = {\ SE_DCN2_REG_LIST(id)\ } static const struct dcn10_stream_enc_registers stream_enc_regs[] = { stream_enc_regs(0), stream_enc_regs(1), stream_enc_regs(2), stream_enc_regs(3), stream_enc_regs(4), stream_enc_regs(5), }; static const struct dcn10_stream_encoder_shift se_shift = { SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn10_stream_encoder_mask se_mask = { SE_COMMON_MASK_SH_LIST_DCN20(_MASK) }; #define aux_regs(id)\ [id] = {\ DCN2_AUX_REG_LIST(id)\ } static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { aux_regs(0), aux_regs(1), aux_regs(2), aux_regs(3), aux_regs(4), aux_regs(5) }; #define hpd_regs(id)\ [id] = {\ HPD_REG_LIST(id)\ } static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { hpd_regs(0), hpd_regs(1), hpd_regs(2), hpd_regs(3), hpd_regs(4), hpd_regs(5) }; #define link_regs(id, phyid)\ [id] = {\ LE_DCN10_REG_LIST(id), \ UNIPHY_DCN2_REG_LIST(phyid), \ DPCS_DCN2_REG_LIST(id), \ SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ } static const struct dcn10_link_enc_registers link_enc_regs[] = { link_regs(0, A), link_regs(1, B), link_regs(2, C), link_regs(3, D), link_regs(4, E), link_regs(5, F) }; static const struct dcn10_link_enc_shift le_shift = { LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\ DPCS_DCN2_MASK_SH_LIST(__SHIFT) }; static const struct dcn10_link_enc_mask le_mask = { LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\ DPCS_DCN2_MASK_SH_LIST(_MASK) }; static const struct dce_panel_cntl_registers panel_cntl_regs[] = { { DCN_PANEL_CNTL_REG_LIST() } }; static const struct dce_panel_cntl_shift panel_cntl_shift = { DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) }; static const struct dce_panel_cntl_mask panel_cntl_mask = { DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) }; #define ipp_regs(id)\ [id] = {\ IPP_REG_LIST_DCN20(id),\ } static const struct dcn10_ipp_registers ipp_regs[] = { ipp_regs(0), ipp_regs(1), ipp_regs(2), ipp_regs(3), ipp_regs(4), ipp_regs(5), }; static const struct dcn10_ipp_shift ipp_shift = { IPP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn10_ipp_mask ipp_mask = { IPP_MASK_SH_LIST_DCN20(_MASK), }; #define opp_regs(id)\ [id] = {\ OPP_REG_LIST_DCN20(id),\ } static const struct dcn20_opp_registers opp_regs[] = { opp_regs(0), opp_regs(1), opp_regs(2), opp_regs(3), opp_regs(4), opp_regs(5), }; static const struct dcn20_opp_shift opp_shift = { OPP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn20_opp_mask opp_mask = { OPP_MASK_SH_LIST_DCN20(_MASK) }; #define aux_engine_regs(id)\ [id] = {\ AUX_COMMON_REG_LIST0(id), \ .AUXN_IMPCAL = 0, \ .AUXP_IMPCAL = 0, \ .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ } static const struct dce110_aux_registers aux_engine_regs[] = { aux_engine_regs(0), aux_engine_regs(1), aux_engine_regs(2), aux_engine_regs(3), aux_engine_regs(4), aux_engine_regs(5) }; #define tf_regs(id)\ [id] = {\ TF_REG_LIST_DCN20(id),\ TF_REG_LIST_DCN20_COMMON_APPEND(id),\ } static const struct dcn2_dpp_registers tf_regs[] = { tf_regs(0), tf_regs(1), tf_regs(2), tf_regs(3), tf_regs(4), tf_regs(5), }; static const struct dcn2_dpp_shift tf_shift = { TF_REG_LIST_SH_MASK_DCN20(__SHIFT), TF_DEBUG_REG_LIST_SH_DCN20 }; static const struct dcn2_dpp_mask tf_mask = { TF_REG_LIST_SH_MASK_DCN20(_MASK), TF_DEBUG_REG_LIST_MASK_DCN20 }; #define dwbc_regs_dcn2(id)\ [id] = {\ DWBC_COMMON_REG_LIST_DCN2_0(id),\ } static const struct dcn20_dwbc_registers dwbc20_regs[] = { dwbc_regs_dcn2(0), }; static const struct dcn20_dwbc_shift dwbc20_shift = { DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dcn20_dwbc_mask dwbc20_mask = { DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; #define mcif_wb_regs_dcn2(id)\ [id] = {\ MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\ } static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = { mcif_wb_regs_dcn2(0), }; static const struct dcn20_mmhubbub_shift mcif_wb20_shift = { MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dcn20_mmhubbub_mask mcif_wb20_mask = { MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; static const struct dcn20_mpc_registers mpc_regs = { MPC_REG_LIST_DCN2_0(0), MPC_REG_LIST_DCN2_0(1), MPC_REG_LIST_DCN2_0(2), MPC_REG_LIST_DCN2_0(3), MPC_REG_LIST_DCN2_0(4), MPC_REG_LIST_DCN2_0(5), MPC_OUT_MUX_REG_LIST_DCN2_0(0), MPC_OUT_MUX_REG_LIST_DCN2_0(1), MPC_OUT_MUX_REG_LIST_DCN2_0(2), MPC_OUT_MUX_REG_LIST_DCN2_0(3), MPC_OUT_MUX_REG_LIST_DCN2_0(4), MPC_OUT_MUX_REG_LIST_DCN2_0(5), MPC_DBG_REG_LIST_DCN2_0() }; static const struct dcn20_mpc_shift mpc_shift = { MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT), MPC_DEBUG_REG_LIST_SH_DCN20 }; static const struct dcn20_mpc_mask mpc_mask = { MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK), MPC_DEBUG_REG_LIST_MASK_DCN20 }; #define tg_regs(id)\ [id] = {TG_COMMON_REG_LIST_DCN2_0(id)} static const struct dcn_optc_registers tg_regs[] = { tg_regs(0), tg_regs(1), tg_regs(2), tg_regs(3), tg_regs(4), tg_regs(5) }; static const struct dcn_optc_shift tg_shift = { TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dcn_optc_mask tg_mask = { TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; #define hubp_regs(id)\ [id] = {\ HUBP_REG_LIST_DCN20(id)\ } static const struct dcn_hubp2_registers hubp_regs[] = { hubp_regs(0), hubp_regs(1), hubp_regs(2), hubp_regs(3), hubp_regs(4), hubp_regs(5) }; static const struct dcn_hubp2_shift hubp_shift = { HUBP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn_hubp2_mask hubp_mask = { HUBP_MASK_SH_LIST_DCN20(_MASK) }; static const struct dcn_hubbub_registers hubbub_reg = { HUBBUB_REG_LIST_DCN20(0) }; static const struct dcn_hubbub_shift hubbub_shift = { HUBBUB_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn_hubbub_mask hubbub_mask = { HUBBUB_MASK_SH_LIST_DCN20(_MASK) }; #define vmid_regs(id)\ [id] = {\ DCN20_VMID_REG_LIST(id)\ } static const struct dcn_vmid_registers vmid_regs[] = { vmid_regs(0), vmid_regs(1), vmid_regs(2), vmid_regs(3), vmid_regs(4), vmid_regs(5), vmid_regs(6), vmid_regs(7), vmid_regs(8), vmid_regs(9), vmid_regs(10), vmid_regs(11), vmid_regs(12), vmid_regs(13), vmid_regs(14), vmid_regs(15) }; static const struct dcn20_vmid_shift vmid_shifts = { DCN20_VMID_MASK_SH_LIST(__SHIFT) }; static const struct dcn20_vmid_mask vmid_masks = { DCN20_VMID_MASK_SH_LIST(_MASK) }; static const struct dce110_aux_registers_shift aux_shift = { DCN_AUX_MASK_SH_LIST(__SHIFT) }; static const struct dce110_aux_registers_mask aux_mask = { DCN_AUX_MASK_SH_LIST(_MASK) }; static int map_transmitter_id_to_phy_instance( enum transmitter transmitter) { switch (transmitter) { case TRANSMITTER_UNIPHY_A: return 0; break; case TRANSMITTER_UNIPHY_B: return 1; break; case TRANSMITTER_UNIPHY_C: return 2; break; case TRANSMITTER_UNIPHY_D: return 3; break; case TRANSMITTER_UNIPHY_E: return 4; break; case TRANSMITTER_UNIPHY_F: return 5; break; default: ASSERT(0); return 0; } } #define dsc_regsDCN20(id)\ [id] = {\ DSC_REG_LIST_DCN20(id)\ } static const struct dcn20_dsc_registers dsc_regs[] = { dsc_regsDCN20(0), dsc_regsDCN20(1), dsc_regsDCN20(2), dsc_regsDCN20(3), dsc_regsDCN20(4), dsc_regsDCN20(5) }; static const struct dcn20_dsc_shift dsc_shift = { DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) }; static const struct dcn20_dsc_mask dsc_mask = { DSC_REG_LIST_SH_MASK_DCN20(_MASK) }; static const struct dccg_registers dccg_regs = { DCCG_REG_LIST_DCN2() }; static const struct dccg_shift dccg_shift = { DCCG_MASK_SH_LIST_DCN2(__SHIFT) }; static const struct dccg_mask dccg_mask = { DCCG_MASK_SH_LIST_DCN2(_MASK) }; static const struct resource_caps res_cap_nv10 = { .num_timing_generator = 6, .num_opp = 6, .num_video_plane = 6, .num_audio = 7, .num_stream_encoder = 6, .num_pll = 6, .num_dwb = 1, .num_ddc = 6, .num_vmid = 16, .num_dsc = 6, }; static const struct dc_plane_cap plane_cap = { .type = DC_PLANE_TYPE_DCN_UNIVERSAL, .per_pixel_alpha = true, .pixel_format_support = { .argb8888 = true, .nv12 = true, .fp16 = true, .p010 = true }, .max_upscale_factor = { .argb8888 = 16000, .nv12 = 16000, .fp16 = 1 }, .max_downscale_factor = { .argb8888 = 250, .nv12 = 250, .fp16 = 1 }, 16, 16 }; static const struct resource_caps res_cap_nv14 = { .num_timing_generator = 5, .num_opp = 5, .num_video_plane = 5, .num_audio = 6, .num_stream_encoder = 5, .num_pll = 5, .num_dwb = 1, .num_ddc = 5, .num_vmid = 16, .num_dsc = 5, }; static const struct dc_debug_options debug_defaults_drv = { .disable_dmcu = false, .force_abm_enable = false, .timing_trace = false, .clock_trace = true, .disable_pplib_clock_request = true, .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP, .force_single_disp_pipe_split = false, .disable_dcc = DCC_ENABLE, .vsr_support = true, .performance_trace = false, .max_downscale_src_width = 5120,/*upto 5K*/ .disable_pplib_wm_range = false, .scl_reset_length10 = true, .sanity_checks = false, .underflow_assert_delay_us = 0xFFFFFFFF, .enable_legacy_fast_update = true, .using_dml2 = false, }; void dcn20_dpp_destroy(struct dpp **dpp) { kfree(TO_DCN20_DPP(*dpp)); *dpp = NULL; } struct dpp *dcn20_dpp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_dpp *dpp = kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC); if (!dpp) return NULL; if (dpp2_construct(dpp, ctx, inst, &tf_regs[inst], &tf_shift, &tf_mask)) return &dpp->base; BREAK_TO_DEBUGGER(); kfree(dpp); return NULL; } struct input_pixel_processor *dcn20_ipp_create( struct dc_context *ctx, uint32_t inst) { struct dcn10_ipp *ipp = kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC); if (!ipp) { BREAK_TO_DEBUGGER(); return NULL; } dcn20_ipp_construct(ipp, ctx, inst, &ipp_regs[inst], &ipp_shift, &ipp_mask); return &ipp->base; } struct output_pixel_processor *dcn20_opp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_opp *opp = kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC); if (!opp) { BREAK_TO_DEBUGGER(); return NULL; } dcn20_opp_construct(opp, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask); return &opp->base; } struct dce_aux *dcn20_aux_engine_create( struct dc_context *ctx, uint32_t inst) { struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC); if (!aux_engine) return NULL; dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, &aux_engine_regs[inst], &aux_mask, &aux_shift, ctx->dc->caps.extended_aux_timeout_support); return &aux_engine->base; } #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } static const struct dce_i2c_registers i2c_hw_regs[] = { i2c_inst_regs(1), i2c_inst_regs(2), i2c_inst_regs(3), i2c_inst_regs(4), i2c_inst_regs(5), i2c_inst_regs(6), }; static const struct dce_i2c_shift i2c_shifts = { I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT) }; static const struct dce_i2c_mask i2c_masks = { I2C_COMMON_MASK_SH_LIST_DCN2(_MASK) }; struct dce_i2c_hw *dcn20_i2c_hw_create( struct dc_context *ctx, uint32_t inst) { struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC); if (!dce_i2c_hw) return NULL; dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); return dce_i2c_hw; } struct mpc *dcn20_mpc_create(struct dc_context *ctx) { struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc), GFP_ATOMIC); if (!mpc20) return NULL; dcn20_mpc_construct(mpc20, ctx, &mpc_regs, &mpc_shift, &mpc_mask, 6); return &mpc20->base; } struct hubbub *dcn20_hubbub_create(struct dc_context *ctx) { int i; struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub), GFP_ATOMIC); if (!hubbub) return NULL; hubbub2_construct(hubbub, ctx, &hubbub_reg, &hubbub_shift, &hubbub_mask); for (i = 0; i < res_cap_nv10.num_vmid; i++) { struct dcn20_vmid *vmid = &hubbub->vmid[i]; vmid->ctx = ctx; vmid->regs = &vmid_regs[i]; vmid->shifts = &vmid_shifts; vmid->masks = &vmid_masks; } return &hubbub->base; } struct timing_generator *dcn20_timing_generator_create( struct dc_context *ctx, uint32_t instance) { struct optc *tgn10 = kzalloc(sizeof(struct optc), GFP_ATOMIC); if (!tgn10) return NULL; tgn10->base.inst = instance; tgn10->base.ctx = ctx; tgn10->tg_regs = &tg_regs[instance]; tgn10->tg_shift = &tg_shift; tgn10->tg_mask = &tg_mask; dcn20_timing_generator_init(tgn10); return &tgn10->base; } static const struct encoder_feature_support link_enc_feature = { .max_hdmi_deep_color = COLOR_DEPTH_121212, .max_hdmi_pixel_clock = 600000, .hdmi_ycbcr420_supported = true, .dp_ycbcr420_supported = true, .fec_supported = true, .flags.bits.IS_HBR2_CAPABLE = true, .flags.bits.IS_HBR3_CAPABLE = true, .flags.bits.IS_TPS3_CAPABLE = true, .flags.bits.IS_TPS4_CAPABLE = true }; struct link_encoder *dcn20_link_encoder_create( struct dc_context *ctx, const struct encoder_init_data *enc_init_data) { struct dcn20_link_encoder *enc20 = kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); int link_regs_id; if (!enc20) return NULL; link_regs_id = map_transmitter_id_to_phy_instance(enc_init_data->transmitter); dcn20_link_encoder_construct(enc20, enc_init_data, &link_enc_feature, &link_enc_regs[link_regs_id], &link_enc_aux_regs[enc_init_data->channel - 1], &link_enc_hpd_regs[enc_init_data->hpd_source], &le_shift, &le_mask); return &enc20->enc10.base; } static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data) { struct dce_panel_cntl *panel_cntl = kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); if (!panel_cntl) return NULL; dce_panel_cntl_construct(panel_cntl, init_data, &panel_cntl_regs[init_data->inst], &panel_cntl_shift, &panel_cntl_mask); return &panel_cntl->base; } static struct clock_source *dcn20_clock_source_create( struct dc_context *ctx, struct dc_bios *bios, enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src) { struct dce110_clk_src *clk_src = kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC); if (!clk_src) return NULL; if (dcn20_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) { clk_src->base.dp_clk_src = dp_clk_src; return &clk_src->base; } kfree(clk_src); BREAK_TO_DEBUGGER(); return NULL; } static void read_dce_straps( struct dc_context *ctx, struct resource_straps *straps) { generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); } static struct audio *dcn20_create_audio( struct dc_context *ctx, unsigned int inst) { return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask); } struct stream_encoder *dcn20_stream_encoder_create( enum engine_id eng_id, struct dc_context *ctx) { struct dcn10_stream_encoder *enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); if (!enc1) return NULL; if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { if (eng_id >= ENGINE_ID_DIGD) eng_id++; } dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, &stream_enc_regs[eng_id], &se_shift, &se_mask); return &enc1->base; } static const struct dce_hwseq_registers hwseq_reg = { HWSEQ_DCN2_REG_LIST() }; static const struct dce_hwseq_shift hwseq_shift = { HWSEQ_DCN2_MASK_SH_LIST(__SHIFT) }; static const struct dce_hwseq_mask hwseq_mask = { HWSEQ_DCN2_MASK_SH_LIST(_MASK) }; struct dce_hwseq *dcn20_hwseq_create( struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); if (hws) { hws->ctx = ctx; hws->regs = &hwseq_reg; hws->shifts = &hwseq_shift; hws->masks = &hwseq_mask; } return hws; } static const struct resource_create_funcs res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = dcn20_create_audio, .create_stream_encoder = dcn20_stream_encoder_create, .create_hwseq = dcn20_hwseq_create, }; static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu); void dcn20_clock_source_destroy(struct clock_source **clk_src) { kfree(TO_DCE110_CLK_SRC(*clk_src)); *clk_src = NULL; } struct display_stream_compressor *dcn20_dsc_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_dsc *dsc = kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC); if (!dsc) { BREAK_TO_DEBUGGER(); return NULL; } dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); return &dsc->base; } void dcn20_dsc_destroy(struct display_stream_compressor **dsc) { kfree(container_of(*dsc, struct dcn20_dsc, base)); *dsc = NULL; } static void dcn20_resource_destruct(struct dcn20_resource_pool *pool) { unsigned int i; for (i = 0; i < pool->base.stream_enc_count; i++) { if (pool->base.stream_enc[i] != NULL) { kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); pool->base.stream_enc[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dsc; i++) { if (pool->base.dscs[i] != NULL) dcn20_dsc_destroy(&pool->base.dscs[i]); } if (pool->base.mpc != NULL) { kfree(TO_DCN20_MPC(pool->base.mpc)); pool->base.mpc = NULL; } if (pool->base.hubbub != NULL) { kfree(pool->base.hubbub); pool->base.hubbub = NULL; } for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.dpps[i] != NULL) dcn20_dpp_destroy(&pool->base.dpps[i]); if (pool->base.ipps[i] != NULL) pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); if (pool->base.hubps[i] != NULL) { kfree(TO_DCN20_HUBP(pool->base.hubps[i])); pool->base.hubps[i] = NULL; } if (pool->base.irqs != NULL) { dal_irq_service_destroy(&pool->base.irqs); } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { if (pool->base.engines[i] != NULL) dce110_engine_destroy(&pool->base.engines[i]); if (pool->base.hw_i2cs[i] != NULL) { kfree(pool->base.hw_i2cs[i]); pool->base.hw_i2cs[i] = NULL; } if (pool->base.sw_i2cs[i] != NULL) { kfree(pool->base.sw_i2cs[i]); pool->base.sw_i2cs[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_opp; i++) { if (pool->base.opps[i] != NULL) pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { if (pool->base.timing_generators[i] != NULL) { kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); pool->base.timing_generators[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dwb; i++) { if (pool->base.dwbc[i] != NULL) { kfree(TO_DCN20_DWBC(pool->base.dwbc[i])); pool->base.dwbc[i] = NULL; } if (pool->base.mcif_wb[i] != NULL) { kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i])); pool->base.mcif_wb[i] = NULL; } } for (i = 0; i < pool->base.audio_count; i++) { if (pool->base.audios[i]) dce_aud_destroy(&pool->base.audios[i]); } for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] != NULL) { dcn20_clock_source_destroy(&pool->base.clock_sources[i]); pool->base.clock_sources[i] = NULL; } } if (pool->base.dp_clock_source != NULL) { dcn20_clock_source_destroy(&pool->base.dp_clock_source); pool->base.dp_clock_source = NULL; } if (pool->base.abm != NULL) dce_abm_destroy(&pool->base.abm); if (pool->base.dmcu != NULL) dce_dmcu_destroy(&pool->base.dmcu); if (pool->base.dccg != NULL) dcn_dccg_destroy(&pool->base.dccg); if (pool->base.pp_smu != NULL) dcn20_pp_smu_destroy(&pool->base.pp_smu); if (pool->base.oem_device != NULL) { struct dc *dc = pool->base.oem_device->ctx->dc; dc->link_srv->destroy_ddc_service(&pool->base.oem_device); } } struct hubp *dcn20_hubp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_hubp *hubp2 = kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC); if (!hubp2) return NULL; if (hubp2_construct(hubp2, ctx, inst, &hubp_regs[inst], &hubp_shift, &hubp_mask)) return &hubp2->base; BREAK_TO_DEBUGGER(); kfree(hubp2); return NULL; } static void get_pixel_clock_parameters( struct pipe_ctx *pipe_ctx, struct pixel_clk_params *pixel_clk_params) { const struct dc_stream_state *stream = pipe_ctx->stream; struct pipe_ctx *odm_pipe; int opp_cnt = 1; struct dc_link *link = stream->link; struct link_encoder *link_enc = NULL; struct dc *dc = pipe_ctx->stream->ctx->dc; struct dce_hwseq *hws = dc->hwseq; for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) opp_cnt++; pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz; link_enc = link_enc_cfg_get_link_enc(link); if (link_enc) pixel_clk_params->encoder_object_id = link_enc->id; pixel_clk_params->signal_type = pipe_ctx->stream->signal; pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1; /* TODO: un-hardcode*/ /* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */ pixel_clk_params->requested_sym_clk = LINK_RATE_LOW * LINK_RATE_REF_FREQ_IN_KHZ; pixel_clk_params->flags.ENABLE_SS = 0; pixel_clk_params->color_depth = stream->timing.display_color_depth; pixel_clk_params->flags.DISPLAY_BLANKED = 1; pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding; if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) pixel_clk_params->color_depth = COLOR_DEPTH_888; if (opp_cnt == 4) pixel_clk_params->requested_pix_clk_100hz /= 4; else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2) pixel_clk_params->requested_pix_clk_100hz /= 2; else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) { if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx)) pixel_clk_params->requested_pix_clk_100hz /= 2; } if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) pixel_clk_params->requested_pix_clk_100hz *= 2; } static void build_clamping_params(struct dc_stream_state *stream) { stream->clamping.clamping_level = CLAMPING_FULL_RANGE; stream->clamping.c_depth = stream->timing.display_color_depth; stream->clamping.pixel_encoding = stream->timing.pixel_encoding; } void dcn20_build_pipe_pix_clk_params(struct pipe_ctx *pipe_ctx) { get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params); pipe_ctx->clock_source->funcs->get_pix_clk_dividers( pipe_ctx->clock_source, &pipe_ctx->stream_res.pix_clk_params, &pipe_ctx->pll_settings); } static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx) { struct resource_pool *pool = pipe_ctx->stream->ctx->dc->res_pool; if (pool->funcs->build_pipe_pix_clk_params) { pool->funcs->build_pipe_pix_clk_params(pipe_ctx); } else { dcn20_build_pipe_pix_clk_params(pipe_ctx); } pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding; resource_build_bit_depth_reduction_params(pipe_ctx->stream, &pipe_ctx->stream->bit_depth_params); build_clamping_params(pipe_ctx->stream); return DC_OK; } enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream) { enum dc_status status = DC_OK; struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream); if (!pipe_ctx) return DC_ERROR_UNEXPECTED; status = build_pipe_hw_param(pipe_ctx); return status; } void dcn20_acquire_dsc(const struct dc *dc, struct resource_context *res_ctx, struct display_stream_compressor **dsc, int pipe_idx) { int i; const struct resource_pool *pool = dc->res_pool; struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc; ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */ *dsc = NULL; /* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */ if (pool->res_cap->num_dsc == pool->res_cap->num_opp) { *dsc = pool->dscs[pipe_idx]; res_ctx->is_dsc_acquired[pipe_idx] = true; return; } /* Return old DSC to avoid the need for re-programming */ if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) { *dsc = dsc_old; res_ctx->is_dsc_acquired[dsc_old->inst] = true; return ; } /* Find first free DSC */ for (i = 0; i < pool->res_cap->num_dsc; i++) if (!res_ctx->is_dsc_acquired[i]) { *dsc = pool->dscs[i]; res_ctx->is_dsc_acquired[i] = true; break; } } void dcn20_release_dsc(struct resource_context *res_ctx, const struct resource_pool *pool, struct display_stream_compressor **dsc) { int i; for (i = 0; i < pool->res_cap->num_dsc; i++) if (pool->dscs[i] == *dsc) { res_ctx->is_dsc_acquired[i] = false; *dsc = NULL; break; } } enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc, struct dc_state *dc_ctx, struct dc_stream_state *dc_stream) { enum dc_status result = DC_OK; int i; /* Get a DSC if required and available */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i]; if (pipe_ctx->top_pipe) continue; if (pipe_ctx->stream != dc_stream) continue; if (pipe_ctx->stream_res.dsc) continue; dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i); /* The number of DSCs can be less than the number of pipes */ if (!pipe_ctx->stream_res.dsc) { result = DC_NO_DSC_RESOURCE; } break; } return result; } static enum dc_status remove_dsc_from_stream_resource(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) { struct pipe_ctx *pipe_ctx = NULL; int i; for (i = 0; i < MAX_PIPES; i++) { if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) { pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream_res.dsc) dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc); } } if (!pipe_ctx) return DC_ERROR_UNEXPECTED; else return DC_OK; } enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) { enum dc_status result = DC_ERROR_UNEXPECTED; result = resource_map_pool_resources(dc, new_ctx, dc_stream); if (result == DC_OK) result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream); /* Get a DSC if required and available */ if (result == DC_OK && dc_stream->timing.flags.DSC) result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream); if (result == DC_OK) result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream); return result; } enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) { enum dc_status result = DC_OK; result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream); return result; } /** * dcn20_split_stream_for_odm - Check if stream can be splited for ODM * * @dc: DC object with resource pool info required for pipe split * @res_ctx: Persistent state of resources * @prev_odm_pipe: Reference to the previous ODM pipe * @next_odm_pipe: Reference to the next ODM pipe * * This function takes a logically active pipe and a logically free pipe and * halves all the scaling parameters that need to be halved while populating * the free pipe with the required resources and configuring the next/previous * ODM pipe pointers. * * Return: * Return true if split stream for ODM is possible, otherwise, return false. */ bool dcn20_split_stream_for_odm( const struct dc *dc, struct resource_context *res_ctx, struct pipe_ctx *prev_odm_pipe, struct pipe_ctx *next_odm_pipe) { int pipe_idx = next_odm_pipe->pipe_idx; const struct resource_pool *pool = dc->res_pool; *next_odm_pipe = *prev_odm_pipe; next_odm_pipe->pipe_idx = pipe_idx; next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx]; next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx]; next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx]; next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx]; next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx]; next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst; next_odm_pipe->stream_res.dsc = NULL; if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) { next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe; next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe; } if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) { prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe; next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe; } if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) { prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe; next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe; } prev_odm_pipe->next_odm_pipe = next_odm_pipe; next_odm_pipe->prev_odm_pipe = prev_odm_pipe; if (prev_odm_pipe->plane_state) { struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data; int new_width; /* HACTIVE halved for odm combine */ sd->h_active /= 2; /* Calculate new vp and recout for left pipe */ /* Need at least 16 pixels width per side */ if (sd->recout.x + 16 >= sd->h_active) return false; new_width = sd->h_active - sd->recout.x; sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( sd->ratios.horz, sd->recout.width - new_width)); sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( sd->ratios.horz_c, sd->recout.width - new_width)); sd->recout.width = new_width; /* Calculate new vp and recout for right pipe */ sd = &next_odm_pipe->plane_res.scl_data; /* HACTIVE halved for odm combine */ sd->h_active /= 2; /* Need at least 16 pixels width per side */ if (new_width <= 16) return false; new_width = sd->recout.width + sd->recout.x - sd->h_active; sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( sd->ratios.horz, sd->recout.width - new_width)); sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( sd->ratios.horz_c, sd->recout.width - new_width)); sd->recout.width = new_width; sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int( sd->ratios.horz, sd->h_active - sd->recout.x)); sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int( sd->ratios.horz_c, sd->h_active - sd->recout.x)); sd->recout.x = 0; } if (!next_odm_pipe->top_pipe) next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx]; else next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp; if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) { dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx); ASSERT(next_odm_pipe->stream_res.dsc); if (next_odm_pipe->stream_res.dsc == NULL) return false; } return true; } void dcn20_split_stream_for_mpc( struct resource_context *res_ctx, const struct resource_pool *pool, struct pipe_ctx *primary_pipe, struct pipe_ctx *secondary_pipe) { int pipe_idx = secondary_pipe->pipe_idx; struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe; *secondary_pipe = *primary_pipe; secondary_pipe->bottom_pipe = sec_bot_pipe; secondary_pipe->pipe_idx = pipe_idx; secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst; secondary_pipe->stream_res.dsc = NULL; if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) { ASSERT(!secondary_pipe->bottom_pipe); secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe; secondary_pipe->bottom_pipe->top_pipe = secondary_pipe; } primary_pipe->bottom_pipe = secondary_pipe; secondary_pipe->top_pipe = primary_pipe; ASSERT(primary_pipe->plane_state); } unsigned int dcn20_calc_max_scaled_time( unsigned int time_per_pixel, enum mmhubbub_wbif_mode mode, unsigned int urgent_watermark) { unsigned int time_per_byte = 0; unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */ unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */ unsigned int small_free_entry, max_free_entry; unsigned int buf_lh_capability; unsigned int max_scaled_time; if (mode == PACKED_444) /* packed mode */ time_per_byte = time_per_pixel/4; else if (mode == PLANAR_420_8BPC) time_per_byte = time_per_pixel; else if (mode == PLANAR_420_10BPC) /* p010 */ time_per_byte = time_per_pixel * 819/1024; if (time_per_byte == 0) time_per_byte = 1; small_free_entry = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry; max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry; buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */ max_scaled_time = buf_lh_capability - urgent_watermark; return max_scaled_time; } void dcn20_set_mcif_arb_params( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt) { enum mmhubbub_wbif_mode wbif_mode; struct mcif_arb_params *wb_arb_params; int i, j, dwb_pipe; /* Writeback MCIF_WB arbitration parameters */ dwb_pipe = 0; for (i = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; for (j = 0; j < MAX_DWB_PIPES; j++) { if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false) continue; //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) { if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC) wbif_mode = PLANAR_420_8BPC; else wbif_mode = PLANAR_420_10BPC; } else wbif_mode = PACKED_444; DC_FP_START(); dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i); DC_FP_END(); wb_arb_params->slice_lines = 32; wb_arb_params->arbitration_slice = 2; wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel, wbif_mode, wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ dwb_pipe++; if (dwb_pipe >= MAX_DWB_PIPES) return; } if (dwb_pipe >= MAX_DWB_PIPES) return; } } bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx) { int i; /* Validate DSC config, dsc count validation is already done */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; struct dc_stream_state *stream = pipe_ctx->stream; struct dsc_config dsc_cfg; struct pipe_ctx *odm_pipe; int opp_cnt = 1; for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) opp_cnt++; /* Only need to validate top pipe */ if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC) continue; dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt; dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom; dsc_cfg.pixel_encoding = stream->timing.pixel_encoding; dsc_cfg.color_depth = stream->timing.display_color_depth; dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false; dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg; dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt; if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg)) return false; } return true; } struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc, struct resource_context *res_ctx, const struct resource_pool *pool, const struct pipe_ctx *primary_pipe) { struct pipe_ctx *secondary_pipe = NULL; if (dc && primary_pipe) { int j; int preferred_pipe_idx = 0; /* first check the prev dc state: * if this primary pipe has a bottom pipe in prev. state * and if the bottom pipe is still available (which it should be), * pick that pipe as secondary * Same logic applies for ODM pipes */ if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) { preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx; if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; secondary_pipe->pipe_idx = preferred_pipe_idx; } } if (secondary_pipe == NULL && dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) { preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx; if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; secondary_pipe->pipe_idx = preferred_pipe_idx; } } /* * if this primary pipe does not have a bottom pipe in prev. state * start backward and find a pipe that did not used to be a bottom pipe in * prev. dc state. This way we make sure we keep the same assignment as * last state and will not have to reprogram every pipe */ if (secondary_pipe == NULL) { for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL && dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) { preferred_pipe_idx = j; if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; secondary_pipe->pipe_idx = preferred_pipe_idx; break; } } } } /* * We should never hit this assert unless assignments are shuffled around * if this happens we will prob. hit a vsync tdr */ ASSERT(secondary_pipe); /* * search backwards for the second pipe to keep pipe * assignment more consistent */ if (secondary_pipe == NULL) { for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { preferred_pipe_idx = j; if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; secondary_pipe->pipe_idx = preferred_pipe_idx; break; } } } } return secondary_pipe; } void dcn20_merge_pipes_for_validate( struct dc *dc, struct dc_state *context) { int i; /* merge previously split odm pipes since mode support needs to make the decision */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *odm_pipe = pipe->next_odm_pipe; if (pipe->prev_odm_pipe) continue; pipe->next_odm_pipe = NULL; while (odm_pipe) { struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe; odm_pipe->plane_state = NULL; odm_pipe->stream = NULL; odm_pipe->top_pipe = NULL; odm_pipe->bottom_pipe = NULL; odm_pipe->prev_odm_pipe = NULL; odm_pipe->next_odm_pipe = NULL; if (odm_pipe->stream_res.dsc) dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc); /* Clear plane_res and stream_res */ memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res)); memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res)); odm_pipe = next_odm_pipe; } if (pipe->plane_state) resource_build_scaling_params(pipe); } /* merge previously mpc split pipes since mode support needs to make the decision */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) continue; pipe->bottom_pipe = hsplit_pipe->bottom_pipe; if (hsplit_pipe->bottom_pipe) hsplit_pipe->bottom_pipe->top_pipe = pipe; hsplit_pipe->plane_state = NULL; hsplit_pipe->stream = NULL; hsplit_pipe->top_pipe = NULL; hsplit_pipe->bottom_pipe = NULL; /* Clear plane_res and stream_res */ memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res)); memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res)); if (pipe->plane_state) resource_build_scaling_params(pipe); } } int dcn20_validate_apply_pipe_split_flags( struct dc *dc, struct dc_state *context, int vlevel, int *split, bool *merge) { int i, pipe_idx, vlevel_split; int plane_count = 0; bool force_split = false; bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID; struct vba_vars_st *v = &context->bw_ctx.dml.vba; int max_mpc_comb = v->maxMpcComb; if (context->stream_count > 1) { if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP) avoid_split = true; } else if (dc->debug.force_single_disp_pipe_split) force_split = true; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; /** * Workaround for avoiding pipe-split in cases where we'd split * planes that are too small, resulting in splits that aren't * valid for the scaler. */ if (pipe->plane_state && (pipe->plane_state->dst_rect.width <= 16 || pipe->plane_state->dst_rect.height <= 16 || pipe->plane_state->src_rect.width <= 16 || pipe->plane_state->src_rect.height <= 16)) avoid_split = true; /* TODO: fix dc bugs and remove this split threshold thing */ if (pipe->stream && !pipe->prev_odm_pipe && (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state)) ++plane_count; } if (plane_count > dc->res_pool->pipe_count / 2) avoid_split = true; /* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct dc_crtc_timing timing; if (!pipe->stream) continue; else { timing = pipe->stream->timing; if (timing.h_border_left + timing.h_border_right + timing.v_border_top + timing.v_border_bottom > 0) { avoid_split = true; break; } } } /* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */ if (avoid_split) { for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++) if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 && v->ModeSupport[vlevel][0]) break; /* Impossible to not split this pipe */ if (vlevel > context->bw_ctx.dml.soc.num_states) vlevel = vlevel_split; else max_mpc_comb = 0; pipe_idx++; } v->maxMpcComb = max_mpc_comb; } /* Split loop sets which pipe should be split based on dml outputs and dc flags */ for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; int pipe_plane = v->pipe_plane[pipe_idx]; bool split4mpc = context->stream_count == 1 && plane_count == 1 && dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4; if (!context->res_ctx.pipe_ctx[i].stream) continue; if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4) split[i] = 4; else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2) split[i] = 2; if ((pipe->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE || pipe->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) && (pipe->stream->timing.timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM || pipe->stream->timing.timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE)) split[i] = 2; if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) { split[i] = 2; v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1; } if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) { split[i] = 4; v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1; } /*420 format workaround*/ if (pipe->stream->timing.h_addressable > 7680 && pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) { split[i] = 4; } v->ODMCombineEnabled[pipe_plane] = v->ODMCombineEnablePerState[vlevel][pipe_plane]; if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) { if (resource_get_mpc_slice_count(pipe) == 2) { /*If need split for mpc but 2 way split already*/ if (split[i] == 4) split[i] = 2; /* 2 -> 4 MPC */ else if (split[i] == 2) split[i] = 0; /* 2 -> 2 MPC */ else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) merge[i] = true; /* 2 -> 1 MPC */ } else if (resource_get_mpc_slice_count(pipe) == 4) { /*If need split for mpc but 4 way split already*/ if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe) || !pipe->bottom_pipe)) { merge[i] = true; /* 4 -> 2 MPC */ } else if (split[i] == 0 && pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) merge[i] = true; /* 4 -> 1 MPC */ split[i] = 0; } else if (resource_get_odm_slice_count(pipe) > 1) { /* ODM -> MPC transition */ if (pipe->prev_odm_pipe) { split[i] = 0; merge[i] = true; } } } else { if (resource_get_odm_slice_count(pipe) == 2) { /*If need split for odm but 2 way split already*/ if (split[i] == 4) split[i] = 2; /* 2 -> 4 ODM */ else if (split[i] == 2) split[i] = 0; /* 2 -> 2 ODM */ else if (pipe->prev_odm_pipe) { ASSERT(0); /* NOT expected yet */ merge[i] = true; /* exit ODM */ } } else if (resource_get_odm_slice_count(pipe) == 4) { /*If need split for odm but 4 way split already*/ if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe) || !pipe->next_odm_pipe)) { merge[i] = true; /* 4 -> 2 ODM */ } else if (split[i] == 0 && pipe->prev_odm_pipe) { ASSERT(0); /* NOT expected yet */ merge[i] = true; /* exit ODM */ } split[i] = 0; } else if (resource_get_mpc_slice_count(pipe) > 1) { /* MPC -> ODM transition */ ASSERT(0); /* NOT expected yet */ if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { split[i] = 0; merge[i] = true; } } } /* Adjust dppclk when split is forced, do not bother with dispclk */ if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) { DC_FP_START(); dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false); DC_FP_END(); } pipe_idx++; } return vlevel; } bool dcn20_fast_validate_bw( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int *pipe_cnt_out, int *pipe_split_from, int *vlevel_out, bool fast_validate) { bool out = false; int split[MAX_PIPES] = { 0 }; int pipe_cnt, i, pipe_idx, vlevel; ASSERT(pipes); if (!pipes) return false; dcn20_merge_pipes_for_validate(dc, context); DC_FP_START(); pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); DC_FP_END(); *pipe_cnt_out = pipe_cnt; if (!pipe_cnt) { out = true; goto validate_out; } vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); if (vlevel > context->bw_ctx.dml.soc.num_states) goto validate_fail; vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL); /*initialize pipe_just_split_from to invalid idx*/ for (i = 0; i < MAX_PIPES; i++) pipe_split_from[i] = -1; for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; if (!pipe->stream || pipe_split_from[i] >= 0) continue; pipe_idx++; if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); ASSERT(hsplit_pipe); if (!dcn20_split_stream_for_odm( dc, &context->res_ctx, pipe, hsplit_pipe)) goto validate_fail; pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; dcn20_build_mapped_resource(dc, context, pipe->stream); } if (!pipe->plane_state) continue; /* Skip 2nd half of already split pipe */ if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state) continue; /* We do not support mpo + odm at the moment */ if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) goto validate_fail; if (split[i] == 2) { if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) { /* pipe not split previously needs split */ hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); ASSERT(hsplit_pipe); if (!hsplit_pipe) { DC_FP_START(); dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true); DC_FP_END(); continue; } if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { if (!dcn20_split_stream_for_odm( dc, &context->res_ctx, pipe, hsplit_pipe)) goto validate_fail; dcn20_build_mapped_resource(dc, context, pipe->stream); } else { dcn20_split_stream_for_mpc( &context->res_ctx, dc->res_pool, pipe, hsplit_pipe); resource_build_scaling_params(pipe); resource_build_scaling_params(hsplit_pipe); } pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; } } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) { /* merge should already have been done */ ASSERT(0); } } /* Actual dsc count per stream dsc validation*/ if (!dcn20_validate_dsc(dc, context)) { context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; goto validate_fail; } *vlevel_out = vlevel; out = true; goto validate_out; validate_fail: out = false; validate_out: return out; } bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context, bool fast_validate) { bool voltage_supported; display_e2e_pipe_params_st *pipes; pipes = kcalloc(dc->res_pool->pipe_count, sizeof(display_e2e_pipe_params_st), GFP_KERNEL); if (!pipes) return false; DC_FP_START(); voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate, pipes); DC_FP_END(); kfree(pipes); return voltage_supported; } struct pipe_ctx *dcn20_acquire_free_pipe_for_layer( const struct dc_state *cur_ctx, struct dc_state *new_ctx, const struct resource_pool *pool, const struct pipe_ctx *opp_head) { struct resource_context *res_ctx = &new_ctx->res_ctx; struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(res_ctx, opp_head->stream); struct pipe_ctx *sec_dpp_pipe = resource_find_free_secondary_pipe_legacy(res_ctx, pool, otg_master); ASSERT(otg_master); if (!sec_dpp_pipe) return NULL; sec_dpp_pipe->stream = opp_head->stream; sec_dpp_pipe->stream_res.tg = opp_head->stream_res.tg; sec_dpp_pipe->stream_res.opp = opp_head->stream_res.opp; sec_dpp_pipe->plane_res.hubp = pool->hubps[sec_dpp_pipe->pipe_idx]; sec_dpp_pipe->plane_res.ipp = pool->ipps[sec_dpp_pipe->pipe_idx]; sec_dpp_pipe->plane_res.dpp = pool->dpps[sec_dpp_pipe->pipe_idx]; sec_dpp_pipe->plane_res.mpcc_inst = pool->dpps[sec_dpp_pipe->pipe_idx]->inst; return sec_dpp_pipe; } bool dcn20_get_dcc_compression_cap(const struct dc *dc, const struct dc_dcc_surface_param *input, struct dc_surface_dcc_cap *output) { return dc->res_pool->hubbub->funcs->get_dcc_compression_cap( dc->res_pool->hubbub, input, output); } static void dcn20_destroy_resource_pool(struct resource_pool **pool) { struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool); dcn20_resource_destruct(dcn20_pool); kfree(dcn20_pool); *pool = NULL; } static struct dc_cap_funcs cap_funcs = { .get_dcc_compression_cap = dcn20_get_dcc_compression_cap }; enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state) { enum surface_pixel_format surf_pix_format = plane_state->format; unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format); plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_S; if (bpp == 64) plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_D; return DC_OK; } void dcn20_release_pipe(struct dc_state *context, struct pipe_ctx *pipe, const struct resource_pool *pool) { if (resource_is_pipe_type(pipe, OPP_HEAD) && pipe->stream_res.dsc) dcn20_release_dsc(&context->res_ctx, pool, &pipe->stream_res.dsc); memset(pipe, 0, sizeof(*pipe)); } static const struct resource_funcs dcn20_res_pool_funcs = { .destroy = dcn20_destroy_resource_pool, .link_enc_create = dcn20_link_encoder_create, .panel_cntl_create = dcn20_panel_cntl_create, .validate_bandwidth = dcn20_validate_bandwidth, .acquire_free_pipe_as_secondary_dpp_pipe = dcn20_acquire_free_pipe_for_layer, .release_pipe = dcn20_release_pipe, .add_stream_to_ctx = dcn20_add_stream_to_ctx, .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context, .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, .set_mcif_arb_params = dcn20_set_mcif_arb_params, .populate_dml_pipes = dcn20_populate_dml_pipes_from_context, .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link }; bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t pipe_count = pool->res_cap->num_dwb; for (i = 0; i < pipe_count; i++) { struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc), GFP_KERNEL); if (!dwbc20) { dm_error("DC: failed to create dwbc20!\n"); return false; } dcn20_dwbc_construct(dwbc20, ctx, &dwbc20_regs[i], &dwbc20_shift, &dwbc20_mask, i); pool->dwbc[i] = &dwbc20->base; } return true; } bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t pipe_count = pool->res_cap->num_dwb; ASSERT(pipe_count > 0); for (i = 0; i < pipe_count; i++) { struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub), GFP_KERNEL); if (!mcif_wb20) { dm_error("DC: failed to create mcif_wb20!\n"); return false; } dcn20_mmhubbub_construct(mcif_wb20, ctx, &mcif_wb20_regs[i], &mcif_wb20_shift, &mcif_wb20_mask, i); pool->mcif_wb[i] = &mcif_wb20->base; } return true; } static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx) { struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC); if (!pp_smu) return pp_smu; dm_pp_get_funcs(ctx, pp_smu); if (pp_smu->ctx.ver != PP_SMU_VER_NV) pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs)); return pp_smu; } static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu) { if (pp_smu && *pp_smu) { kfree(*pp_smu); *pp_smu = NULL; } } static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb( uint32_t hw_internal_rev) { if (ASICREV_IS_NAVI14_M(hw_internal_rev)) return &dcn2_0_nv14_soc; if (ASICREV_IS_NAVI12_P(hw_internal_rev)) return &dcn2_0_nv12_soc; return &dcn2_0_soc; } static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params( uint32_t hw_internal_rev) { /* NV14 */ if (ASICREV_IS_NAVI14_M(hw_internal_rev)) return &dcn2_0_nv14_ip; /* NV12 and NV10 */ return &dcn2_0_ip; } static enum dml_project get_dml_project_version(uint32_t hw_internal_rev) { return DML_PROJECT_NAVI10v2; } static bool init_soc_bounding_box(struct dc *dc, struct dcn20_resource_pool *pool) { struct _vcs_dpi_soc_bounding_box_st *loaded_bb = get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev); struct _vcs_dpi_ip_params_st *loaded_ip = get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev); DC_LOGGER_INIT(dc->ctx->logger); if (pool->base.pp_smu) { struct pp_smu_nv_clock_table max_clocks = {0}; unsigned int uclk_states[8] = {0}; unsigned int num_states = 0; enum pp_smu_status status; bool clock_limits_available = false; bool uclk_states_available = false; if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) { status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states); uclk_states_available = (status == PP_SMU_RESULT_OK); } if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) { status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks); /* SMU cannot set DCF clock to anything equal to or higher than SOC clock */ if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz) max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000; clock_limits_available = (status == PP_SMU_RESULT_OK); } if (clock_limits_available && uclk_states_available && num_states) { DC_FP_START(); dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states); DC_FP_END(); } else if (clock_limits_available) { DC_FP_START(); dcn20_cap_soc_clocks(loaded_bb, max_clocks); DC_FP_END(); } } loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; loaded_ip->max_num_dpp = pool->base.pipe_count; DC_FP_START(); dcn20_patch_bounding_box(dc, loaded_bb); DC_FP_END(); return true; } static bool dcn20_resource_construct( uint8_t num_virtual_links, struct dc *dc, struct dcn20_resource_pool *pool) { int i; struct dc_context *ctx = dc->ctx; struct irq_service_init_data init_data; struct ddc_service_init_data ddc_init_data = {0}; struct _vcs_dpi_soc_bounding_box_st *loaded_bb = get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev); struct _vcs_dpi_ip_params_st *loaded_ip = get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev); enum dml_project dml_project_version = get_dml_project_version(ctx->asic_id.hw_internal_rev); ctx->dc_bios->regs = &bios_regs; pool->base.funcs = &dcn20_res_pool_funcs; if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { pool->base.res_cap = &res_cap_nv14; pool->base.pipe_count = 5; pool->base.mpcc_count = 5; } else { pool->base.res_cap = &res_cap_nv10; pool->base.pipe_count = 6; pool->base.mpcc_count = 6; } /************************************************* * Resource + asic cap harcoding * *************************************************/ pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; dc->caps.max_downscale_ratio = 200; dc->caps.i2c_speed_in_khz = 100; dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ dc->caps.max_cursor_size = 256; dc->caps.min_horizontal_blanking_period = 80; dc->caps.dmdata_alloc_size = 2048; dc->caps.max_slave_planes = 1; dc->caps.max_slave_yuv_planes = 1; dc->caps.max_slave_rgb_planes = 1; dc->caps.post_blend_color_processing = true; dc->caps.force_dp_tps4_for_cp2520 = true; dc->caps.extended_aux_timeout_support = true; dc->caps.dmcub_support = true; /* Color pipeline capabilities */ dc->caps.color.dpp.dcn_arch = 1; dc->caps.color.dpp.input_lut_shared = 0; dc->caps.color.dpp.icsc = 1; dc->caps.color.dpp.dgam_ram = 1; dc->caps.color.dpp.dgam_rom_caps.srgb = 1; dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0; dc->caps.color.dpp.dgam_rom_caps.pq = 0; dc->caps.color.dpp.dgam_rom_caps.hlg = 0; dc->caps.color.dpp.post_csc = 0; dc->caps.color.dpp.gamma_corr = 0; dc->caps.color.dpp.dgam_rom_for_yuv = 1; dc->caps.color.dpp.hw_3d_lut = 1; dc->caps.color.dpp.ogam_ram = 1; // no OGAM ROM on DCN2, only MPC ROM dc->caps.color.dpp.ogam_rom_caps.srgb = 0; dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.dpp.ogam_rom_caps.pq = 0; dc->caps.color.dpp.ogam_rom_caps.hlg = 0; dc->caps.color.dpp.ocsc = 0; dc->caps.color.mpc.gamut_remap = 0; dc->caps.color.mpc.num_3dluts = 0; dc->caps.color.mpc.shared_3d_lut = 0; dc->caps.color.mpc.ogam_ram = 1; dc->caps.color.mpc.ogam_rom_caps.srgb = 0; dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.mpc.ogam_rom_caps.pq = 0; dc->caps.color.mpc.ogam_rom_caps.hlg = 0; dc->caps.color.mpc.ocsc = 1; dc->caps.dp_hdmi21_pcon_support = true; if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) dc->debug = debug_defaults_drv; //dcn2.0x dc->work_arounds.dedcn20_305_wa = true; // Init the vm_helper if (dc->vm_helper) vm_helper_init(dc->vm_helper, 16); /************************************************* * Create resources * *************************************************/ pool->base.clock_sources[DCN20_CLK_SRC_PLL0] = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL0, &clk_src_regs[0], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL1] = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL1, &clk_src_regs[1], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL2] = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL2, &clk_src_regs[2], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL3] = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL3, &clk_src_regs[3], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL4] = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL4, &clk_src_regs[4], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL5] = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL5, &clk_src_regs[5], false); pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL; /* todo: not reuse phy_pll registers */ pool->base.dp_clock_source = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_ID_DP_DTO, &clk_src_regs[0], true); for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] == NULL) { dm_error("DC: failed to create clock sources!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } } pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); if (pool->base.dccg == NULL) { dm_error("DC: failed to create dccg!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } pool->base.dmcu = dcn20_dmcu_create(ctx, &dmcu_regs, &dmcu_shift, &dmcu_mask); if (pool->base.dmcu == NULL) { dm_error("DC: failed to create dmcu!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } pool->base.abm = dce_abm_create(ctx, &abm_regs, &abm_shift, &abm_mask); if (pool->base.abm == NULL) { dm_error("DC: failed to create abm!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } pool->base.pp_smu = dcn20_pp_smu_create(ctx); if (!init_soc_bounding_box(dc, pool)) { dm_error("DC: failed to initialize soc bounding box!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version); if (!dc->debug.disable_pplib_wm_range) { struct pp_smu_wm_range_sets ranges = {0}; int i = 0; ranges.num_reader_wm_sets = 0; if (loaded_bb->num_states == 1) { ranges.reader_wm_sets[0].wm_inst = i; ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; ranges.num_reader_wm_sets = 1; } else if (loaded_bb->num_states > 1) { for (i = 0; i < 4 && i < loaded_bb->num_states; i++) { ranges.reader_wm_sets[i].wm_inst = i; ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; DC_FP_START(); dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb); DC_FP_END(); ranges.num_reader_wm_sets = i + 1; } ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; } ranges.num_writer_wm_sets = 1; ranges.writer_wm_sets[0].wm_inst = 0; ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */ if (pool->base.pp_smu->nv_funcs.set_wm_ranges) pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges); } init_data.ctx = dc->ctx; pool->base.irqs = dal_irq_service_dcn20_create(&init_data); if (!pool->base.irqs) goto create_fail; /* mem input -> ipp -> dpp -> opp -> TG */ for (i = 0; i < pool->base.pipe_count; i++) { pool->base.hubps[i] = dcn20_hubp_create(ctx, i); if (pool->base.hubps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create memory input!\n"); goto create_fail; } pool->base.ipps[i] = dcn20_ipp_create(ctx, i); if (pool->base.ipps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create input pixel processor!\n"); goto create_fail; } pool->base.dpps[i] = dcn20_dpp_create(ctx, i); if (pool->base.dpps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create dpps!\n"); goto create_fail; } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { pool->base.engines[i] = dcn20_aux_engine_create(ctx, i); if (pool->base.engines[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create aux engine!!\n"); goto create_fail; } pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i); if (pool->base.hw_i2cs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create hw i2c!!\n"); goto create_fail; } pool->base.sw_i2cs[i] = NULL; } for (i = 0; i < pool->base.res_cap->num_opp; i++) { pool->base.opps[i] = dcn20_opp_create(ctx, i); if (pool->base.opps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create output pixel processor!\n"); goto create_fail; } } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { pool->base.timing_generators[i] = dcn20_timing_generator_create( ctx, i); if (pool->base.timing_generators[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create tg!\n"); goto create_fail; } } pool->base.timing_generator_count = i; pool->base.mpc = dcn20_mpc_create(ctx); if (pool->base.mpc == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mpc!\n"); goto create_fail; } pool->base.hubbub = dcn20_hubbub_create(ctx); if (pool->base.hubbub == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create hubbub!\n"); goto create_fail; } for (i = 0; i < pool->base.res_cap->num_dsc; i++) { pool->base.dscs[i] = dcn20_dsc_create(ctx, i); if (pool->base.dscs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create display stream compressor %d!\n", i); goto create_fail; } } if (!dcn20_dwbc_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create dwbc!\n"); goto create_fail; } if (!dcn20_mmhubbub_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mcif_wb!\n"); goto create_fail; } if (!resource_construct(num_virtual_links, dc, &pool->base, &res_create_funcs)) goto create_fail; dcn20_hw_sequencer_construct(dc); // IF NV12, set PG function pointer to NULL. It's not that // PG isn't supported for NV12, it's that we don't want to // program the registers because that will cause more power // to be consumed. We could have created dcn20_init_hw to get // the same effect by checking ASIC rev, but there was a // request at some point to not check ASIC rev on hw sequencer. if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) { dc->hwseq->funcs.enable_power_gating_plane = NULL; dc->debug.disable_dpp_power_gate = true; dc->debug.disable_hubp_power_gate = true; } dc->caps.max_planes = pool->base.pipe_count; for (i = 0; i < dc->caps.max_planes; ++i) dc->caps.planes[i] = plane_cap; dc->cap_funcs = cap_funcs; if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { ddc_init_data.ctx = dc->ctx; ddc_init_data.link = NULL; ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; ddc_init_data.id.enum_id = 0; ddc_init_data.id.type = OBJECT_TYPE_GENERIC; pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data); } else { pool->base.oem_device = NULL; } return true; create_fail: dcn20_resource_destruct(pool); return false; } struct resource_pool *dcn20_create_resource_pool( const struct dc_init_data *init_data, struct dc *dc) { struct dcn20_resource_pool *pool = kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC); if (!pool) return NULL; if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool)) return &pool->base; BREAK_TO_DEBUGGER(); kfree(pool); return NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1