Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Aurabindo Pillai | 8259 | 65.49% | 10 | 7.87% |
Wenjing Liu | 1013 | 8.03% | 15 | 11.81% |
rodrigosiqueira | 872 | 6.91% | 6 | 4.72% |
Samson Tam | 663 | 5.26% | 4 | 3.15% |
Harry Wentland | 343 | 2.72% | 5 | 3.94% |
Qingqing Zhuo | 300 | 2.38% | 1 | 0.79% |
Bhawanpreet Lakha | 211 | 1.67% | 3 | 2.36% |
Alex Deucher | 178 | 1.41% | 2 | 1.57% |
Alvin lee | 163 | 1.29% | 31 | 24.41% |
Dillon Varone | 161 | 1.28% | 9 | 7.09% |
Jun Lei | 91 | 0.72% | 5 | 3.94% |
Joshua Aberback | 80 | 0.63% | 5 | 3.94% |
Yue Hin Lau | 63 | 0.50% | 1 | 0.79% |
Ao Zhong | 37 | 0.29% | 1 | 0.79% |
Hersen Wu | 27 | 0.21% | 3 | 2.36% |
Vladimir Stempen | 27 | 0.21% | 1 | 0.79% |
Leo (Hao) Chen | 16 | 0.13% | 1 | 0.79% |
Chris Park | 15 | 0.12% | 1 | 0.79% |
Austin Zheng | 14 | 0.11% | 1 | 0.79% |
Eric Yang | 13 | 0.10% | 1 | 0.79% |
Dmytro Laktyushkin | 8 | 0.06% | 3 | 2.36% |
Hamza Mahfooz | 8 | 0.06% | 2 | 1.57% |
Sohaib Nadeem | 7 | 0.06% | 1 | 0.79% |
Jerry (Fangzhi) Zuo | 7 | 0.06% | 2 | 1.57% |
Anthony Koo | 5 | 0.04% | 1 | 0.79% |
LongJun Tang | 5 | 0.04% | 1 | 0.79% |
George Shen | 5 | 0.04% | 1 | 0.79% |
Jasdeep Dhillon | 4 | 0.03% | 1 | 0.79% |
Yongqiang Sun | 4 | 0.03% | 1 | 0.79% |
Mounika Adhuri | 3 | 0.02% | 2 | 1.57% |
Martin Leung | 3 | 0.02% | 2 | 1.57% |
Sung Joon Kim | 2 | 0.02% | 1 | 0.79% |
Meera Patel | 2 | 0.02% | 1 | 0.79% |
Charlene Liu | 1 | 0.01% | 1 | 0.79% |
Julian Parkin | 1 | 0.01% | 1 | 0.79% |
Total | 12611 | 127 |
// SPDX-License-Identifier: MIT /* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dc.h" #include "dcn32/dcn32_init.h" #include "resource.h" #include "include/irq_service_interface.h" #include "dcn32_resource.h" #include "dcn20/dcn20_resource.h" #include "dcn30/dcn30_resource.h" #include "dcn10/dcn10_ipp.h" #include "dcn30/dcn30_hubbub.h" #include "dcn31/dcn31_hubbub.h" #include "dcn32/dcn32_hubbub.h" #include "dcn32/dcn32_mpc.h" #include "dcn32/dcn32_hubp.h" #include "irq/dcn32/irq_service_dcn32.h" #include "dcn32/dcn32_dpp.h" #include "dcn32/dcn32_optc.h" #include "dcn20/dcn20_hwseq.h" #include "dcn30/dcn30_hwseq.h" #include "dce110/dce110_hwseq.h" #include "dcn30/dcn30_opp.h" #include "dcn20/dcn20_dsc.h" #include "dcn30/dcn30_vpg.h" #include "dcn30/dcn30_afmt.h" #include "dcn30/dcn30_dio_stream_encoder.h" #include "dcn32/dcn32_dio_stream_encoder.h" #include "dcn31/dcn31_hpo_dp_stream_encoder.h" #include "dcn31/dcn31_hpo_dp_link_encoder.h" #include "dcn32/dcn32_hpo_dp_link_encoder.h" #include "dcn31/dcn31_apg.h" #include "dcn31/dcn31_dio_link_encoder.h" #include "dcn32/dcn32_dio_link_encoder.h" #include "dce/dce_clock_source.h" #include "dce/dce_audio.h" #include "dce/dce_hwseq.h" #include "clk_mgr.h" #include "virtual/virtual_stream_encoder.h" #include "dml/display_mode_vba.h" #include "dcn32/dcn32_dccg.h" #include "dcn10/dcn10_resource.h" #include "link.h" #include "dcn31/dcn31_panel_cntl.h" #include "dcn30/dcn30_dwb.h" #include "dcn32/dcn32_mmhubbub.h" #include "dcn/dcn_3_2_0_offset.h" #include "dcn/dcn_3_2_0_sh_mask.h" #include "nbio/nbio_4_3_0_offset.h" #include "reg_helper.h" #include "dce/dmub_abm.h" #include "dce/dmub_psr.h" #include "dce/dce_aux.h" #include "dce/dce_i2c.h" #include "dml/dcn30/display_mode_vba_30.h" #include "vm_helper.h" #include "dcn20/dcn20_vmid.h" #include "dml/dcn32/dcn32_fpu.h" #include "dc_state_priv.h" #include "dml2/dml2_wrapper.h" #define DC_LOGGER_INIT(logger) enum dcn32_clk_src_array_id { DCN32_CLK_SRC_PLL0, DCN32_CLK_SRC_PLL1, DCN32_CLK_SRC_PLL2, DCN32_CLK_SRC_PLL3, DCN32_CLK_SRC_PLL4, DCN32_CLK_SRC_TOTAL }; /* begin ********************* * macros to expend register list macro defined in HW object header file */ /* DCN */ #define BASE_INNER(seg) ctx->dcn_reg_offsets[seg] #define BASE(seg) BASE_INNER(seg) #define SR(reg_name)\ REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ reg ## reg_name #define SR_ARR(reg_name, id) \ REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name #define SR_ARR_INIT(reg_name, id, value) \ REG_STRUCT[id].reg_name = value #define SRI(reg_name, block, id)\ REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define SRI_ARR(reg_name, block, id)\ REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define SR_ARR_I2C(reg_name, id) \ REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name #define SRI_ARR_I2C(reg_name, block, id)\ REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define SRI_ARR_ALPHABET(reg_name, block, index, id)\ REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define SRI2(reg_name, block, id)\ .reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ reg ## reg_name #define SRI2_ARR(reg_name, block, id)\ REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ reg ## reg_name #define SRIR(var_name, reg_name, block, id)\ .var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define SRII(reg_name, block, id)\ REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define SRII_ARR_2(reg_name, block, id, inst)\ REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define SRII_MPC_RMU(reg_name, block, id)\ .RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define SRII_DWB(reg_name, temp_name, block, id)\ REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## temp_name #define SF_DWB2(reg_name, block, id, field_name, post_fix) \ .field_name = reg_name ## __ ## field_name ## post_fix #define DCCG_SRII(reg_name, block, id)\ REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define VUPDATE_SRII(reg_name, block, id)\ REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ reg ## reg_name ## _ ## block ## id /* NBIO */ #define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg] #define NBIO_BASE(seg) \ NBIO_BASE_INNER(seg) #define NBIO_SR(reg_name)\ REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \ regBIF_BX0_ ## reg_name #define NBIO_SR_ARR(reg_name, id)\ REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \ regBIF_BX0_ ## reg_name #undef CTX #define CTX ctx #define REG(reg_name) \ (ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name) static struct bios_registers bios_regs; #define bios_regs_init() \ ( \ NBIO_SR(BIOS_SCRATCH_3),\ NBIO_SR(BIOS_SCRATCH_6)\ ) #define clk_src_regs_init(index, pllid)\ CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid) static struct dce110_clk_src_regs clk_src_regs[5]; static const struct dce110_clk_src_shift cs_shift = { CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT) }; static const struct dce110_clk_src_mask cs_mask = { CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK) }; #define abm_regs_init(id)\ ABM_DCN32_REG_LIST_RI(id) static struct dce_abm_registers abm_regs[4]; static const struct dce_abm_shift abm_shift = { ABM_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dce_abm_mask abm_mask = { ABM_MASK_SH_LIST_DCN32(_MASK) }; #define audio_regs_init(id)\ AUD_COMMON_REG_LIST_RI(id) static struct dce_audio_registers audio_regs[5]; #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) static const struct dce_audio_shift audio_shift = { DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) }; static const struct dce_audio_mask audio_mask = { DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) }; #define vpg_regs_init(id)\ VPG_DCN3_REG_LIST_RI(id) static struct dcn30_vpg_registers vpg_regs[10]; static const struct dcn30_vpg_shift vpg_shift = { DCN3_VPG_MASK_SH_LIST(__SHIFT) }; static const struct dcn30_vpg_mask vpg_mask = { DCN3_VPG_MASK_SH_LIST(_MASK) }; #define afmt_regs_init(id)\ AFMT_DCN3_REG_LIST_RI(id) static struct dcn30_afmt_registers afmt_regs[6]; static const struct dcn30_afmt_shift afmt_shift = { DCN3_AFMT_MASK_SH_LIST(__SHIFT) }; static const struct dcn30_afmt_mask afmt_mask = { DCN3_AFMT_MASK_SH_LIST(_MASK) }; #define apg_regs_init(id)\ APG_DCN31_REG_LIST_RI(id) static struct dcn31_apg_registers apg_regs[4]; static const struct dcn31_apg_shift apg_shift = { DCN31_APG_MASK_SH_LIST(__SHIFT) }; static const struct dcn31_apg_mask apg_mask = { DCN31_APG_MASK_SH_LIST(_MASK) }; #define stream_enc_regs_init(id)\ SE_DCN32_REG_LIST_RI(id) static struct dcn10_stream_enc_registers stream_enc_regs[5]; static const struct dcn10_stream_encoder_shift se_shift = { SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dcn10_stream_encoder_mask se_mask = { SE_COMMON_MASK_SH_LIST_DCN32(_MASK) }; #define aux_regs_init(id)\ DCN2_AUX_REG_LIST_RI(id) static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5]; #define hpd_regs_init(id)\ HPD_REG_LIST_RI(id) static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5]; #define link_regs_init(id, phyid)\ ( \ LE_DCN31_REG_LIST_RI(id), \ UNIPHY_DCN2_REG_LIST_RI(id, phyid)\ ) /*DPCS_DCN31_REG_LIST(id),*/ \ static struct dcn10_link_enc_registers link_enc_regs[5]; static const struct dcn10_link_enc_shift le_shift = { LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \ //DPCS_DCN31_MASK_SH_LIST(__SHIFT) }; static const struct dcn10_link_enc_mask le_mask = { LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \ //DPCS_DCN31_MASK_SH_LIST(_MASK) }; #define hpo_dp_stream_encoder_reg_init(id)\ DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id) static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4]; static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = { DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT) }; static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = { DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK) }; #define hpo_dp_link_encoder_reg_init(id)\ DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id) /*DCN3_1_RDPCSTX_REG_LIST(0),*/ /*DCN3_1_RDPCSTX_REG_LIST(1),*/ /*DCN3_1_RDPCSTX_REG_LIST(2),*/ /*DCN3_1_RDPCSTX_REG_LIST(3),*/ static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2]; static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = { DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT) }; static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = { DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK) }; #define dpp_regs_init(id)\ DPP_REG_LIST_DCN30_COMMON_RI(id) static struct dcn3_dpp_registers dpp_regs[4]; static const struct dcn3_dpp_shift tf_shift = { DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT) }; static const struct dcn3_dpp_mask tf_mask = { DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK) }; #define opp_regs_init(id)\ OPP_REG_LIST_DCN30_RI(id) static struct dcn20_opp_registers opp_regs[4]; static const struct dcn20_opp_shift opp_shift = { OPP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn20_opp_mask opp_mask = { OPP_MASK_SH_LIST_DCN20(_MASK) }; #define aux_engine_regs_init(id)\ ( \ AUX_COMMON_REG_LIST0_RI(id), \ SR_ARR_INIT(AUXN_IMPCAL, id, 0), \ SR_ARR_INIT(AUXP_IMPCAL, id, 0), \ SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \ SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\ ) static struct dce110_aux_registers aux_engine_regs[5]; static const struct dce110_aux_registers_shift aux_shift = { DCN_AUX_MASK_SH_LIST(__SHIFT) }; static const struct dce110_aux_registers_mask aux_mask = { DCN_AUX_MASK_SH_LIST(_MASK) }; #define dwbc_regs_dcn3_init(id)\ DWBC_COMMON_REG_LIST_DCN30_RI(id) static struct dcn30_dwbc_registers dwbc30_regs[1]; static const struct dcn30_dwbc_shift dwbc30_shift = { DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn30_dwbc_mask dwbc30_mask = { DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) }; #define mcif_wb_regs_dcn3_init(id)\ MCIF_WB_COMMON_REG_LIST_DCN32_RI(id) static struct dcn30_mmhubbub_registers mcif_wb30_regs[1]; static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK) }; #define dsc_regsDCN20_init(id)\ DSC_REG_LIST_DCN20_RI(id) static struct dcn20_dsc_registers dsc_regs[4]; static const struct dcn20_dsc_shift dsc_shift = { DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) }; static const struct dcn20_dsc_mask dsc_mask = { DSC_REG_LIST_SH_MASK_DCN20(_MASK) }; static struct dcn30_mpc_registers mpc_regs; #define dcn_mpc_regs_init() \ MPC_REG_LIST_DCN3_2_RI(0),\ MPC_REG_LIST_DCN3_2_RI(1),\ MPC_REG_LIST_DCN3_2_RI(2),\ MPC_REG_LIST_DCN3_2_RI(3),\ MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\ MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\ MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\ MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\ MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0) static const struct dcn30_mpc_shift mpc_shift = { MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dcn30_mpc_mask mpc_mask = { MPC_COMMON_MASK_SH_LIST_DCN32(_MASK) }; #define optc_regs_init(id)\ OPTC_COMMON_REG_LIST_DCN3_2_RI(id) static struct dcn_optc_registers optc_regs[4]; static const struct dcn_optc_shift optc_shift = { OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT) }; static const struct dcn_optc_mask optc_mask = { OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK) }; #define hubp_regs_init(id)\ HUBP_REG_LIST_DCN32_RI(id) static struct dcn_hubp2_registers hubp_regs[4]; static const struct dcn_hubp2_shift hubp_shift = { HUBP_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dcn_hubp2_mask hubp_mask = { HUBP_MASK_SH_LIST_DCN32(_MASK) }; static struct dcn_hubbub_registers hubbub_reg; #define hubbub_reg_init()\ HUBBUB_REG_LIST_DCN32_RI(0) static const struct dcn_hubbub_shift hubbub_shift = { HUBBUB_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dcn_hubbub_mask hubbub_mask = { HUBBUB_MASK_SH_LIST_DCN32(_MASK) }; static struct dccg_registers dccg_regs; #define dccg_regs_init()\ DCCG_REG_LIST_DCN32_RI() static const struct dccg_shift dccg_shift = { DCCG_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dccg_mask dccg_mask = { DCCG_MASK_SH_LIST_DCN32(_MASK) }; #define SRII2(reg_name_pre, reg_name_post, id)\ .reg_name_pre ## _ ## reg_name_post[id] = BASE(reg ## reg_name_pre \ ## id ## _ ## reg_name_post ## _BASE_IDX) + \ reg ## reg_name_pre ## id ## _ ## reg_name_post #define HWSEQ_DCN32_REG_LIST()\ SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \ SR(DIO_MEM_PWR_CTRL), \ SR(ODM_MEM_PWR_CTRL3), \ SR(MMHUBBUB_MEM_PWR_CNTL), \ SR(DCCG_GATE_DISABLE_CNTL), \ SR(DCCG_GATE_DISABLE_CNTL2), \ SR(DCFCLK_CNTL),\ SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \ SRII(PIXEL_RATE_CNTL, OTG, 0), \ SRII(PIXEL_RATE_CNTL, OTG, 1),\ SRII(PIXEL_RATE_CNTL, OTG, 2),\ SRII(PIXEL_RATE_CNTL, OTG, 3),\ SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\ SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\ SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\ SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\ SR(MICROSECOND_TIME_BASE_DIV), \ SR(MILLISECOND_TIME_BASE_DIV), \ SR(DISPCLK_FREQ_CHANGE_CNTL), \ SR(RBBMIF_TIMEOUT_DIS), \ SR(RBBMIF_TIMEOUT_DIS_2), \ SR(DCHUBBUB_CRC_CTRL), \ SR(DPP_TOP0_DPP_CRC_CTRL), \ SR(DPP_TOP0_DPP_CRC_VAL_B_A), \ SR(DPP_TOP0_DPP_CRC_VAL_R_G), \ SR(MPC_CRC_CTRL), \ SR(MPC_CRC_RESULT_GB), \ SR(MPC_CRC_RESULT_C), \ SR(MPC_CRC_RESULT_AR), \ SR(DOMAIN0_PG_CONFIG), \ SR(DOMAIN1_PG_CONFIG), \ SR(DOMAIN2_PG_CONFIG), \ SR(DOMAIN3_PG_CONFIG), \ SR(DOMAIN16_PG_CONFIG), \ SR(DOMAIN17_PG_CONFIG), \ SR(DOMAIN18_PG_CONFIG), \ SR(DOMAIN19_PG_CONFIG), \ SR(DOMAIN0_PG_STATUS), \ SR(DOMAIN1_PG_STATUS), \ SR(DOMAIN2_PG_STATUS), \ SR(DOMAIN3_PG_STATUS), \ SR(DOMAIN16_PG_STATUS), \ SR(DOMAIN17_PG_STATUS), \ SR(DOMAIN18_PG_STATUS), \ SR(DOMAIN19_PG_STATUS), \ SR(D1VGA_CONTROL), \ SR(D2VGA_CONTROL), \ SR(D3VGA_CONTROL), \ SR(D4VGA_CONTROL), \ SR(D5VGA_CONTROL), \ SR(D6VGA_CONTROL), \ SR(DC_IP_REQUEST_CNTL), \ SR(AZALIA_AUDIO_DTO), \ SR(AZALIA_CONTROLLER_CLOCK_GATING) static struct dce_hwseq_registers hwseq_reg; #define hwseq_reg_init()\ HWSEQ_DCN32_REG_LIST() #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\ HWSEQ_DCN_MASK_SH_LIST(mask_sh), \ HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \ HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \ HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \ HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \ HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \ HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \ HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh) static const struct dce_hwseq_shift hwseq_shift = { HWSEQ_DCN32_MASK_SH_LIST(__SHIFT) }; static const struct dce_hwseq_mask hwseq_mask = { HWSEQ_DCN32_MASK_SH_LIST(_MASK) }; #define vmid_regs_init(id)\ DCN20_VMID_REG_LIST_RI(id) static struct dcn_vmid_registers vmid_regs[16]; static const struct dcn20_vmid_shift vmid_shifts = { DCN20_VMID_MASK_SH_LIST(__SHIFT) }; static const struct dcn20_vmid_mask vmid_masks = { DCN20_VMID_MASK_SH_LIST(_MASK) }; static const struct resource_caps res_cap_dcn32 = { .num_timing_generator = 4, .num_opp = 4, .num_video_plane = 4, .num_audio = 5, .num_stream_encoder = 5, .num_hpo_dp_stream_encoder = 4, .num_hpo_dp_link_encoder = 2, .num_pll = 5, .num_dwb = 1, .num_ddc = 5, .num_vmid = 16, .num_mpc_3dlut = 4, .num_dsc = 4, }; static const struct dc_plane_cap plane_cap = { .type = DC_PLANE_TYPE_DCN_UNIVERSAL, .per_pixel_alpha = true, .pixel_format_support = { .argb8888 = true, .nv12 = true, .fp16 = true, .p010 = true, .ayuv = false, }, .max_upscale_factor = { .argb8888 = 16000, .nv12 = 16000, .fp16 = 16000 }, // 6:1 downscaling ratio: 1000/6 = 166.666 .max_downscale_factor = { .argb8888 = 167, .nv12 = 167, .fp16 = 167 }, 64, 64 }; static const struct dc_debug_options debug_defaults_drv = { .disable_dmcu = true, .force_abm_enable = false, .timing_trace = false, .clock_trace = true, .disable_pplib_clock_request = false, .pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore .force_single_disp_pipe_split = false, .disable_dcc = DCC_ENABLE, .vsr_support = true, .performance_trace = false, .max_downscale_src_width = 7680,/*upto 8K*/ .disable_pplib_wm_range = false, .scl_reset_length10 = true, .sanity_checks = false, .underflow_assert_delay_us = 0xFFFFFFFF, .dwb_fi_phase = -1, // -1 = disable, .dmub_command_table = true, .enable_mem_low_power = { .bits = { .vga = false, .i2c = false, .dmcu = false, // This is previously known to cause hang on S3 cycles if enabled .dscl = false, .cm = false, .mpc = false, .optc = true, } }, .use_max_lb = true, .force_disable_subvp = false, .exit_idle_opt_for_cursor_updates = true, .using_dml2 = false, .enable_single_display_2to1_odm_policy = true, /* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/ .enable_double_buffered_dsc_pg_support = true, .enable_dp_dig_pixel_rate_div_policy = 1, .allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback" .alloc_extra_way_for_cursor = true, .min_prefetch_in_strobe_ns = 60000, // 60us .disable_unbounded_requesting = false, .override_dispclk_programming = true, .disable_fpo_optimizations = false, .fpo_vactive_margin_us = 2000, // 2000us .disable_fpo_vactive = false, .disable_boot_optimizations = false, .disable_subvp_high_refresh = false, .disable_dp_plus_plus_wa = true, .fpo_vactive_min_active_margin_us = 200, .fpo_vactive_max_blank_us = 1000, .enable_legacy_fast_update = false, }; static struct dce_aux *dcn32_aux_engine_create( struct dc_context *ctx, uint32_t inst) { struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); if (!aux_engine) return NULL; #undef REG_STRUCT #define REG_STRUCT aux_engine_regs aux_engine_regs_init(0), aux_engine_regs_init(1), aux_engine_regs_init(2), aux_engine_regs_init(3), aux_engine_regs_init(4); dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, &aux_engine_regs[inst], &aux_mask, &aux_shift, ctx->dc->caps.extended_aux_timeout_support); return &aux_engine->base; } #define i2c_inst_regs_init(id)\ I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id) static struct dce_i2c_registers i2c_hw_regs[5]; static const struct dce_i2c_shift i2c_shifts = { I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dce_i2c_mask i2c_masks = { I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) }; static struct dce_i2c_hw *dcn32_i2c_hw_create( struct dc_context *ctx, uint32_t inst) { struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); if (!dce_i2c_hw) return NULL; #undef REG_STRUCT #define REG_STRUCT i2c_hw_regs i2c_inst_regs_init(1), i2c_inst_regs_init(2), i2c_inst_regs_init(3), i2c_inst_regs_init(4), i2c_inst_regs_init(5); dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); return dce_i2c_hw; } static struct clock_source *dcn32_clock_source_create( struct dc_context *ctx, struct dc_bios *bios, enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src) { struct dce110_clk_src *clk_src = kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); if (!clk_src) return NULL; if (dcn31_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) { clk_src->base.dp_clk_src = dp_clk_src; return &clk_src->base; } kfree(clk_src); BREAK_TO_DEBUGGER(); return NULL; } static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx) { int i; struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub), GFP_KERNEL); if (!hubbub2) return NULL; #undef REG_STRUCT #define REG_STRUCT hubbub_reg hubbub_reg_init(); #undef REG_STRUCT #define REG_STRUCT vmid_regs vmid_regs_init(0), vmid_regs_init(1), vmid_regs_init(2), vmid_regs_init(3), vmid_regs_init(4), vmid_regs_init(5), vmid_regs_init(6), vmid_regs_init(7), vmid_regs_init(8), vmid_regs_init(9), vmid_regs_init(10), vmid_regs_init(11), vmid_regs_init(12), vmid_regs_init(13), vmid_regs_init(14), vmid_regs_init(15); hubbub32_construct(hubbub2, ctx, &hubbub_reg, &hubbub_shift, &hubbub_mask, ctx->dc->dml.ip.det_buffer_size_kbytes, ctx->dc->dml.ip.pixel_chunk_size_kbytes, ctx->dc->dml.ip.config_return_buffer_size_in_kbytes); for (i = 0; i < res_cap_dcn32.num_vmid; i++) { struct dcn20_vmid *vmid = &hubbub2->vmid[i]; vmid->ctx = ctx; vmid->regs = &vmid_regs[i]; vmid->shifts = &vmid_shifts; vmid->masks = &vmid_masks; } return &hubbub2->base; } static struct hubp *dcn32_hubp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_hubp *hubp2 = kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); if (!hubp2) return NULL; #undef REG_STRUCT #define REG_STRUCT hubp_regs hubp_regs_init(0), hubp_regs_init(1), hubp_regs_init(2), hubp_regs_init(3); if (hubp32_construct(hubp2, ctx, inst, &hubp_regs[inst], &hubp_shift, &hubp_mask)) return &hubp2->base; BREAK_TO_DEBUGGER(); kfree(hubp2); return NULL; } static void dcn32_dpp_destroy(struct dpp **dpp) { kfree(TO_DCN30_DPP(*dpp)); *dpp = NULL; } static struct dpp *dcn32_dpp_create( struct dc_context *ctx, uint32_t inst) { struct dcn3_dpp *dpp3 = kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); if (!dpp3) return NULL; #undef REG_STRUCT #define REG_STRUCT dpp_regs dpp_regs_init(0), dpp_regs_init(1), dpp_regs_init(2), dpp_regs_init(3); if (dpp32_construct(dpp3, ctx, inst, &dpp_regs[inst], &tf_shift, &tf_mask)) return &dpp3->base; BREAK_TO_DEBUGGER(); kfree(dpp3); return NULL; } static struct mpc *dcn32_mpc_create( struct dc_context *ctx, int num_mpcc, int num_rmu) { struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), GFP_KERNEL); if (!mpc30) return NULL; #undef REG_STRUCT #define REG_STRUCT mpc_regs dcn_mpc_regs_init(); dcn32_mpc_construct(mpc30, ctx, &mpc_regs, &mpc_shift, &mpc_mask, num_mpcc, num_rmu); return &mpc30->base; } static struct output_pixel_processor *dcn32_opp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_opp *opp2 = kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); if (!opp2) { BREAK_TO_DEBUGGER(); return NULL; } #undef REG_STRUCT #define REG_STRUCT opp_regs opp_regs_init(0), opp_regs_init(1), opp_regs_init(2), opp_regs_init(3); dcn20_opp_construct(opp2, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask); return &opp2->base; } static struct timing_generator *dcn32_timing_generator_create( struct dc_context *ctx, uint32_t instance) { struct optc *tgn10 = kzalloc(sizeof(struct optc), GFP_KERNEL); if (!tgn10) return NULL; #undef REG_STRUCT #define REG_STRUCT optc_regs optc_regs_init(0), optc_regs_init(1), optc_regs_init(2), optc_regs_init(3); tgn10->base.inst = instance; tgn10->base.ctx = ctx; tgn10->tg_regs = &optc_regs[instance]; tgn10->tg_shift = &optc_shift; tgn10->tg_mask = &optc_mask; dcn32_timing_generator_init(tgn10); return &tgn10->base; } static const struct encoder_feature_support link_enc_feature = { .max_hdmi_deep_color = COLOR_DEPTH_121212, .max_hdmi_pixel_clock = 600000, .hdmi_ycbcr420_supported = true, .dp_ycbcr420_supported = true, .fec_supported = true, .flags.bits.IS_HBR2_CAPABLE = true, .flags.bits.IS_HBR3_CAPABLE = true, .flags.bits.IS_TPS3_CAPABLE = true, .flags.bits.IS_TPS4_CAPABLE = true }; static struct link_encoder *dcn32_link_encoder_create( struct dc_context *ctx, const struct encoder_init_data *enc_init_data) { struct dcn20_link_encoder *enc20 = kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); if (!enc20) return NULL; #undef REG_STRUCT #define REG_STRUCT link_enc_aux_regs aux_regs_init(0), aux_regs_init(1), aux_regs_init(2), aux_regs_init(3), aux_regs_init(4); #undef REG_STRUCT #define REG_STRUCT link_enc_hpd_regs hpd_regs_init(0), hpd_regs_init(1), hpd_regs_init(2), hpd_regs_init(3), hpd_regs_init(4); #undef REG_STRUCT #define REG_STRUCT link_enc_regs link_regs_init(0, A), link_regs_init(1, B), link_regs_init(2, C), link_regs_init(3, D), link_regs_init(4, E); dcn32_link_encoder_construct(enc20, enc_init_data, &link_enc_feature, &link_enc_regs[enc_init_data->transmitter], &link_enc_aux_regs[enc_init_data->channel - 1], &link_enc_hpd_regs[enc_init_data->hpd_source], &le_shift, &le_mask); return &enc20->enc10.base; } struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data) { struct dcn31_panel_cntl *panel_cntl = kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL); if (!panel_cntl) return NULL; dcn31_panel_cntl_construct(panel_cntl, init_data); return &panel_cntl->base; } static void read_dce_straps( struct dc_context *ctx, struct resource_straps *straps) { generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS, FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); } static struct audio *dcn32_create_audio( struct dc_context *ctx, unsigned int inst) { #undef REG_STRUCT #define REG_STRUCT audio_regs audio_regs_init(0), audio_regs_init(1), audio_regs_init(2), audio_regs_init(3), audio_regs_init(4); return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask); } static struct vpg *dcn32_vpg_create( struct dc_context *ctx, uint32_t inst) { struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); if (!vpg3) return NULL; #undef REG_STRUCT #define REG_STRUCT vpg_regs vpg_regs_init(0), vpg_regs_init(1), vpg_regs_init(2), vpg_regs_init(3), vpg_regs_init(4), vpg_regs_init(5), vpg_regs_init(6), vpg_regs_init(7), vpg_regs_init(8), vpg_regs_init(9); vpg3_construct(vpg3, ctx, inst, &vpg_regs[inst], &vpg_shift, &vpg_mask); return &vpg3->base; } static struct afmt *dcn32_afmt_create( struct dc_context *ctx, uint32_t inst) { struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); if (!afmt3) return NULL; #undef REG_STRUCT #define REG_STRUCT afmt_regs afmt_regs_init(0), afmt_regs_init(1), afmt_regs_init(2), afmt_regs_init(3), afmt_regs_init(4), afmt_regs_init(5); afmt3_construct(afmt3, ctx, inst, &afmt_regs[inst], &afmt_shift, &afmt_mask); return &afmt3->base; } static struct apg *dcn31_apg_create( struct dc_context *ctx, uint32_t inst) { struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL); if (!apg31) return NULL; #undef REG_STRUCT #define REG_STRUCT apg_regs apg_regs_init(0), apg_regs_init(1), apg_regs_init(2), apg_regs_init(3); apg31_construct(apg31, ctx, inst, &apg_regs[inst], &apg_shift, &apg_mask); return &apg31->base; } static struct stream_encoder *dcn32_stream_encoder_create( enum engine_id eng_id, struct dc_context *ctx) { struct dcn10_stream_encoder *enc1; struct vpg *vpg; struct afmt *afmt; int vpg_inst; int afmt_inst; /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ if (eng_id <= ENGINE_ID_DIGF) { vpg_inst = eng_id; afmt_inst = eng_id; } else return NULL; enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); vpg = dcn32_vpg_create(ctx, vpg_inst); afmt = dcn32_afmt_create(ctx, afmt_inst); if (!enc1 || !vpg || !afmt) { kfree(enc1); kfree(vpg); kfree(afmt); return NULL; } #undef REG_STRUCT #define REG_STRUCT stream_enc_regs stream_enc_regs_init(0), stream_enc_regs_init(1), stream_enc_regs_init(2), stream_enc_regs_init(3), stream_enc_regs_init(4); dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, vpg, afmt, &stream_enc_regs[eng_id], &se_shift, &se_mask); return &enc1->base; } static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create( enum engine_id eng_id, struct dc_context *ctx) { struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31; struct vpg *vpg; struct apg *apg; uint32_t hpo_dp_inst; uint32_t vpg_inst; uint32_t apg_inst; ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3)); hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0; /* Mapping of VPG register blocks to HPO DP block instance: * VPG[6] -> HPO_DP[0] * VPG[7] -> HPO_DP[1] * VPG[8] -> HPO_DP[2] * VPG[9] -> HPO_DP[3] */ vpg_inst = hpo_dp_inst + 6; /* Mapping of APG register blocks to HPO DP block instance: * APG[0] -> HPO_DP[0] * APG[1] -> HPO_DP[1] * APG[2] -> HPO_DP[2] * APG[3] -> HPO_DP[3] */ apg_inst = hpo_dp_inst; /* allocate HPO stream encoder and create VPG sub-block */ hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL); vpg = dcn32_vpg_create(ctx, vpg_inst); apg = dcn31_apg_create(ctx, apg_inst); if (!hpo_dp_enc31 || !vpg || !apg) { kfree(hpo_dp_enc31); kfree(vpg); kfree(apg); return NULL; } #undef REG_STRUCT #define REG_STRUCT hpo_dp_stream_enc_regs hpo_dp_stream_encoder_reg_init(0), hpo_dp_stream_encoder_reg_init(1), hpo_dp_stream_encoder_reg_init(2), hpo_dp_stream_encoder_reg_init(3); dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios, hpo_dp_inst, eng_id, vpg, apg, &hpo_dp_stream_enc_regs[hpo_dp_inst], &hpo_dp_se_shift, &hpo_dp_se_mask); return &hpo_dp_enc31->base; } static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create( uint8_t inst, struct dc_context *ctx) { struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31; /* allocate HPO link encoder */ hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL); if (!hpo_dp_enc31) return NULL; /* out of memory */ #undef REG_STRUCT #define REG_STRUCT hpo_dp_link_enc_regs hpo_dp_link_encoder_reg_init(0), hpo_dp_link_encoder_reg_init(1); hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst, &hpo_dp_link_enc_regs[inst], &hpo_dp_le_shift, &hpo_dp_le_mask); return &hpo_dp_enc31->base; } static struct dce_hwseq *dcn32_hwseq_create( struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); #undef REG_STRUCT #define REG_STRUCT hwseq_reg hwseq_reg_init(); if (hws) { hws->ctx = ctx; hws->regs = &hwseq_reg; hws->shifts = &hwseq_shift; hws->masks = &hwseq_mask; } return hws; } static const struct resource_create_funcs res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = dcn32_create_audio, .create_stream_encoder = dcn32_stream_encoder_create, .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create, .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create, .create_hwseq = dcn32_hwseq_create, }; static void dcn32_resource_destruct(struct dcn32_resource_pool *pool) { unsigned int i; for (i = 0; i < pool->base.stream_enc_count; i++) { if (pool->base.stream_enc[i] != NULL) { if (pool->base.stream_enc[i]->vpg != NULL) { kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); pool->base.stream_enc[i]->vpg = NULL; } if (pool->base.stream_enc[i]->afmt != NULL) { kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); pool->base.stream_enc[i]->afmt = NULL; } kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); pool->base.stream_enc[i] = NULL; } } for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) { if (pool->base.hpo_dp_stream_enc[i] != NULL) { if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) { kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg)); pool->base.hpo_dp_stream_enc[i]->vpg = NULL; } if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) { kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg)); pool->base.hpo_dp_stream_enc[i]->apg = NULL; } kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i])); pool->base.hpo_dp_stream_enc[i] = NULL; } } for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) { if (pool->base.hpo_dp_link_enc[i] != NULL) { kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i])); pool->base.hpo_dp_link_enc[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dsc; i++) { if (pool->base.dscs[i] != NULL) dcn20_dsc_destroy(&pool->base.dscs[i]); } if (pool->base.mpc != NULL) { kfree(TO_DCN20_MPC(pool->base.mpc)); pool->base.mpc = NULL; } if (pool->base.hubbub != NULL) { kfree(TO_DCN20_HUBBUB(pool->base.hubbub)); pool->base.hubbub = NULL; } for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.dpps[i] != NULL) dcn32_dpp_destroy(&pool->base.dpps[i]); if (pool->base.ipps[i] != NULL) pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); if (pool->base.hubps[i] != NULL) { kfree(TO_DCN20_HUBP(pool->base.hubps[i])); pool->base.hubps[i] = NULL; } if (pool->base.irqs != NULL) { dal_irq_service_destroy(&pool->base.irqs); } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { if (pool->base.engines[i] != NULL) dce110_engine_destroy(&pool->base.engines[i]); if (pool->base.hw_i2cs[i] != NULL) { kfree(pool->base.hw_i2cs[i]); pool->base.hw_i2cs[i] = NULL; } if (pool->base.sw_i2cs[i] != NULL) { kfree(pool->base.sw_i2cs[i]); pool->base.sw_i2cs[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_opp; i++) { if (pool->base.opps[i] != NULL) pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { if (pool->base.timing_generators[i] != NULL) { kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); pool->base.timing_generators[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dwb; i++) { if (pool->base.dwbc[i] != NULL) { kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); pool->base.dwbc[i] = NULL; } if (pool->base.mcif_wb[i] != NULL) { kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); pool->base.mcif_wb[i] = NULL; } } for (i = 0; i < pool->base.audio_count; i++) { if (pool->base.audios[i]) dce_aud_destroy(&pool->base.audios[i]); } for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] != NULL) { dcn20_clock_source_destroy(&pool->base.clock_sources[i]); pool->base.clock_sources[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { if (pool->base.mpc_lut[i] != NULL) { dc_3dlut_func_release(pool->base.mpc_lut[i]); pool->base.mpc_lut[i] = NULL; } if (pool->base.mpc_shaper[i] != NULL) { dc_transfer_func_release(pool->base.mpc_shaper[i]); pool->base.mpc_shaper[i] = NULL; } } if (pool->base.dp_clock_source != NULL) { dcn20_clock_source_destroy(&pool->base.dp_clock_source); pool->base.dp_clock_source = NULL; } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { if (pool->base.multiple_abms[i] != NULL) dce_abm_destroy(&pool->base.multiple_abms[i]); } if (pool->base.psr != NULL) dmub_psr_destroy(&pool->base.psr); if (pool->base.dccg != NULL) dcn_dccg_destroy(&pool->base.dccg); if (pool->base.oem_device != NULL) { struct dc *dc = pool->base.oem_device->ctx->dc; dc->link_srv->destroy_ddc_service(&pool->base.oem_device); } } static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t dwb_count = pool->res_cap->num_dwb; for (i = 0; i < dwb_count; i++) { struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), GFP_KERNEL); if (!dwbc30) { dm_error("DC: failed to create dwbc30!\n"); return false; } #undef REG_STRUCT #define REG_STRUCT dwbc30_regs dwbc_regs_dcn3_init(0); dcn30_dwbc_construct(dwbc30, ctx, &dwbc30_regs[i], &dwbc30_shift, &dwbc30_mask, i); pool->dwbc[i] = &dwbc30->base; } return true; } static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t dwb_count = pool->res_cap->num_dwb; for (i = 0; i < dwb_count; i++) { struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), GFP_KERNEL); if (!mcif_wb30) { dm_error("DC: failed to create mcif_wb30!\n"); return false; } #undef REG_STRUCT #define REG_STRUCT mcif_wb30_regs mcif_wb_regs_dcn3_init(0); dcn32_mmhubbub_construct(mcif_wb30, ctx, &mcif_wb30_regs[i], &mcif_wb30_shift, &mcif_wb30_mask, i); pool->mcif_wb[i] = &mcif_wb30->base; } return true; } static struct display_stream_compressor *dcn32_dsc_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_dsc *dsc = kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); if (!dsc) { BREAK_TO_DEBUGGER(); return NULL; } #undef REG_STRUCT #define REG_STRUCT dsc_regs dsc_regsDCN20_init(0), dsc_regsDCN20_init(1), dsc_regsDCN20_init(2), dsc_regsDCN20_init(3); dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); dsc->max_image_width = 6016; return &dsc->base; } static void dcn32_destroy_resource_pool(struct resource_pool **pool) { struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool); dcn32_resource_destruct(dcn32_pool); kfree(dcn32_pool); *pool = NULL; } bool dcn32_acquire_post_bldn_3dlut( struct resource_context *res_ctx, const struct resource_pool *pool, int mpcc_id, struct dc_3dlut **lut, struct dc_transfer_func **shaper) { bool ret = false; ASSERT(*lut == NULL && *shaper == NULL); *lut = NULL; *shaper = NULL; if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) { *lut = pool->mpc_lut[mpcc_id]; *shaper = pool->mpc_shaper[mpcc_id]; res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true; ret = true; } return ret; } bool dcn32_release_post_bldn_3dlut( struct resource_context *res_ctx, const struct resource_pool *pool, struct dc_3dlut **lut, struct dc_transfer_func **shaper) { int i; bool ret = false; for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { res_ctx->is_mpc_3dlut_acquired[i] = false; pool->mpc_lut[i]->state.raw = 0; *lut = NULL; *shaper = NULL; ret = true; break; } } return ret; } static void dcn32_enable_phantom_plane(struct dc *dc, struct dc_state *context, struct dc_stream_state *phantom_stream, unsigned int dc_pipe_idx) { struct dc_plane_state *phantom_plane = NULL; struct dc_plane_state *prev_phantom_plane = NULL; struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; while (curr_pipe) { if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state) phantom_plane = prev_phantom_plane; else phantom_plane = dc_state_create_phantom_plane(dc, context, curr_pipe->plane_state); memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address)); memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality, sizeof(phantom_plane->scaling_quality)); memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect)); memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect)); memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect)); memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size, sizeof(phantom_plane->plane_size)); memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info, sizeof(phantom_plane->tiling_info)); memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc)); phantom_plane->format = curr_pipe->plane_state->format; phantom_plane->rotation = curr_pipe->plane_state->rotation; phantom_plane->visible = curr_pipe->plane_state->visible; /* Shadow pipe has small viewport. */ phantom_plane->clip_rect.y = 0; phantom_plane->clip_rect.height = phantom_stream->src.height; dc_state_add_phantom_plane(dc, phantom_stream, phantom_plane, context); curr_pipe = curr_pipe->bottom_pipe; prev_phantom_plane = phantom_plane; } } static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, unsigned int pipe_cnt, unsigned int dc_pipe_idx) { struct dc_stream_state *phantom_stream = NULL; struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; phantom_stream = dc_state_create_phantom_stream(dc, context, ref_pipe->stream); /* stream has limited viewport and small timing */ memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing)); memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src)); memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst)); DC_FP_START(); dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx); DC_FP_END(); dc_state_add_phantom_stream(dc, context, phantom_stream, ref_pipe->stream); return phantom_stream; } /* TODO: Input to this function should indicate which pipe indexes (or streams) * require a phantom pipe / stream */ void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, unsigned int pipe_cnt, unsigned int index) { struct dc_stream_state *phantom_stream = NULL; unsigned int i; // The index of the DC pipe passed into this function is guarenteed to // be a valid candidate for SubVP (i.e. has a plane, stream, doesn't // already have phantom pipe assigned, etc.) by previous checks. phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index); dcn32_enable_phantom_plane(dc, context, phantom_stream, index); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; // Build scaling params for phantom pipes which were newly added. // We determine which phantom pipes were added by comparing with // the phantom stream. if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) { pipe->stream->use_dynamic_meta = false; pipe->plane_state->flip_immediate = false; if (!resource_build_scaling_params(pipe)) { // Log / remove phantom pipes since failed to build scaling params } } } } static bool dml1_validate(struct dc *dc, struct dc_state *context, bool fast_validate) { bool out = false; BW_VAL_TRACE_SETUP(); int vlevel = 0; int pipe_cnt = 0; display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); /* To handle Freesync properly, setting FreeSync DML parameters * to its default state for the first stage of validation */ context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false; context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true; DC_LOGGER_INIT(dc->ctx->logger); BW_VAL_TRACE_COUNT(); if (!pipes) goto validate_fail; DC_FP_START(); out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate); DC_FP_END(); if (pipe_cnt == 0) goto validate_out; if (!out) goto validate_fail; BW_VAL_TRACE_END_VOLTAGE_LEVEL(); if (fast_validate) { BW_VAL_TRACE_SKIP(fast); goto validate_out; } dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); dcn32_override_min_req_memclk(dc, context); dcn32_override_min_req_dcfclk(dc, context); BW_VAL_TRACE_END_WATERMARKS(); goto validate_out; validate_fail: DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); BW_VAL_TRACE_SKIP(fail); out = false; validate_out: kfree(pipes); BW_VAL_TRACE_FINISH(); return out; } bool dcn32_validate_bandwidth(struct dc *dc, struct dc_state *context, bool fast_validate) { bool out = false; if (dc->debug.using_dml2) out = dml2_validate(dc, context, context->power_source == DC_POWER_SOURCE_DC ? context->bw_ctx.dml2_dc_power_source : context->bw_ctx.dml2, fast_validate); else out = dml1_validate(dc, context, fast_validate); return out; } int dcn32_populate_dml_pipes_from_context( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, bool fast_validate) { int i, pipe_cnt; struct resource_context *res_ctx = &context->res_ctx; struct pipe_ctx *pipe = NULL; bool subvp_in_use = false; struct dc_crtc_timing *timing; int subvp_main_pipe_index = -1; enum mall_stream_type mall_type; bool single_display_subvp = false; struct dc_stream_state *stream = NULL; int num_subvp_main = 0; int num_subvp_phantom = 0; int num_subvp_none = 0; int odm_slice_count; dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); /* For single display subvp, look for subvp main so if we have phantom * pipe, we can set odm policy to match main pipe */ for (i = 0; i < context->stream_count; i++) { stream = context->streams[i]; mall_type = dc_state_get_stream_subvp_type(context, stream); if (mall_type == SUBVP_MAIN) num_subvp_main++; else if (mall_type == SUBVP_PHANTOM) num_subvp_phantom++; else num_subvp_none++; } if (num_subvp_main == 1 && num_subvp_phantom == 1 && num_subvp_none == 0) single_display_subvp = true; if (single_display_subvp) { for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { pipe = &res_ctx->pipe_ctx[i]; if (!res_ctx->pipe_ctx[i].stream) continue; mall_type = dc_state_get_pipe_subvp_type(context, pipe); if (mall_type == SUBVP_MAIN) { if (resource_is_pipe_type(pipe, OTG_MASTER)) subvp_main_pipe_index = i; } pipe_cnt++; } } for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { if (!res_ctx->pipe_ctx[i].stream) continue; pipe = &res_ctx->pipe_ctx[i]; timing = &pipe->stream->timing; pipes[pipe_cnt].pipe.src.gpuvm = true; DC_FP_START(); dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt); DC_FP_END(); pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch; if (dc->config.enable_windowed_mpo_odm && dc->debug.enable_single_display_2to1_odm_policy) { /* For single display subvp, if pipe is phantom pipe, * then copy odm policy from subvp main pipe */ mall_type = dc_state_get_pipe_subvp_type(context, pipe); if (single_display_subvp && (mall_type == SUBVP_PHANTOM)) { if (subvp_main_pipe_index < 0) { odm_slice_count = -1; ASSERT(0); } else { odm_slice_count = resource_get_odm_slice_count(&res_ctx->pipe_ctx[subvp_main_pipe_index]); } } else { odm_slice_count = resource_get_odm_slice_count(pipe); } switch (odm_slice_count) { case 2: pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1; break; case 4: pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_4to1; break; default: pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal; } } else { pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal; } pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet pipes[pipe_cnt].pipe.src.unbounded_req_mode = false; pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19; /* Only populate DML input with subvp info for full updates. * This is just a workaround -- needs a proper fix. */ if (!fast_validate) { switch (dc_state_get_pipe_subvp_type(context, pipe)) { case SUBVP_MAIN: pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport; subvp_in_use = true; break; case SUBVP_PHANTOM: pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe; pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable; // Disallow unbounded req for SubVP according to DCHUB programming guide pipes[pipe_cnt].pipe.src.unbounded_req_mode = false; break; case SUBVP_NONE: pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable; pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable; break; default: break; } } pipes[pipe_cnt].dout.dsc_input_bpc = 0; if (pipes[pipe_cnt].dout.dsc_enable) { switch (timing->display_color_depth) { case COLOR_DEPTH_888: pipes[pipe_cnt].dout.dsc_input_bpc = 8; break; case COLOR_DEPTH_101010: pipes[pipe_cnt].dout.dsc_input_bpc = 10; break; case COLOR_DEPTH_121212: pipes[pipe_cnt].dout.dsc_input_bpc = 12; break; default: ASSERT(0); break; } } pipe_cnt++; } /* For DET allocation, we don't want to use DML policy (not optimal for utilizing all * the DET available for each pipe). Use the DET override input to maintain our driver * policy. */ dcn32_set_det_allocations(dc, context, pipes); // In general cases we want to keep the dram clock change requirement // (prefer configs that support MCLK switch). Only override to false // for SubVP if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use) context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false; else context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true; return pipe_cnt; } unsigned int dcn32_calculate_mall_ways_from_bytes(const struct dc *dc, unsigned int total_size_in_mall_bytes) { uint32_t cache_lines_used, lines_per_way, total_cache_lines, num_ways; /* add 2 lines for worst case alignment */ cache_lines_used = total_size_in_mall_bytes / dc->caps.cache_line_size + 2; total_cache_lines = dc->caps.max_cab_allocation_bytes / dc->caps.cache_line_size; lines_per_way = total_cache_lines / dc->caps.cache_num_ways; num_ways = cache_lines_used / lines_per_way; if (cache_lines_used % lines_per_way > 0) num_ways++; return num_ways; } static struct dc_cap_funcs cap_funcs = { .get_dcc_compression_cap = dcn20_get_dcc_compression_cap, .get_subvp_en = dcn32_subvp_in_use, }; void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt, int vlevel) { DC_FP_START(); dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel); DC_FP_END(); } static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) { struct dml2_configuration_options dml2_opt = dc->dml2_options; DC_FP_START(); dcn32_update_bw_bounding_box_fpu(dc, bw_params); dml2_opt.use_clock_dc_limits = false; if (dc->debug.using_dml2 && dc->current_state && dc->current_state->bw_ctx.dml2) dml2_reinit(dc, &dml2_opt, &dc->current_state->bw_ctx.dml2); dml2_opt.use_clock_dc_limits = true; if (dc->debug.using_dml2 && dc->current_state && dc->current_state->bw_ctx.dml2_dc_power_source) dml2_reinit(dc, &dml2_opt, &dc->current_state->bw_ctx.dml2_dc_power_source); DC_FP_END(); } static struct resource_funcs dcn32_res_pool_funcs = { .destroy = dcn32_destroy_resource_pool, .link_enc_create = dcn32_link_encoder_create, .link_enc_create_minimal = NULL, .panel_cntl_create = dcn32_panel_cntl_create, .validate_bandwidth = dcn32_validate_bandwidth, .calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg, .populate_dml_pipes = dcn32_populate_dml_pipes_from_context, .acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe, .acquire_free_pipe_as_secondary_opp_head = dcn32_acquire_free_pipe_as_secondary_opp_head, .release_pipe = dcn20_release_pipe, .add_stream_to_ctx = dcn30_add_stream_to_ctx, .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, .set_mcif_arb_params = dcn30_set_mcif_arb_params, .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, .acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut, .release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut, .update_bw_bounding_box = dcn32_update_bw_bounding_box, .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, .add_phantom_pipes = dcn32_add_phantom_pipes, .build_pipe_pix_clk_params = dcn20_build_pipe_pix_clk_params, .calculate_mall_ways_from_bytes = dcn32_calculate_mall_ways_from_bytes, }; static uint32_t read_pipe_fuses(struct dc_context *ctx) { uint32_t value = REG_READ(CC_DC_PIPE_DIS); /* DCN32 support max 4 pipes */ value = value & 0xf; return value; } static bool dcn32_resource_construct( uint8_t num_virtual_links, struct dc *dc, struct dcn32_resource_pool *pool) { int i, j; struct dc_context *ctx = dc->ctx; struct irq_service_init_data init_data; struct ddc_service_init_data ddc_init_data = {0}; uint32_t pipe_fuses = 0; uint32_t num_pipes = 4; #undef REG_STRUCT #define REG_STRUCT bios_regs bios_regs_init(); #undef REG_STRUCT #define REG_STRUCT clk_src_regs clk_src_regs_init(0, A), clk_src_regs_init(1, B), clk_src_regs_init(2, C), clk_src_regs_init(3, D), clk_src_regs_init(4, E); #undef REG_STRUCT #define REG_STRUCT abm_regs abm_regs_init(0), abm_regs_init(1), abm_regs_init(2), abm_regs_init(3); #undef REG_STRUCT #define REG_STRUCT dccg_regs dccg_regs_init(); DC_FP_START(); ctx->dc_bios->regs = &bios_regs; pool->base.res_cap = &res_cap_dcn32; /* max number of pipes for ASIC before checking for pipe fuses */ num_pipes = pool->base.res_cap->num_timing_generator; pipe_fuses = read_pipe_fuses(ctx); for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) if (pipe_fuses & 1 << i) num_pipes--; if (pipe_fuses & 1) ASSERT(0); //Unexpected - Pipe 0 should always be fully functional! if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK) ASSERT(0); //Entire DCN is harvested! /* within dml lib, initial value is hard coded, if ASIC pipe is fused, the * value will be changed, update max_num_dpp and max_num_otg for dml. */ dcn3_2_ip.max_num_dpp = num_pipes; dcn3_2_ip.max_num_otg = num_pipes; pool->base.funcs = &dcn32_res_pool_funcs; /************************************************* * Resource + asic cap harcoding * *************************************************/ pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; pool->base.timing_generator_count = num_pipes; pool->base.pipe_count = num_pipes; pool->base.mpcc_count = num_pipes; dc->caps.max_downscale_ratio = 600; dc->caps.i2c_speed_in_khz = 100; dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/ /* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/ dc->caps.max_cursor_size = 64; dc->caps.min_horizontal_blanking_period = 80; dc->caps.dmdata_alloc_size = 2048; dc->caps.mall_size_per_mem_channel = 4; /* total size = mall per channel * num channels * 1024 * 1024 */ dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576; dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; dc->caps.cache_line_size = 64; dc->caps.cache_num_ways = 16; /* Calculate the available MALL space */ dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall( dc, dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel * 1024 * 1024; dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes; dc->caps.subvp_fw_processing_delay_us = 15; dc->caps.subvp_drr_max_vblank_margin_us = 40; dc->caps.subvp_prefetch_end_to_mall_start_us = 15; dc->caps.subvp_swath_height_margin_lines = 16; dc->caps.subvp_pstate_allow_width_us = 20; dc->caps.subvp_vertical_int_margin_us = 30; dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin dc->caps.max_slave_planes = 2; dc->caps.max_slave_yuv_planes = 2; dc->caps.max_slave_rgb_planes = 2; dc->caps.post_blend_color_processing = true; dc->caps.force_dp_tps4_for_cp2520 = true; if (dc->config.forceHBR2CP2520) dc->caps.force_dp_tps4_for_cp2520 = false; dc->caps.dp_hpo = true; dc->caps.dp_hdmi21_pcon_support = true; dc->caps.edp_dsc_support = true; dc->caps.extended_aux_timeout_support = true; dc->caps.dmcub_support = true; dc->caps.seamless_odm = true; dc->caps.max_v_total = (1 << 15) - 1; /* Color pipeline capabilities */ dc->caps.color.dpp.dcn_arch = 1; dc->caps.color.dpp.input_lut_shared = 0; dc->caps.color.dpp.icsc = 1; dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr dc->caps.color.dpp.dgam_rom_caps.srgb = 1; dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; dc->caps.color.dpp.dgam_rom_caps.pq = 1; dc->caps.color.dpp.dgam_rom_caps.hlg = 1; dc->caps.color.dpp.post_csc = 1; dc->caps.color.dpp.gamma_corr = 1; dc->caps.color.dpp.dgam_rom_for_yuv = 0; dc->caps.color.dpp.hw_3d_lut = 1; dc->caps.color.dpp.ogam_ram = 0; // no OGAM in DPP since DCN1 // no OGAM ROM on DCN2 and later ASICs dc->caps.color.dpp.ogam_rom_caps.srgb = 0; dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.dpp.ogam_rom_caps.pq = 0; dc->caps.color.dpp.ogam_rom_caps.hlg = 0; dc->caps.color.dpp.ocsc = 0; dc->caps.color.mpc.gamut_remap = 1; dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC dc->caps.color.mpc.ogam_ram = 1; dc->caps.color.mpc.ogam_rom_caps.srgb = 0; dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.mpc.ogam_rom_caps.pq = 0; dc->caps.color.mpc.ogam_rom_caps.hlg = 0; dc->caps.color.mpc.ocsc = 1; /* Use pipe context based otg sync logic */ dc->config.use_pipe_ctx_sync_logic = true; dc->config.dc_mode_clk_limit_support = true; dc->config.enable_windowed_mpo_odm = true; /* read VBIOS LTTPR caps */ { if (ctx->dc_bios->funcs->get_lttpr_caps) { enum bp_result bp_query_result; uint8_t is_vbios_lttpr_enable = 0; bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; } /* interop bit is implicit */ { dc->caps.vbios_lttpr_aware = true; } } if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) dc->debug = debug_defaults_drv; // Init the vm_helper if (dc->vm_helper) vm_helper_init(dc->vm_helper, 16); /************************************************* * Create resources * *************************************************/ /* Clock Sources for Pixel Clock*/ pool->base.clock_sources[DCN32_CLK_SRC_PLL0] = dcn32_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL0, &clk_src_regs[0], false); pool->base.clock_sources[DCN32_CLK_SRC_PLL1] = dcn32_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL1, &clk_src_regs[1], false); pool->base.clock_sources[DCN32_CLK_SRC_PLL2] = dcn32_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL2, &clk_src_regs[2], false); pool->base.clock_sources[DCN32_CLK_SRC_PLL3] = dcn32_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL3, &clk_src_regs[3], false); pool->base.clock_sources[DCN32_CLK_SRC_PLL4] = dcn32_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL4, &clk_src_regs[4], false); pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL; /* todo: not reuse phy_pll registers */ pool->base.dp_clock_source = dcn32_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_ID_DP_DTO, &clk_src_regs[0], true); for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] == NULL) { dm_error("DC: failed to create clock sources!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } } /* DCCG */ pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); if (pool->base.dccg == NULL) { dm_error("DC: failed to create dccg!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } /* DML */ dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); /* IRQ Service */ init_data.ctx = dc->ctx; pool->base.irqs = dal_irq_service_dcn32_create(&init_data); if (!pool->base.irqs) goto create_fail; /* HUBBUB */ pool->base.hubbub = dcn32_hubbub_create(ctx); if (pool->base.hubbub == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create hubbub!\n"); goto create_fail; } /* HUBPs, DPPs, OPPs, TGs, ABMs */ for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) { /* if pipe is disabled, skip instance of HW pipe, * i.e, skip ASIC register instance */ if (pipe_fuses & 1 << i) continue; /* HUBPs */ pool->base.hubps[j] = dcn32_hubp_create(ctx, i); if (pool->base.hubps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create hubps!\n"); goto create_fail; } /* DPPs */ pool->base.dpps[j] = dcn32_dpp_create(ctx, i); if (pool->base.dpps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create dpps!\n"); goto create_fail; } /* OPPs */ pool->base.opps[j] = dcn32_opp_create(ctx, i); if (pool->base.opps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create output pixel processor!\n"); goto create_fail; } /* TGs */ pool->base.timing_generators[j] = dcn32_timing_generator_create( ctx, i); if (pool->base.timing_generators[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create tg!\n"); goto create_fail; } /* ABMs */ pool->base.multiple_abms[j] = dmub_abm_create(ctx, &abm_regs[i], &abm_shift, &abm_mask); if (pool->base.multiple_abms[j] == NULL) { dm_error("DC: failed to create abm for pipe %d!\n", i); BREAK_TO_DEBUGGER(); goto create_fail; } /* index for resource pool arrays for next valid pipe */ j++; } /* PSR */ pool->base.psr = dmub_psr_create(ctx); if (pool->base.psr == NULL) { dm_error("DC: failed to create psr obj!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } /* MPCCs */ pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut); if (pool->base.mpc == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mpc!\n"); goto create_fail; } /* DSCs */ for (i = 0; i < pool->base.res_cap->num_dsc; i++) { pool->base.dscs[i] = dcn32_dsc_create(ctx, i); if (pool->base.dscs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create display stream compressor %d!\n", i); goto create_fail; } } /* DWB */ if (!dcn32_dwbc_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create dwbc!\n"); goto create_fail; } /* MMHUBBUB */ if (!dcn32_mmhubbub_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mcif_wb!\n"); goto create_fail; } /* AUX and I2C */ for (i = 0; i < pool->base.res_cap->num_ddc; i++) { pool->base.engines[i] = dcn32_aux_engine_create(ctx, i); if (pool->base.engines[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create aux engine!!\n"); goto create_fail; } pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i); if (pool->base.hw_i2cs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create hw i2c!!\n"); goto create_fail; } pool->base.sw_i2cs[i] = NULL; } /* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */ if (!resource_construct(num_virtual_links, dc, &pool->base, &res_create_funcs)) goto create_fail; /* HW Sequencer init functions and Plane caps */ dcn32_hw_sequencer_init_functions(dc); dc->caps.max_planes = pool->base.pipe_count; for (i = 0; i < dc->caps.max_planes; ++i) dc->caps.planes[i] = plane_cap; dc->cap_funcs = cap_funcs; if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { ddc_init_data.ctx = dc->ctx; ddc_init_data.link = NULL; ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; ddc_init_data.id.enum_id = 0; ddc_init_data.id.type = OBJECT_TYPE_GENERIC; pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data); } else { pool->base.oem_device = NULL; } dc->dml2_options.dcn_pipe_count = pool->base.pipe_count; dc->dml2_options.use_native_pstate_optimization = false; dc->dml2_options.use_native_soc_bb_construction = true; dc->dml2_options.minimize_dispclk_using_odm = true; resource_init_common_dml2_callbacks(dc, &dc->dml2_options); dc->dml2_options.callbacks.can_support_mclk_switch_using_fw_based_vblank_stretch = &dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch; dc->dml2_options.svp_pstate.callbacks.release_dsc = &dcn20_release_dsc; dc->dml2_options.svp_pstate.callbacks.calculate_mall_ways_from_bytes = pool->base.funcs->calculate_mall_ways_from_bytes; dc->dml2_options.svp_pstate.subvp_fw_processing_delay_us = dc->caps.subvp_fw_processing_delay_us; dc->dml2_options.svp_pstate.subvp_prefetch_end_to_mall_start_us = dc->caps.subvp_prefetch_end_to_mall_start_us; dc->dml2_options.svp_pstate.subvp_pstate_allow_width_us = dc->caps.subvp_pstate_allow_width_us; dc->dml2_options.svp_pstate.subvp_swath_height_margin_lines = dc->caps.subvp_swath_height_margin_lines; dc->dml2_options.svp_pstate.force_disable_subvp = dc->debug.force_disable_subvp; dc->dml2_options.svp_pstate.force_enable_subvp = dc->debug.force_subvp_mclk_switch; dc->dml2_options.mall_cfg.cache_line_size_bytes = dc->caps.cache_line_size; dc->dml2_options.mall_cfg.cache_num_ways = dc->caps.cache_num_ways; dc->dml2_options.mall_cfg.max_cab_allocation_bytes = dc->caps.max_cab_allocation_bytes; dc->dml2_options.mall_cfg.mblk_height_4bpe_pixels = DCN3_2_MBLK_HEIGHT_4BPE; dc->dml2_options.mall_cfg.mblk_height_8bpe_pixels = DCN3_2_MBLK_HEIGHT_8BPE; dc->dml2_options.mall_cfg.mblk_size_bytes = DCN3_2_MALL_MBLK_SIZE_BYTES; dc->dml2_options.mall_cfg.mblk_width_pixels = DCN3_2_MBLK_WIDTH; dc->dml2_options.max_segments_per_hubp = 18; dc->dml2_options.det_segment_size = DCN3_2_DET_SEG_SIZE; dc->dml2_options.map_dc_pipes_with_callbacks = true; if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0)) dc->config.sdpif_request_limit_words_per_umc = 16; DC_FP_END(); return true; create_fail: DC_FP_END(); dcn32_resource_destruct(pool); return false; } struct resource_pool *dcn32_create_resource_pool( const struct dc_init_data *init_data, struct dc *dc) { struct dcn32_resource_pool *pool = kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL); if (!pool) return NULL; if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool)) return &pool->base; BREAK_TO_DEBUGGER(); kfree(pool); return NULL; } /* * Find the most optimal free pipe from res_ctx, which could be used as a * secondary dpp pipe for input opp head pipe. * * a free pipe - a pipe in input res_ctx not yet used for any streams or * planes. * secondary dpp pipe - a pipe gets inserted to a head OPP pipe's MPC blending * tree. This is typical used for rendering MPO planes or additional offset * areas in MPCC combine. * * Hardware Transition Minimization Algorithm for Finding a Secondary DPP Pipe * ------------------------------------------------------------------------- * * PROBLEM: * * 1. There is a hardware limitation that a secondary DPP pipe cannot be * transferred from one MPC blending tree to the other in a single frame. * Otherwise it could cause glitches on the screen. * * For instance, we cannot transition from state 1 to state 2 in one frame. This * is because PIPE1 is transferred from PIPE0's MPC blending tree over to * PIPE2's MPC blending tree, which is not supported by hardware. * To support this transition we need to first remove PIPE1 from PIPE0's MPC * blending tree in one frame and then insert PIPE1 to PIPE2's MPC blending tree * in the next frame. This is not optimal as it will delay the flip for two * frames. * * State 1: * PIPE0 -- secondary DPP pipe --> (PIPE1) * PIPE2 -- secondary DPP pipe --> NONE * * State 2: * PIPE0 -- secondary DPP pipe --> NONE * PIPE2 -- secondary DPP pipe --> (PIPE1) * * 2. We want to in general minimize the unnecessary changes in pipe topology. * If a pipe is already added in current blending tree and there are no changes * to plane topology, we don't want to swap it with another free pipe * unnecessarily in every update. Powering up and down a pipe would require a * full update which delays the flip for 1 frame. If we use the original pipe * we don't have to toggle its power. So we can flip faster. */ int dcn32_find_optimal_free_pipe_as_secondary_dpp_pipe( const struct resource_context *cur_res_ctx, struct resource_context *new_res_ctx, const struct resource_pool *pool, const struct pipe_ctx *new_opp_head) { const struct pipe_ctx *cur_opp_head; int free_pipe_idx; cur_opp_head = &cur_res_ctx->pipe_ctx[new_opp_head->pipe_idx]; free_pipe_idx = resource_find_free_pipe_used_in_cur_mpc_blending_tree( cur_res_ctx, new_res_ctx, cur_opp_head); /* Up until here if we have not found a free secondary pipe, we will * need to wait for at least one frame to complete the transition * sequence. */ if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND) free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx( cur_res_ctx, new_res_ctx, pool); /* Up until here if we have not found a free secondary pipe, we will * need to wait for at least two frames to complete the transition * sequence. It really doesn't matter which pipe we decide take from * current enabled pipes. It won't save our frame time when we swap only * one pipe or more pipes. */ if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND) free_pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine( cur_res_ctx, new_res_ctx, pool); if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND) free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool); return free_pipe_idx; } static struct pipe_ctx *find_idle_secondary_pipe_check_mpo( struct resource_context *res_ctx, const struct resource_pool *pool, const struct pipe_ctx *primary_pipe) { int i; struct pipe_ctx *secondary_pipe = NULL; struct pipe_ctx *next_odm_mpo_pipe = NULL; int primary_index, preferred_pipe_idx; struct pipe_ctx *old_primary_pipe = NULL; /* * Modified from find_idle_secondary_pipe * With windowed MPO and ODM, we want to avoid the case where we want a * free pipe for the left side but the free pipe is being used on the * right side. * Add check on current_state if the primary_pipe is the left side, * to check the right side ( primary_pipe->next_odm_pipe ) to see if * it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe ) * - If so, then don't use this pipe * EXCEPTION - 3 plane ( 2 MPO plane ) case * - in this case, the primary pipe has already gotten a free pipe for the * MPO window in the left * - when it tries to get a free pipe for the MPO window on the right, * it will see that it is already assigned to the right side * ( primary_pipe->next_odm_pipe ). But in this case, we want this * free pipe, since it will be for the right side. So add an * additional condition, that skipping the free pipe on the right only * applies if the primary pipe has no bottom pipe currently assigned */ if (primary_pipe) { primary_index = primary_pipe->pipe_idx; old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index]; if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe) && (!primary_pipe->bottom_pipe)) next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe; preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx; if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) && !(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) { secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; secondary_pipe->pipe_idx = preferred_pipe_idx; } } /* * search backwards for the second pipe to keep pipe * assignment more consistent */ if (!secondary_pipe) for (i = pool->pipe_count - 1; i >= 0; i--) { if ((res_ctx->pipe_ctx[i].stream == NULL) && !(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) { secondary_pipe = &res_ctx->pipe_ctx[i]; secondary_pipe->pipe_idx = i; break; } } return secondary_pipe; } static struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer( struct dc_state *state, const struct resource_pool *pool, struct dc_stream_state *stream, const struct pipe_ctx *head_pipe) { struct resource_context *res_ctx = &state->res_ctx; struct pipe_ctx *idle_pipe, *pipe; struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx; int head_index; if (!head_pipe) ASSERT(0); /* * Modified from dcn20_acquire_idle_pipe_for_layer * Check if head_pipe in old_context already has bottom_pipe allocated. * - If so, check if that pipe is available in the current context. * -- If so, reuse pipe from old_context */ head_index = head_pipe->pipe_idx; pipe = &old_ctx->pipe_ctx[head_index]; if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) { idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx]; idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx; } else { idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe); if (!idle_pipe) return NULL; } idle_pipe->stream = head_pipe->stream; idle_pipe->stream_res.tg = head_pipe->stream_res.tg; idle_pipe->stream_res.opp = head_pipe->stream_res.opp; idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx]; idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx]; idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx]; idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst; return idle_pipe; } static int find_optimal_free_pipe_as_secondary_opp_head( const struct resource_context *cur_res_ctx, struct resource_context *new_res_ctx, const struct resource_pool *pool, const struct pipe_ctx *new_otg_master) { const struct pipe_ctx *cur_otg_master; int free_pipe_idx; cur_otg_master = &cur_res_ctx->pipe_ctx[new_otg_master->pipe_idx]; free_pipe_idx = resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master( cur_res_ctx, new_res_ctx, cur_otg_master); /* Up until here if we have not found a free secondary pipe, we will * need to wait for at least one frame to complete the transition * sequence. */ if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND) free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx( cur_res_ctx, new_res_ctx, pool); if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND) free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool); return free_pipe_idx; } struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_dpp_pipe( const struct dc_state *cur_ctx, struct dc_state *new_ctx, const struct resource_pool *pool, const struct pipe_ctx *opp_head_pipe) { int free_pipe_idx; struct pipe_ctx *free_pipe; if (!opp_head_pipe->stream->ctx->dc->config.enable_windowed_mpo_odm) return dcn32_acquire_idle_pipe_for_head_pipe_in_layer( new_ctx, pool, opp_head_pipe->stream, opp_head_pipe); free_pipe_idx = dcn32_find_optimal_free_pipe_as_secondary_dpp_pipe( &cur_ctx->res_ctx, &new_ctx->res_ctx, pool, opp_head_pipe); if (free_pipe_idx >= 0) { free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx]; free_pipe->pipe_idx = free_pipe_idx; free_pipe->stream = opp_head_pipe->stream; free_pipe->stream_res.tg = opp_head_pipe->stream_res.tg; free_pipe->stream_res.opp = opp_head_pipe->stream_res.opp; free_pipe->plane_res.hubp = pool->hubps[free_pipe->pipe_idx]; free_pipe->plane_res.ipp = pool->ipps[free_pipe->pipe_idx]; free_pipe->plane_res.dpp = pool->dpps[free_pipe->pipe_idx]; free_pipe->plane_res.mpcc_inst = pool->dpps[free_pipe->pipe_idx]->inst; } else { ASSERT(opp_head_pipe); free_pipe = NULL; } return free_pipe; } struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_opp_head( const struct dc_state *cur_ctx, struct dc_state *new_ctx, const struct resource_pool *pool, const struct pipe_ctx *otg_master) { int free_pipe_idx = find_optimal_free_pipe_as_secondary_opp_head( &cur_ctx->res_ctx, &new_ctx->res_ctx, pool, otg_master); struct pipe_ctx *free_pipe; if (free_pipe_idx >= 0) { free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx]; free_pipe->pipe_idx = free_pipe_idx; free_pipe->stream = otg_master->stream; free_pipe->stream_res.tg = otg_master->stream_res.tg; free_pipe->stream_res.dsc = NULL; free_pipe->stream_res.opp = pool->opps[free_pipe_idx]; free_pipe->plane_res.mi = pool->mis[free_pipe_idx]; free_pipe->plane_res.hubp = pool->hubps[free_pipe_idx]; free_pipe->plane_res.ipp = pool->ipps[free_pipe_idx]; free_pipe->plane_res.xfm = pool->transforms[free_pipe_idx]; free_pipe->plane_res.dpp = pool->dpps[free_pipe_idx]; free_pipe->plane_res.mpcc_inst = pool->dpps[free_pipe_idx]->inst; if (free_pipe->stream->timing.flags.DSC == 1) { dcn20_acquire_dsc(free_pipe->stream->ctx->dc, &new_ctx->res_ctx, &free_pipe->stream_res.dsc, free_pipe_idx); ASSERT(free_pipe->stream_res.dsc); if (free_pipe->stream_res.dsc == NULL) { memset(free_pipe, 0, sizeof(*free_pipe)); free_pipe = NULL; } } } else { ASSERT(otg_master); free_pipe = NULL; } return free_pipe; } unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans) { /* * DCN32 and DCN321 SKUs may have different sizes for MALL * but we may not be able to access all the MALL space. * If the num_chans is power of 2, then we can access all * of the available MALL space. Otherwise, we can only * access: * * max_cab_size_in_bytes = total_cache_size_in_bytes * * ((2^floor(log2(num_chans)))/num_chans) * * Calculating the MALL sizes for all available SKUs, we * have come up with the follow simplified check. * - we have max_chans which provides the max MALL size. * Each chans supports 4MB of MALL so: * * total_cache_size_in_bytes = max_chans * 4 MB * * - we have avail_chans which shows the number of channels * we can use if we can't access the entire MALL space. * It is generally half of max_chans * - so we use the following checks: * * if (num_chans == max_chans), return max_chans * if (num_chans < max_chans), return avail_chans * * - exception is GC_11_0_0 where we can't access max_chans, * so we define max_avail_chans as the maximum available * MALL space * */ int gc_11_0_0_max_chans = 48; int gc_11_0_0_max_avail_chans = 32; int gc_11_0_0_avail_chans = 16; int gc_11_0_3_max_chans = 16; int gc_11_0_3_avail_chans = 8; int gc_11_0_2_max_chans = 8; int gc_11_0_2_avail_chans = 4; if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) { return (num_chans == gc_11_0_0_max_chans) ? gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans; } else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) { return (num_chans == gc_11_0_2_max_chans) ? gc_11_0_2_max_chans : gc_11_0_2_avail_chans; } else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) { return (num_chans == gc_11_0_3_max_chans) ? gc_11_0_3_max_chans : gc_11_0_3_avail_chans; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1