Contributors: 72
Author Tokens Token Proportion Commits Commit Proportion
Evan Quan 7327 45.01% 124 30.24%
Alex Deucher 1262 7.75% 27 6.59%
Darren Powell 1239 7.61% 14 3.41%
Huang Rui 1106 6.79% 29 7.07%
Kevin Wang 961 5.90% 35 8.54%
Arunpravin Pannerslvam 596 3.66% 2 0.49%
Likun Gao 486 2.99% 15 3.66%
Lijo Lazar 369 2.27% 13 3.17%
Chengming Gui 303 1.86% 16 3.90%
Andrey Grodzovsky 297 1.82% 2 0.49%
Lang Yu 206 1.27% 3 0.73%
Tim Huang 206 1.27% 6 1.46%
Kenneth Feng 185 1.14% 9 2.20%
Prike Liang 146 0.90% 9 2.20%
Yifan Zhang 136 0.84% 4 0.98%
Hersen Wu 129 0.79% 5 1.22%
Le Ma 124 0.76% 2 0.49%
Xiaomeng Hou 108 0.66% 4 0.98%
Shaoyun Liu 71 0.44% 3 0.73%
Ma Jun 71 0.44% 6 1.46%
Jack Zhang 60 0.37% 4 0.98%
Jinzhou.Su 59 0.36% 1 0.24%
André Almeida 56 0.34% 1 0.24%
Li Ma 52 0.32% 2 0.49%
Wenhui Sheng 49 0.30% 1 0.24%
Mario Limonciello 44 0.27% 5 1.22%
Kun Liu 43 0.26% 1 0.24%
Leo Liu 40 0.25% 4 0.98%
Stanley.Yang 38 0.23% 2 0.49%
Aurabindo Pillai 35 0.22% 1 0.24%
Aaron Liu 35 0.22% 6 1.46%
Tong Liu01 32 0.20% 1 0.24%
changzhu 29 0.18% 1 0.24%
Hawking Zhang 27 0.17% 3 0.73%
Rajneesh Bhardwaj 25 0.15% 1 0.24%
Eric Huang 24 0.15% 3 0.73%
Yang Wang 19 0.12% 3 0.73%
Ryan Taylor 19 0.12% 2 0.49%
Luben Tuikov 18 0.11% 1 0.24%
Xiaojian Du 18 0.11% 2 0.49%
Feifei Xu 17 0.10% 1 0.24%
Monk Liu 16 0.10% 1 0.24%
Perry Yuan 16 0.10% 1 0.24%
Nirmoy Das 16 0.10% 1 0.24%
Liu ChengZhe 16 0.10% 1 0.24%
horchen 14 0.09% 1 0.24%
Chen Gong 12 0.07% 2 0.49%
Jiadong.Zhu 11 0.07% 1 0.24%
Mukul Joshi 10 0.06% 1 0.24%
Jiansong Chen 9 0.06% 2 0.49%
Emily Deng 8 0.05% 1 0.24%
Hans de Goede 8 0.05% 1 0.24%
Xiangliang Yu 7 0.04% 1 0.24%
Amber Lin 7 0.04% 1 0.24%
Oak Zeng 6 0.04% 1 0.24%
Gavin Wan 6 0.04% 1 0.24%
Kent Russell 5 0.03% 1 0.24%
Samuel Li 5 0.03% 1 0.24%
Ken Wang 5 0.03% 1 0.24%
Matt Coffin 4 0.02% 2 0.49%
Tom Rix 4 0.02% 2 0.49%
Xiaojie Yuan 4 0.02% 2 0.49%
Dennis Li 3 0.02% 1 0.24%
Yong Zhao 3 0.02% 1 0.24%
Michel Dänzer 3 0.02% 1 0.24%
sashank saye 3 0.02% 1 0.24%
Tao Zhou 2 0.01% 1 0.24%
Dan Carpenter 2 0.01% 1 0.24%
yanyang1 2 0.01% 1 0.24%
Rex Zhu 2 0.01% 1 0.24%
Jiawei 1 0.01% 1 0.24%
Shyam Sundar S K 1 0.01% 1 0.24%
Total 16278 410


/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#define SWSMU_CODE_LAYER_L1

#include <linux/firmware.h>
#include <linux/pci.h>
#include <linux/power_supply.h>
#include <linux/reboot.h>

#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_internal.h"
#include "atom.h"
#include "arcturus_ppt.h"
#include "navi10_ppt.h"
#include "sienna_cichlid_ppt.h"
#include "renoir_ppt.h"
#include "vangogh_ppt.h"
#include "aldebaran_ppt.h"
#include "yellow_carp_ppt.h"
#include "cyan_skillfish_ppt.h"
#include "smu_v13_0_0_ppt.h"
#include "smu_v13_0_4_ppt.h"
#include "smu_v13_0_5_ppt.h"
#include "smu_v13_0_6_ppt.h"
#include "smu_v13_0_7_ppt.h"
#include "smu_v14_0_0_ppt.h"
#include "smu_v14_0_2_ppt.h"
#include "amd_pcie.h"

/*
 * DO NOT use these for err/warn/info/debug messages.
 * Use dev_err, dev_warn, dev_info and dev_dbg instead.
 * They are more MGPU friendly.
 */
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug

static const struct amd_pm_funcs swsmu_pm_funcs;
static int smu_force_smuclk_levels(struct smu_context *smu,
				   enum smu_clk_type clk_type,
				   uint32_t mask);
static int smu_handle_task(struct smu_context *smu,
			   enum amd_dpm_forced_level level,
			   enum amd_pp_task task_id);
static int smu_reset(struct smu_context *smu);
static int smu_set_fan_speed_pwm(void *handle, u32 speed);
static int smu_set_fan_control_mode(void *handle, u32 value);
static int smu_set_power_limit(void *handle, uint32_t limit);
static int smu_set_fan_speed_rpm(void *handle, uint32_t speed);
static int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled);
static int smu_set_mp1_state(void *handle, enum pp_mp1_state mp1_state);

static int smu_sys_get_pp_feature_mask(void *handle,
				       char *buf)
{
	struct smu_context *smu = handle;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	return smu_get_pp_feature_mask(smu, buf);
}

static int smu_sys_set_pp_feature_mask(void *handle,
				       uint64_t new_mask)
{
	struct smu_context *smu = handle;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	return smu_set_pp_feature_mask(smu, new_mask);
}

int smu_set_residency_gfxoff(struct smu_context *smu, bool value)
{
	if (!smu->ppt_funcs->set_gfx_off_residency)
		return -EINVAL;

	return smu_set_gfx_off_residency(smu, value);
}

int smu_get_residency_gfxoff(struct smu_context *smu, u32 *value)
{
	if (!smu->ppt_funcs->get_gfx_off_residency)
		return -EINVAL;

	return smu_get_gfx_off_residency(smu, value);
}

int smu_get_entrycount_gfxoff(struct smu_context *smu, u64 *value)
{
	if (!smu->ppt_funcs->get_gfx_off_entrycount)
		return -EINVAL;

	return smu_get_gfx_off_entrycount(smu, value);
}

int smu_get_status_gfxoff(struct smu_context *smu, uint32_t *value)
{
	if (!smu->ppt_funcs->get_gfx_off_status)
		return -EINVAL;

	*value = smu_get_gfx_off_status(smu);

	return 0;
}

int smu_set_soft_freq_range(struct smu_context *smu,
			    enum smu_clk_type clk_type,
			    uint32_t min,
			    uint32_t max)
{
	int ret = 0;

	if (smu->ppt_funcs->set_soft_freq_limited_range)
		ret = smu->ppt_funcs->set_soft_freq_limited_range(smu,
								  clk_type,
								  min,
								  max);

	return ret;
}

int smu_get_dpm_freq_range(struct smu_context *smu,
			   enum smu_clk_type clk_type,
			   uint32_t *min,
			   uint32_t *max)
{
	int ret = -ENOTSUPP;

	if (!min && !max)
		return -EINVAL;

	if (smu->ppt_funcs->get_dpm_ultimate_freq)
		ret = smu->ppt_funcs->get_dpm_ultimate_freq(smu,
							    clk_type,
							    min,
							    max);

	return ret;
}

int smu_set_gfx_power_up_by_imu(struct smu_context *smu)
{
	int ret = 0;
	struct amdgpu_device *adev = smu->adev;

	if (smu->ppt_funcs->set_gfx_power_up_by_imu) {
		ret = smu->ppt_funcs->set_gfx_power_up_by_imu(smu);
		if (ret)
			dev_err(adev->dev, "Failed to enable gfx imu!\n");
	}
	return ret;
}

static u32 smu_get_mclk(void *handle, bool low)
{
	struct smu_context *smu = handle;
	uint32_t clk_freq;
	int ret = 0;

	ret = smu_get_dpm_freq_range(smu, SMU_UCLK,
				     low ? &clk_freq : NULL,
				     !low ? &clk_freq : NULL);
	if (ret)
		return 0;
	return clk_freq * 100;
}

static u32 smu_get_sclk(void *handle, bool low)
{
	struct smu_context *smu = handle;
	uint32_t clk_freq;
	int ret = 0;

	ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK,
				     low ? &clk_freq : NULL,
				     !low ? &clk_freq : NULL);
	if (ret)
		return 0;
	return clk_freq * 100;
}

static int smu_set_gfx_imu_enable(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;

	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP)
		return 0;

	if (amdgpu_in_reset(smu->adev) || adev->in_s0ix)
		return 0;

	return smu_set_gfx_power_up_by_imu(smu);
}

static bool is_vcn_enabled(struct amdgpu_device *adev)
{
	int i;

	for (i = 0; i < adev->num_ip_blocks; i++) {
		if ((adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_VCN ||
			adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_JPEG) &&
			!adev->ip_blocks[i].status.valid)
			return false;
	}

	return true;
}

static int smu_dpm_set_vcn_enable(struct smu_context *smu,
				  bool enable)
{
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
	int ret = 0;

	/*
	 * don't poweron vcn/jpeg when they are skipped.
	 */
	if (!is_vcn_enabled(smu->adev))
		return 0;

	if (!smu->ppt_funcs->dpm_set_vcn_enable)
		return 0;

	if (atomic_read(&power_gate->vcn_gated) ^ enable)
		return 0;

	ret = smu->ppt_funcs->dpm_set_vcn_enable(smu, enable);
	if (!ret)
		atomic_set(&power_gate->vcn_gated, !enable);

	return ret;
}

static int smu_dpm_set_jpeg_enable(struct smu_context *smu,
				   bool enable)
{
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
	int ret = 0;

	if (!is_vcn_enabled(smu->adev))
		return 0;

	if (!smu->ppt_funcs->dpm_set_jpeg_enable)
		return 0;

	if (atomic_read(&power_gate->jpeg_gated) ^ enable)
		return 0;

	ret = smu->ppt_funcs->dpm_set_jpeg_enable(smu, enable);
	if (!ret)
		atomic_set(&power_gate->jpeg_gated, !enable);

	return ret;
}

static int smu_dpm_set_vpe_enable(struct smu_context *smu,
				   bool enable)
{
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
	int ret = 0;

	if (!smu->ppt_funcs->dpm_set_vpe_enable)
		return 0;

	if (atomic_read(&power_gate->vpe_gated) ^ enable)
		return 0;

	ret = smu->ppt_funcs->dpm_set_vpe_enable(smu, enable);
	if (!ret)
		atomic_set(&power_gate->vpe_gated, !enable);

	return ret;
}

static int smu_dpm_set_umsch_mm_enable(struct smu_context *smu,
				   bool enable)
{
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
	int ret = 0;

	if (!smu->adev->enable_umsch_mm)
		return 0;

	if (!smu->ppt_funcs->dpm_set_umsch_mm_enable)
		return 0;

	if (atomic_read(&power_gate->umsch_mm_gated) ^ enable)
		return 0;

	ret = smu->ppt_funcs->dpm_set_umsch_mm_enable(smu, enable);
	if (!ret)
		atomic_set(&power_gate->umsch_mm_gated, !enable);

	return ret;
}

static int smu_set_mall_enable(struct smu_context *smu)
{
	int ret = 0;

	if (!smu->ppt_funcs->set_mall_enable)
		return 0;

	ret = smu->ppt_funcs->set_mall_enable(smu);

	return ret;
}

/**
 * smu_dpm_set_power_gate - power gate/ungate the specific IP block
 *
 * @handle:        smu_context pointer
 * @block_type: the IP block to power gate/ungate
 * @gate:       to power gate if true, ungate otherwise
 *
 * This API uses no smu->mutex lock protection due to:
 * 1. It is either called by other IP block(gfx/sdma/vcn/uvd/vce).
 *    This is guarded to be race condition free by the caller.
 * 2. Or get called on user setting request of power_dpm_force_performance_level.
 *    Under this case, the smu->mutex lock protection is already enforced on
 *    the parent API smu_force_performance_level of the call path.
 */
static int smu_dpm_set_power_gate(void *handle,
				  uint32_t block_type,
				  bool gate)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) {
		dev_WARN(smu->adev->dev,
			 "SMU uninitialized but power %s requested for %u!\n",
			 gate ? "gate" : "ungate", block_type);
		return -EOPNOTSUPP;
	}

	switch (block_type) {
	/*
	 * Some legacy code of amdgpu_vcn.c and vcn_v2*.c still uses
	 * AMD_IP_BLOCK_TYPE_UVD for VCN. So, here both of them are kept.
	 */
	case AMD_IP_BLOCK_TYPE_UVD:
	case AMD_IP_BLOCK_TYPE_VCN:
		ret = smu_dpm_set_vcn_enable(smu, !gate);
		if (ret)
			dev_err(smu->adev->dev, "Failed to power %s VCN!\n",
				gate ? "gate" : "ungate");
		break;
	case AMD_IP_BLOCK_TYPE_GFX:
		ret = smu_gfx_off_control(smu, gate);
		if (ret)
			dev_err(smu->adev->dev, "Failed to %s gfxoff!\n",
				gate ? "enable" : "disable");
		break;
	case AMD_IP_BLOCK_TYPE_SDMA:
		ret = smu_powergate_sdma(smu, gate);
		if (ret)
			dev_err(smu->adev->dev, "Failed to power %s SDMA!\n",
				gate ? "gate" : "ungate");
		break;
	case AMD_IP_BLOCK_TYPE_JPEG:
		ret = smu_dpm_set_jpeg_enable(smu, !gate);
		if (ret)
			dev_err(smu->adev->dev, "Failed to power %s JPEG!\n",
				gate ? "gate" : "ungate");
		break;
	case AMD_IP_BLOCK_TYPE_VPE:
		ret = smu_dpm_set_vpe_enable(smu, !gate);
		if (ret)
			dev_err(smu->adev->dev, "Failed to power %s VPE!\n",
				gate ? "gate" : "ungate");
		break;
	default:
		dev_err(smu->adev->dev, "Unsupported block type!\n");
		return -EINVAL;
	}

	return ret;
}

/**
 * smu_set_user_clk_dependencies - set user profile clock dependencies
 *
 * @smu:	smu_context pointer
 * @clk:	enum smu_clk_type type
 *
 * Enable/Disable the clock dependency for the @clk type.
 */
static void smu_set_user_clk_dependencies(struct smu_context *smu, enum smu_clk_type clk)
{
	if (smu->adev->in_suspend)
		return;

	if (clk == SMU_MCLK) {
		smu->user_dpm_profile.clk_dependency = 0;
		smu->user_dpm_profile.clk_dependency = BIT(SMU_FCLK) | BIT(SMU_SOCCLK);
	} else if (clk == SMU_FCLK) {
		/* MCLK takes precedence over FCLK */
		if (smu->user_dpm_profile.clk_dependency == (BIT(SMU_FCLK) | BIT(SMU_SOCCLK)))
			return;

		smu->user_dpm_profile.clk_dependency = 0;
		smu->user_dpm_profile.clk_dependency = BIT(SMU_MCLK) | BIT(SMU_SOCCLK);
	} else if (clk == SMU_SOCCLK) {
		/* MCLK takes precedence over SOCCLK */
		if (smu->user_dpm_profile.clk_dependency == (BIT(SMU_FCLK) | BIT(SMU_SOCCLK)))
			return;

		smu->user_dpm_profile.clk_dependency = 0;
		smu->user_dpm_profile.clk_dependency = BIT(SMU_MCLK) | BIT(SMU_FCLK);
	} else
		/* Add clk dependencies here, if any */
		return;
}

/**
 * smu_restore_dpm_user_profile - reinstate user dpm profile
 *
 * @smu:	smu_context pointer
 *
 * Restore the saved user power configurations include power limit,
 * clock frequencies, fan control mode and fan speed.
 */
static void smu_restore_dpm_user_profile(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	int ret = 0;

	if (!smu->adev->in_suspend)
		return;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return;

	/* Enable restore flag */
	smu->user_dpm_profile.flags |= SMU_DPM_USER_PROFILE_RESTORE;

	/* set the user dpm power limit */
	if (smu->user_dpm_profile.power_limit) {
		ret = smu_set_power_limit(smu, smu->user_dpm_profile.power_limit);
		if (ret)
			dev_err(smu->adev->dev, "Failed to set power limit value\n");
	}

	/* set the user dpm clock configurations */
	if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
		enum smu_clk_type clk_type;

		for (clk_type = 0; clk_type < SMU_CLK_COUNT; clk_type++) {
			/*
			 * Iterate over smu clk type and force the saved user clk
			 * configs, skip if clock dependency is enabled
			 */
			if (!(smu->user_dpm_profile.clk_dependency & BIT(clk_type)) &&
					smu->user_dpm_profile.clk_mask[clk_type]) {
				ret = smu_force_smuclk_levels(smu, clk_type,
						smu->user_dpm_profile.clk_mask[clk_type]);
				if (ret)
					dev_err(smu->adev->dev,
						"Failed to set clock type = %d\n", clk_type);
			}
		}
	}

	/* set the user dpm fan configurations */
	if (smu->user_dpm_profile.fan_mode == AMD_FAN_CTRL_MANUAL ||
	    smu->user_dpm_profile.fan_mode == AMD_FAN_CTRL_NONE) {
		ret = smu_set_fan_control_mode(smu, smu->user_dpm_profile.fan_mode);
		if (ret != -EOPNOTSUPP) {
			smu->user_dpm_profile.fan_speed_pwm = 0;
			smu->user_dpm_profile.fan_speed_rpm = 0;
			smu->user_dpm_profile.fan_mode = AMD_FAN_CTRL_AUTO;
			dev_err(smu->adev->dev, "Failed to set manual fan control mode\n");
		}

		if (smu->user_dpm_profile.fan_speed_pwm) {
			ret = smu_set_fan_speed_pwm(smu, smu->user_dpm_profile.fan_speed_pwm);
			if (ret != -EOPNOTSUPP)
				dev_err(smu->adev->dev, "Failed to set manual fan speed in pwm\n");
		}

		if (smu->user_dpm_profile.fan_speed_rpm) {
			ret = smu_set_fan_speed_rpm(smu, smu->user_dpm_profile.fan_speed_rpm);
			if (ret != -EOPNOTSUPP)
				dev_err(smu->adev->dev, "Failed to set manual fan speed in rpm\n");
		}
	}

	/* Restore user customized OD settings */
	if (smu->user_dpm_profile.user_od) {
		if (smu->ppt_funcs->restore_user_od_settings) {
			ret = smu->ppt_funcs->restore_user_od_settings(smu);
			if (ret)
				dev_err(smu->adev->dev, "Failed to upload customized OD settings\n");
		}
	}

	/* Disable restore flag */
	smu->user_dpm_profile.flags &= ~SMU_DPM_USER_PROFILE_RESTORE;
}

static int smu_get_power_num_states(void *handle,
				    struct pp_states_info *state_info)
{
	if (!state_info)
		return -EINVAL;

	/* not support power state */
	memset(state_info, 0, sizeof(struct pp_states_info));
	state_info->nums = 1;
	state_info->states[0] = POWER_STATE_TYPE_DEFAULT;

	return 0;
}

bool is_support_sw_smu(struct amdgpu_device *adev)
{
	/* vega20 is 11.0.2, but it's supported via the powerplay code */
	if (adev->asic_type == CHIP_VEGA20)
		return false;

	if (amdgpu_ip_version(adev, MP1_HWIP, 0) >= IP_VERSION(11, 0, 0))
		return true;

	return false;
}

bool is_support_cclk_dpm(struct amdgpu_device *adev)
{
	struct smu_context *smu = adev->powerplay.pp_handle;

	if (!smu_feature_is_enabled(smu, SMU_FEATURE_CCLK_DPM_BIT))
		return false;

	return true;
}


static int smu_sys_get_pp_table(void *handle,
				char **table)
{
	struct smu_context *smu = handle;
	struct smu_table_context *smu_table = &smu->smu_table;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
		return -EINVAL;

	if (smu_table->hardcode_pptable)
		*table = smu_table->hardcode_pptable;
	else
		*table = smu_table->power_play_table;

	return smu_table->power_play_table_size;
}

static int smu_sys_set_pp_table(void *handle,
				const char *buf,
				size_t size)
{
	struct smu_context *smu = handle;
	struct smu_table_context *smu_table = &smu->smu_table;
	ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (header->usStructureSize != size) {
		dev_err(smu->adev->dev, "pp table size not matched !\n");
		return -EIO;
	}

	if (!smu_table->hardcode_pptable) {
		smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
		if (!smu_table->hardcode_pptable)
			return -ENOMEM;
	}

	memcpy(smu_table->hardcode_pptable, buf, size);
	smu_table->power_play_table = smu_table->hardcode_pptable;
	smu_table->power_play_table_size = size;

	/*
	 * Special hw_fini action(for Navi1x, the DPMs disablement will be
	 * skipped) may be needed for custom pptable uploading.
	 */
	smu->uploading_custom_pp_table = true;

	ret = smu_reset(smu);
	if (ret)
		dev_info(smu->adev->dev, "smu reset failed, ret = %d\n", ret);

	smu->uploading_custom_pp_table = false;

	return ret;
}

static int smu_get_driver_allowed_feature_mask(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
	int ret = 0;

	/*
	 * With SCPM enabled, the allowed featuremasks setting(via
	 * PPSMC_MSG_SetAllowedFeaturesMaskLow/High) is not permitted.
	 * That means there is no way to let PMFW knows the settings below.
	 * Thus, we just assume all the features are allowed under
	 * such scenario.
	 */
	if (smu->adev->scpm_enabled) {
		bitmap_fill(feature->allowed, SMU_FEATURE_MAX);
		return 0;
	}

	bitmap_zero(feature->allowed, SMU_FEATURE_MAX);

	ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
					     SMU_FEATURE_MAX/32);
	if (ret)
		return ret;

	bitmap_or(feature->allowed, feature->allowed,
		      (unsigned long *)allowed_feature_mask,
		      feature->feature_num);

	return ret;
}

static int smu_set_funcs(struct amdgpu_device *adev)
{
	struct smu_context *smu = adev->powerplay.pp_handle;

	if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
		smu->od_enabled = true;

	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
	case IP_VERSION(11, 0, 0):
	case IP_VERSION(11, 0, 5):
	case IP_VERSION(11, 0, 9):
		navi10_set_ppt_funcs(smu);
		break;
	case IP_VERSION(11, 0, 7):
	case IP_VERSION(11, 0, 11):
	case IP_VERSION(11, 0, 12):
	case IP_VERSION(11, 0, 13):
		sienna_cichlid_set_ppt_funcs(smu);
		break;
	case IP_VERSION(12, 0, 0):
	case IP_VERSION(12, 0, 1):
		renoir_set_ppt_funcs(smu);
		break;
	case IP_VERSION(11, 5, 0):
		vangogh_set_ppt_funcs(smu);
		break;
	case IP_VERSION(13, 0, 1):
	case IP_VERSION(13, 0, 3):
	case IP_VERSION(13, 0, 8):
		yellow_carp_set_ppt_funcs(smu);
		break;
	case IP_VERSION(13, 0, 4):
	case IP_VERSION(13, 0, 11):
		smu_v13_0_4_set_ppt_funcs(smu);
		break;
	case IP_VERSION(13, 0, 5):
		smu_v13_0_5_set_ppt_funcs(smu);
		break;
	case IP_VERSION(11, 0, 8):
		cyan_skillfish_set_ppt_funcs(smu);
		break;
	case IP_VERSION(11, 0, 2):
		adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
		arcturus_set_ppt_funcs(smu);
		/* OD is not supported on Arcturus */
		smu->od_enabled = false;
		break;
	case IP_VERSION(13, 0, 2):
		aldebaran_set_ppt_funcs(smu);
		/* Enable pp_od_clk_voltage node */
		smu->od_enabled = true;
		break;
	case IP_VERSION(13, 0, 0):
	case IP_VERSION(13, 0, 10):
		smu_v13_0_0_set_ppt_funcs(smu);
		break;
	case IP_VERSION(13, 0, 6):
		smu_v13_0_6_set_ppt_funcs(smu);
		/* Enable pp_od_clk_voltage node */
		smu->od_enabled = true;
		break;
	case IP_VERSION(13, 0, 7):
		smu_v13_0_7_set_ppt_funcs(smu);
		break;
	case IP_VERSION(14, 0, 0):
	case IP_VERSION(14, 0, 1):
		smu_v14_0_0_set_ppt_funcs(smu);
		break;
	case IP_VERSION(14, 0, 2):
	case IP_VERSION(14, 0, 3):
		smu_v14_0_2_set_ppt_funcs(smu);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int smu_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu;
	int r;

	smu = kzalloc(sizeof(struct smu_context), GFP_KERNEL);
	if (!smu)
		return -ENOMEM;

	smu->adev = adev;
	smu->pm_enabled = !!amdgpu_dpm;
	smu->is_apu = false;
	smu->smu_baco.state = SMU_BACO_STATE_NONE;
	smu->smu_baco.platform_support = false;
	smu->smu_baco.maco_support = false;
	smu->user_dpm_profile.fan_mode = -1;

	mutex_init(&smu->message_lock);

	adev->powerplay.pp_handle = smu;
	adev->powerplay.pp_funcs = &swsmu_pm_funcs;

	r = smu_set_funcs(adev);
	if (r)
		return r;
	return smu_init_microcode(smu);
}

static int smu_set_default_dpm_table(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
	int vcn_gate, jpeg_gate;
	int ret = 0;

	if (!smu->ppt_funcs->set_default_dpm_table)
		return 0;

	if (adev->pg_flags & AMD_PG_SUPPORT_VCN)
		vcn_gate = atomic_read(&power_gate->vcn_gated);
	if (adev->pg_flags & AMD_PG_SUPPORT_JPEG)
		jpeg_gate = atomic_read(&power_gate->jpeg_gated);

	if (adev->pg_flags & AMD_PG_SUPPORT_VCN) {
		ret = smu_dpm_set_vcn_enable(smu, true);
		if (ret)
			return ret;
	}

	if (adev->pg_flags & AMD_PG_SUPPORT_JPEG) {
		ret = smu_dpm_set_jpeg_enable(smu, true);
		if (ret)
			goto err_out;
	}

	ret = smu->ppt_funcs->set_default_dpm_table(smu);
	if (ret)
		dev_err(smu->adev->dev,
			"Failed to setup default dpm clock tables!\n");

	if (adev->pg_flags & AMD_PG_SUPPORT_JPEG)
		smu_dpm_set_jpeg_enable(smu, !jpeg_gate);
err_out:
	if (adev->pg_flags & AMD_PG_SUPPORT_VCN)
		smu_dpm_set_vcn_enable(smu, !vcn_gate);

	return ret;
}

static int smu_apply_default_config_table_settings(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	ret = smu_get_default_config_table_settings(smu,
						    &adev->pm.config_table);
	if (ret)
		return ret;

	return smu_set_config_table(smu, &adev->pm.config_table);
}

static int smu_late_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = adev->powerplay.pp_handle;
	int ret = 0;

	smu_set_fine_grain_gfx_freq_parameters(smu);

	if (!smu->pm_enabled)
		return 0;

	ret = smu_post_init(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to post smu init!\n");
		return ret;
	}

	/*
	 * Explicitly notify PMFW the power mode the system in. Since
	 * the PMFW may boot the ASIC with a different mode.
	 * For those supporting ACDC switch via gpio, PMFW will
	 * handle the switch automatically. Driver involvement
	 * is unnecessary.
	 */
	adev->pm.ac_power = power_supply_is_system_supplied() > 0;
	smu_set_ac_dc(smu);

	if ((amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(13, 0, 1)) ||
	    (amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(13, 0, 3)))
		return 0;

	if (!amdgpu_sriov_vf(adev) || smu->od_enabled) {
		ret = smu_set_default_od_settings(smu);
		if (ret) {
			dev_err(adev->dev, "Failed to setup default OD settings!\n");
			return ret;
		}
	}

	ret = smu_populate_umd_state_clk(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to populate UMD state clocks!\n");
		return ret;
	}

	ret = smu_get_asic_power_limits(smu,
					&smu->current_power_limit,
					&smu->default_power_limit,
					&smu->max_power_limit,
					&smu->min_power_limit);
	if (ret) {
		dev_err(adev->dev, "Failed to get asic power limits!\n");
		return ret;
	}

	if (!amdgpu_sriov_vf(adev))
		smu_get_unique_id(smu);

	smu_get_fan_parameters(smu);

	smu_handle_task(smu,
			smu->smu_dpm.dpm_level,
			AMD_PP_TASK_COMPLETE_INIT);

	ret = smu_apply_default_config_table_settings(smu);
	if (ret && (ret != -EOPNOTSUPP)) {
		dev_err(adev->dev, "Failed to apply default DriverSmuConfig settings!\n");
		return ret;
	}

	smu_restore_dpm_user_profile(smu);

	return 0;
}

static int smu_init_fb_allocations(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
	struct smu_table *driver_table = &(smu_table->driver_table);
	uint32_t max_table_size = 0;
	int ret, i;

	/* VRAM allocation for tool table */
	if (tables[SMU_TABLE_PMSTATUSLOG].size) {
		ret = amdgpu_bo_create_kernel(adev,
					      tables[SMU_TABLE_PMSTATUSLOG].size,
					      tables[SMU_TABLE_PMSTATUSLOG].align,
					      tables[SMU_TABLE_PMSTATUSLOG].domain,
					      &tables[SMU_TABLE_PMSTATUSLOG].bo,
					      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
					      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
		if (ret) {
			dev_err(adev->dev, "VRAM allocation for tool table failed!\n");
			return ret;
		}
	}

	driver_table->domain = AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT;
	/* VRAM allocation for driver table */
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
		if (tables[i].size == 0)
			continue;

		/* If one of the tables has VRAM domain restriction, keep it in
		 * VRAM
		 */
		if ((tables[i].domain &
		    (AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT)) ==
			    AMDGPU_GEM_DOMAIN_VRAM)
			driver_table->domain = AMDGPU_GEM_DOMAIN_VRAM;

		if (i == SMU_TABLE_PMSTATUSLOG)
			continue;

		if (max_table_size < tables[i].size)
			max_table_size = tables[i].size;
	}

	driver_table->size = max_table_size;
	driver_table->align = PAGE_SIZE;

	ret = amdgpu_bo_create_kernel(adev,
				      driver_table->size,
				      driver_table->align,
				      driver_table->domain,
				      &driver_table->bo,
				      &driver_table->mc_address,
				      &driver_table->cpu_addr);
	if (ret) {
		dev_err(adev->dev, "VRAM allocation for driver table failed!\n");
		if (tables[SMU_TABLE_PMSTATUSLOG].mc_address)
			amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo,
					      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
					      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
	}

	return ret;
}

static int smu_fini_fb_allocations(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
	struct smu_table *driver_table = &(smu_table->driver_table);

	if (tables[SMU_TABLE_PMSTATUSLOG].mc_address)
		amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo,
				      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
				      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);

	amdgpu_bo_free_kernel(&driver_table->bo,
			      &driver_table->mc_address,
			      &driver_table->cpu_addr);

	return 0;
}

/**
 * smu_alloc_memory_pool - allocate memory pool in the system memory
 *
 * @smu: amdgpu_device pointer
 *
 * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
 * and DramLogSetDramAddr can notify it changed.
 *
 * Returns 0 on success, error on failure.
 */
static int smu_alloc_memory_pool(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	uint64_t pool_size = smu->pool_size;
	int ret = 0;

	if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	memory_pool->size = pool_size;
	memory_pool->align = PAGE_SIZE;
	memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;

	switch (pool_size) {
	case SMU_MEMORY_POOL_SIZE_256_MB:
	case SMU_MEMORY_POOL_SIZE_512_MB:
	case SMU_MEMORY_POOL_SIZE_1_GB:
	case SMU_MEMORY_POOL_SIZE_2_GB:
		ret = amdgpu_bo_create_kernel(adev,
					      memory_pool->size,
					      memory_pool->align,
					      memory_pool->domain,
					      &memory_pool->bo,
					      &memory_pool->mc_address,
					      &memory_pool->cpu_addr);
		if (ret)
			dev_err(adev->dev, "VRAM allocation for dramlog failed!\n");
		break;
	default:
		break;
	}

	return ret;
}

static int smu_free_memory_pool(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;

	if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
		return 0;

	amdgpu_bo_free_kernel(&memory_pool->bo,
			      &memory_pool->mc_address,
			      &memory_pool->cpu_addr);

	memset(memory_pool, 0, sizeof(struct smu_table));

	return 0;
}

static int smu_alloc_dummy_read_table(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *dummy_read_1_table =
			&smu_table->dummy_read_1_table;
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	if (!dummy_read_1_table->size)
		return 0;

	ret = amdgpu_bo_create_kernel(adev,
				      dummy_read_1_table->size,
				      dummy_read_1_table->align,
				      dummy_read_1_table->domain,
				      &dummy_read_1_table->bo,
				      &dummy_read_1_table->mc_address,
				      &dummy_read_1_table->cpu_addr);
	if (ret)
		dev_err(adev->dev, "VRAM allocation for dummy read table failed!\n");

	return ret;
}

static void smu_free_dummy_read_table(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *dummy_read_1_table =
			&smu_table->dummy_read_1_table;


	amdgpu_bo_free_kernel(&dummy_read_1_table->bo,
			      &dummy_read_1_table->mc_address,
			      &dummy_read_1_table->cpu_addr);

	memset(dummy_read_1_table, 0, sizeof(struct smu_table));
}

static int smu_smc_table_sw_init(struct smu_context *smu)
{
	int ret;

	/**
	 * Create smu_table structure, and init smc tables such as
	 * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
	 */
	ret = smu_init_smc_tables(smu);
	if (ret) {
		dev_err(smu->adev->dev, "Failed to init smc tables!\n");
		return ret;
	}

	/**
	 * Create smu_power_context structure, and allocate smu_dpm_context and
	 * context size to fill the smu_power_context data.
	 */
	ret = smu_init_power(smu);
	if (ret) {
		dev_err(smu->adev->dev, "Failed to init smu_init_power!\n");
		return ret;
	}

	/*
	 * allocate vram bos to store smc table contents.
	 */
	ret = smu_init_fb_allocations(smu);
	if (ret)
		return ret;

	ret = smu_alloc_memory_pool(smu);
	if (ret)
		return ret;

	ret = smu_alloc_dummy_read_table(smu);
	if (ret)
		return ret;

	ret = smu_i2c_init(smu);
	if (ret)
		return ret;

	return 0;
}

static int smu_smc_table_sw_fini(struct smu_context *smu)
{
	int ret;

	smu_i2c_fini(smu);

	smu_free_dummy_read_table(smu);

	ret = smu_free_memory_pool(smu);
	if (ret)
		return ret;

	ret = smu_fini_fb_allocations(smu);
	if (ret)
		return ret;

	ret = smu_fini_power(smu);
	if (ret) {
		dev_err(smu->adev->dev, "Failed to init smu_fini_power!\n");
		return ret;
	}

	ret = smu_fini_smc_tables(smu);
	if (ret) {
		dev_err(smu->adev->dev, "Failed to smu_fini_smc_tables!\n");
		return ret;
	}

	return 0;
}

static void smu_throttling_logging_work_fn(struct work_struct *work)
{
	struct smu_context *smu = container_of(work, struct smu_context,
					       throttling_logging_work);

	smu_log_thermal_throttling(smu);
}

static void smu_interrupt_work_fn(struct work_struct *work)
{
	struct smu_context *smu = container_of(work, struct smu_context,
					       interrupt_work);

	if (smu->ppt_funcs && smu->ppt_funcs->interrupt_work)
		smu->ppt_funcs->interrupt_work(smu);
}

static void smu_swctf_delayed_work_handler(struct work_struct *work)
{
	struct smu_context *smu =
		container_of(work, struct smu_context, swctf_delayed_work.work);
	struct smu_temperature_range *range =
				&smu->thermal_range;
	struct amdgpu_device *adev = smu->adev;
	uint32_t hotspot_tmp, size;

	/*
	 * If the hotspot temperature is confirmed as below SW CTF setting point
	 * after the delay enforced, nothing will be done.
	 * Otherwise, a graceful shutdown will be performed to prevent further damage.
	 */
	if (range->software_shutdown_temp &&
	    smu->ppt_funcs->read_sensor &&
	    !smu->ppt_funcs->read_sensor(smu,
					 AMDGPU_PP_SENSOR_HOTSPOT_TEMP,
					 &hotspot_tmp,
					 &size) &&
	    hotspot_tmp / 1000 < range->software_shutdown_temp)
		return;

	dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n");
	dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n");
	orderly_poweroff(true);
}

static void smu_init_xgmi_plpd_mode(struct smu_context *smu)
{
	if (amdgpu_ip_version(smu->adev, MP1_HWIP, 0) == IP_VERSION(11, 0, 2)) {
		smu->plpd_mode = XGMI_PLPD_DEFAULT;
		return;
	}

	/* PMFW put PLPD into default policy after enabling the feature */
	if (smu_feature_is_enabled(smu,
				   SMU_FEATURE_XGMI_PER_LINK_PWR_DWN_BIT))
		smu->plpd_mode = XGMI_PLPD_DEFAULT;
	else
		smu->plpd_mode = XGMI_PLPD_NONE;
}

static int smu_sw_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = adev->powerplay.pp_handle;
	int ret;

	smu->pool_size = adev->pm.smu_prv_buffer_size;
	smu->smu_feature.feature_num = SMU_FEATURE_MAX;
	bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);

	INIT_WORK(&smu->throttling_logging_work, smu_throttling_logging_work_fn);
	INIT_WORK(&smu->interrupt_work, smu_interrupt_work_fn);
	atomic64_set(&smu->throttle_int_counter, 0);
	smu->watermarks_bitmap = 0;
	smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;

	atomic_set(&smu->smu_power.power_gate.vcn_gated, 1);
	atomic_set(&smu->smu_power.power_gate.jpeg_gated, 1);
	atomic_set(&smu->smu_power.power_gate.vpe_gated, 1);
	atomic_set(&smu->smu_power.power_gate.umsch_mm_gated, 1);

	smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
	smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
	smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
	smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
	smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
	smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;

	smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
	smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
	smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
	smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
	smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
	smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
	smu->display_config = &adev->pm.pm_display_cfg;

	smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
	smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;

	INIT_DELAYED_WORK(&smu->swctf_delayed_work,
			  smu_swctf_delayed_work_handler);

	ret = smu_smc_table_sw_init(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to sw init smc table!\n");
		return ret;
	}

	/* get boot_values from vbios to set revision, gfxclk, and etc. */
	ret = smu_get_vbios_bootup_values(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to get VBIOS boot clock values!\n");
		return ret;
	}

	ret = smu_init_pptable_microcode(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to setup pptable firmware!\n");
		return ret;
	}

	ret = smu_register_irq_handler(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to register smc irq handler!\n");
		return ret;
	}

	/* If there is no way to query fan control mode, fan control is not supported */
	if (!smu->ppt_funcs->get_fan_control_mode)
		smu->adev->pm.no_fan = true;

	return 0;
}

static int smu_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = adev->powerplay.pp_handle;
	int ret;

	ret = smu_smc_table_sw_fini(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to sw fini smc table!\n");
		return ret;
	}

	smu_fini_microcode(smu);

	return 0;
}

static int smu_get_thermal_temperature_range(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_temperature_range *range =
				&smu->thermal_range;
	int ret = 0;

	if (!smu->ppt_funcs->get_thermal_temperature_range)
		return 0;

	ret = smu->ppt_funcs->get_thermal_temperature_range(smu, range);
	if (ret)
		return ret;

	adev->pm.dpm.thermal.min_temp = range->min;
	adev->pm.dpm.thermal.max_temp = range->max;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range->edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range->hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range->hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range->hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range->mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range->mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range->mem_emergency_max;

	return ret;
}

/**
 * smu_wbrf_handle_exclusion_ranges - consume the wbrf exclusion ranges
 *
 * @smu: smu_context pointer
 *
 * Retrieve the wbrf exclusion ranges and send them to PMFW for proper handling.
 * Returns 0 on success, error on failure.
 */
static int smu_wbrf_handle_exclusion_ranges(struct smu_context *smu)
{
	struct wbrf_ranges_in_out wbrf_exclusion = {0};
	struct freq_band_range *wifi_bands = wbrf_exclusion.band_list;
	struct amdgpu_device *adev = smu->adev;
	uint32_t num_of_wbrf_ranges = MAX_NUM_OF_WBRF_RANGES;
	uint64_t start, end;
	int ret, i, j;

	ret = amd_wbrf_retrieve_freq_band(adev->dev, &wbrf_exclusion);
	if (ret) {
		dev_err(adev->dev, "Failed to retrieve exclusion ranges!\n");
		return ret;
	}

	/*
	 * The exclusion ranges array we got might be filled with holes and duplicate
	 * entries. For example:
	 * {(2400, 2500), (0, 0), (6882, 6962), (2400, 2500), (0, 0), (6117, 6189), (0, 0)...}
	 * We need to do some sortups to eliminate those holes and duplicate entries.
	 * Expected output: {(2400, 2500), (6117, 6189), (6882, 6962), (0, 0)...}
	 */
	for (i = 0; i < num_of_wbrf_ranges; i++) {
		start = wifi_bands[i].start;
		end = wifi_bands[i].end;

		/* get the last valid entry to fill the intermediate hole */
		if (!start && !end) {
			for (j = num_of_wbrf_ranges - 1; j > i; j--)
				if (wifi_bands[j].start && wifi_bands[j].end)
					break;

			/* no valid entry left */
			if (j <= i)
				break;

			start = wifi_bands[i].start = wifi_bands[j].start;
			end = wifi_bands[i].end = wifi_bands[j].end;
			wifi_bands[j].start = 0;
			wifi_bands[j].end = 0;
			num_of_wbrf_ranges = j;
		}

		/* eliminate duplicate entries */
		for (j = i + 1; j < num_of_wbrf_ranges; j++) {
			if ((wifi_bands[j].start == start) && (wifi_bands[j].end == end)) {
				wifi_bands[j].start = 0;
				wifi_bands[j].end = 0;
			}
		}
	}

	/* Send the sorted wifi_bands to PMFW */
	ret = smu_set_wbrf_exclusion_ranges(smu, wifi_bands);
	/* Try to set the wifi_bands again */
	if (unlikely(ret == -EBUSY)) {
		mdelay(5);
		ret = smu_set_wbrf_exclusion_ranges(smu, wifi_bands);
	}

	return ret;
}

/**
 * smu_wbrf_event_handler - handle notify events
 *
 * @nb: notifier block
 * @action: event type
 * @_arg: event data
 *
 * Calls relevant amdgpu function in response to wbrf event
 * notification from kernel.
 */
static int smu_wbrf_event_handler(struct notifier_block *nb,
				  unsigned long action, void *_arg)
{
	struct smu_context *smu = container_of(nb, struct smu_context, wbrf_notifier);

	switch (action) {
	case WBRF_CHANGED:
		schedule_delayed_work(&smu->wbrf_delayed_work,
				      msecs_to_jiffies(SMU_WBRF_EVENT_HANDLING_PACE));
		break;
	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
}

/**
 * smu_wbrf_delayed_work_handler - callback on delayed work timer expired
 *
 * @work: struct work_struct pointer
 *
 * Flood is over and driver will consume the latest exclusion ranges.
 */
static void smu_wbrf_delayed_work_handler(struct work_struct *work)
{
	struct smu_context *smu = container_of(work, struct smu_context, wbrf_delayed_work.work);

	smu_wbrf_handle_exclusion_ranges(smu);
}

/**
 * smu_wbrf_support_check - check wbrf support
 *
 * @smu: smu_context pointer
 *
 * Verifies the ACPI interface whether wbrf is supported.
 */
static void smu_wbrf_support_check(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;

	smu->wbrf_supported = smu_is_asic_wbrf_supported(smu) && amdgpu_wbrf &&
							acpi_amd_wbrf_supported_consumer(adev->dev);

	if (smu->wbrf_supported)
		dev_info(adev->dev, "RF interference mitigation is supported\n");
}

/**
 * smu_wbrf_init - init driver wbrf support
 *
 * @smu: smu_context pointer
 *
 * Verifies the AMD ACPI interfaces and registers with the wbrf
 * notifier chain if wbrf feature is supported.
 * Returns 0 on success, error on failure.
 */
static int smu_wbrf_init(struct smu_context *smu)
{
	int ret;

	if (!smu->wbrf_supported)
		return 0;

	INIT_DELAYED_WORK(&smu->wbrf_delayed_work, smu_wbrf_delayed_work_handler);

	smu->wbrf_notifier.notifier_call = smu_wbrf_event_handler;
	ret = amd_wbrf_register_notifier(&smu->wbrf_notifier);
	if (ret)
		return ret;

	/*
	 * Some wifiband exclusion ranges may be already there
	 * before our driver loaded. To make sure our driver
	 * is awared of those exclusion ranges.
	 */
	schedule_delayed_work(&smu->wbrf_delayed_work,
			      msecs_to_jiffies(SMU_WBRF_EVENT_HANDLING_PACE));

	return 0;
}

/**
 * smu_wbrf_fini - tear down driver wbrf support
 *
 * @smu: smu_context pointer
 *
 * Unregisters with the wbrf notifier chain.
 */
static void smu_wbrf_fini(struct smu_context *smu)
{
	if (!smu->wbrf_supported)
		return;

	amd_wbrf_unregister_notifier(&smu->wbrf_notifier);

	cancel_delayed_work_sync(&smu->wbrf_delayed_work);
}

static int smu_smc_hw_setup(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	struct amdgpu_device *adev = smu->adev;
	uint8_t pcie_gen = 0, pcie_width = 0;
	uint64_t features_supported;
	int ret = 0;

	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
	case IP_VERSION(11, 0, 7):
	case IP_VERSION(11, 0, 11):
	case IP_VERSION(11, 5, 0):
	case IP_VERSION(11, 0, 12):
		if (adev->in_suspend && smu_is_dpm_running(smu)) {
			dev_info(adev->dev, "dpm has been enabled\n");
			ret = smu_system_features_control(smu, true);
			if (ret)
				dev_err(adev->dev, "Failed system features control!\n");
			return ret;
		}
		break;
	default:
		break;
	}

	ret = smu_init_display_count(smu, 0);
	if (ret) {
		dev_info(adev->dev, "Failed to pre-set display count as 0!\n");
		return ret;
	}

	ret = smu_set_driver_table_location(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to SetDriverDramAddr!\n");
		return ret;
	}

	/*
	 * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
	 */
	ret = smu_set_tool_table_location(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to SetToolsDramAddr!\n");
		return ret;
	}

	/*
	 * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
	 * pool location.
	 */
	ret = smu_notify_memory_pool_location(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to SetDramLogDramAddr!\n");
		return ret;
	}

	/*
	 * It is assumed the pptable used before runpm is same as
	 * the one used afterwards. Thus, we can reuse the stored
	 * copy and do not need to resetup the pptable again.
	 */
	if (!adev->in_runpm) {
		ret = smu_setup_pptable(smu);
		if (ret) {
			dev_err(adev->dev, "Failed to setup pptable!\n");
			return ret;
		}
	}

	/* smu_dump_pptable(smu); */

	/*
	 * With SCPM enabled, PSP is responsible for the PPTable transferring
	 * (to SMU). Driver involvement is not needed and permitted.
	 */
	if (!adev->scpm_enabled) {
		/*
		 * Copy pptable bo in the vram to smc with SMU MSGs such as
		 * SetDriverDramAddr and TransferTableDram2Smu.
		 */
		ret = smu_write_pptable(smu);
		if (ret) {
			dev_err(adev->dev, "Failed to transfer pptable to SMC!\n");
			return ret;
		}
	}

	/* issue Run*Btc msg */
	ret = smu_run_btc(smu);
	if (ret)
		return ret;

	/* Enable UclkShadow on wbrf supported */
	if (smu->wbrf_supported) {
		ret = smu_enable_uclk_shadow(smu, true);
		if (ret) {
			dev_err(adev->dev, "Failed to enable UclkShadow feature to support wbrf!\n");
			return ret;
		}
	}

	/*
	 * With SCPM enabled, these actions(and relevant messages) are
	 * not needed and permitted.
	 */
	if (!adev->scpm_enabled) {
		ret = smu_feature_set_allowed_mask(smu);
		if (ret) {
			dev_err(adev->dev, "Failed to set driver allowed features mask!\n");
			return ret;
		}
	}

	ret = smu_system_features_control(smu, true);
	if (ret) {
		dev_err(adev->dev, "Failed to enable requested dpm features!\n");
		return ret;
	}

	smu_init_xgmi_plpd_mode(smu);

	ret = smu_feature_get_enabled_mask(smu, &features_supported);
	if (ret) {
		dev_err(adev->dev, "Failed to retrieve supported dpm features!\n");
		return ret;
	}
	bitmap_copy(feature->supported,
		    (unsigned long *)&features_supported,
		    feature->feature_num);

	if (!smu_is_dpm_running(smu))
		dev_info(adev->dev, "dpm has been disabled\n");

	/*
	 * Set initialized values (get from vbios) to dpm tables context such as
	 * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
	 * type of clks.
	 */
	ret = smu_set_default_dpm_table(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to setup default dpm clock tables!\n");
		return ret;
	}

	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
		pcie_gen = 3;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
		pcie_gen = 2;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
		pcie_gen = 1;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
		pcie_gen = 0;

	/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
	 * Bit 15:8:  PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
	 * Bit 7:0:   PCIE lane width, 1 to 7 corresponds is x1 to x32
	 */
	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
		pcie_width = 6;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
		pcie_width = 5;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
		pcie_width = 4;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
		pcie_width = 3;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
		pcie_width = 2;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
		pcie_width = 1;
	ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);
	if (ret) {
		dev_err(adev->dev, "Attempt to override pcie params failed!\n");
		return ret;
	}

	ret = smu_get_thermal_temperature_range(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to get thermal temperature ranges!\n");
		return ret;
	}

	ret = smu_enable_thermal_alert(smu);
	if (ret) {
	  dev_err(adev->dev, "Failed to enable thermal alert!\n");
	  return ret;
	}

	ret = smu_notify_display_change(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to notify display change!\n");
		return ret;
	}

	/*
	 * Set min deep sleep dce fclk with bootup value from vbios via
	 * SetMinDeepSleepDcefclk MSG.
	 */
	ret = smu_set_min_dcef_deep_sleep(smu,
					  smu->smu_table.boot_values.dcefclk / 100);
	if (ret) {
		dev_err(adev->dev, "Error setting min deepsleep dcefclk\n");
		return ret;
	}

	/* Init wbrf support. Properly setup the notifier */
	ret = smu_wbrf_init(smu);
	if (ret)
		dev_err(adev->dev, "Error during wbrf init call\n");

	return ret;
}

static int smu_start_smc_engine(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
		if (amdgpu_ip_version(adev, MP1_HWIP, 0) < IP_VERSION(11, 0, 0)) {
			if (smu->ppt_funcs->load_microcode) {
				ret = smu->ppt_funcs->load_microcode(smu);
				if (ret)
					return ret;
			}
		}
	}

	if (smu->ppt_funcs->check_fw_status) {
		ret = smu->ppt_funcs->check_fw_status(smu);
		if (ret) {
			dev_err(adev->dev, "SMC is not ready\n");
			return ret;
		}
	}

	/*
	 * Send msg GetDriverIfVersion to check if the return value is equal
	 * with DRIVER_IF_VERSION of smc header.
	 */
	ret = smu_check_fw_version(smu);
	if (ret)
		return ret;

	return ret;
}

static int smu_hw_init(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = adev->powerplay.pp_handle;

	if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) {
		smu->pm_enabled = false;
		return 0;
	}

	ret = smu_start_smc_engine(smu);
	if (ret) {
		dev_err(adev->dev, "SMC engine is not correctly up!\n");
		return ret;
	}

	/*
	 * Check whether wbrf is supported. This needs to be done
	 * before SMU setup starts since part of SMU configuration
	 * relies on this.
	 */
	smu_wbrf_support_check(smu);

	if (smu->is_apu) {
		ret = smu_set_gfx_imu_enable(smu);
		if (ret)
			return ret;
		smu_dpm_set_vcn_enable(smu, true);
		smu_dpm_set_jpeg_enable(smu, true);
		smu_dpm_set_vpe_enable(smu, true);
		smu_dpm_set_umsch_mm_enable(smu, true);
		smu_set_mall_enable(smu);
		smu_set_gfx_cgpg(smu, true);
	}

	if (!smu->pm_enabled)
		return 0;

	ret = smu_get_driver_allowed_feature_mask(smu);
	if (ret)
		return ret;

	ret = smu_smc_hw_setup(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to setup smc hw!\n");
		return ret;
	}

	/*
	 * Move maximum sustainable clock retrieving here considering
	 * 1. It is not needed on resume(from S3).
	 * 2. DAL settings come between .hw_init and .late_init of SMU.
	 *    And DAL needs to know the maximum sustainable clocks. Thus
	 *    it cannot be put in .late_init().
	 */
	ret = smu_init_max_sustainable_clocks(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to init max sustainable clocks!\n");
		return ret;
	}

	adev->pm.dpm_enabled = true;

	dev_info(adev->dev, "SMU is initialized successfully!\n");

	return 0;
}

static int smu_disable_dpms(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;
	bool use_baco = !smu->is_apu &&
		((amdgpu_in_reset(adev) &&
		  (amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO)) ||
		 ((adev->in_runpm || adev->in_s4) && amdgpu_asic_supports_baco(adev)));

	/*
	 * For SMU 13.0.0 and 13.0.7, PMFW will handle the DPM features(disablement or others)
	 * properly on suspend/reset/unload. Driver involvement may cause some unexpected issues.
	 */
	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
	case IP_VERSION(13, 0, 0):
	case IP_VERSION(13, 0, 7):
	case IP_VERSION(13, 0, 10):
		return 0;
	default:
		break;
	}

	/*
	 * For custom pptable uploading, skip the DPM features
	 * disable process on Navi1x ASICs.
	 *   - As the gfx related features are under control of
	 *     RLC on those ASICs. RLC reinitialization will be
	 *     needed to reenable them. That will cost much more
	 *     efforts.
	 *
	 *   - SMU firmware can handle the DPM reenablement
	 *     properly.
	 */
	if (smu->uploading_custom_pp_table) {
		switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
		case IP_VERSION(11, 0, 0):
		case IP_VERSION(11, 0, 5):
		case IP_VERSION(11, 0, 9):
		case IP_VERSION(11, 0, 7):
		case IP_VERSION(11, 0, 11):
		case IP_VERSION(11, 5, 0):
		case IP_VERSION(11, 0, 12):
		case IP_VERSION(11, 0, 13):
			return 0;
		default:
			break;
		}
	}

	/*
	 * For Sienna_Cichlid, PMFW will handle the features disablement properly
	 * on BACO in. Driver involvement is unnecessary.
	 */
	if (use_baco) {
		switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
		case IP_VERSION(11, 0, 7):
		case IP_VERSION(11, 0, 0):
		case IP_VERSION(11, 0, 5):
		case IP_VERSION(11, 0, 9):
		case IP_VERSION(13, 0, 7):
			return 0;
		default:
			break;
		}
	}

	/*
	 * For SMU 13.0.4/11 and 14.0.0, PMFW will handle the features disablement properly
	 * for gpu reset and S0i3 cases. Driver involvement is unnecessary.
	 */
	if (amdgpu_in_reset(adev) || adev->in_s0ix) {
		switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
		case IP_VERSION(13, 0, 4):
		case IP_VERSION(13, 0, 11):
		case IP_VERSION(14, 0, 0):
		case IP_VERSION(14, 0, 1):
			return 0;
		default:
			break;
		}
	}

	/*
	 * For gpu reset, runpm and hibernation through BACO,
	 * BACO feature has to be kept enabled.
	 */
	if (use_baco && smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT)) {
		ret = smu_disable_all_features_with_exception(smu,
							      SMU_FEATURE_BACO_BIT);
		if (ret)
			dev_err(adev->dev, "Failed to disable smu features except BACO.\n");
	} else {
		/* DisableAllSmuFeatures message is not permitted with SCPM enabled */
		if (!adev->scpm_enabled) {
			ret = smu_system_features_control(smu, false);
			if (ret)
				dev_err(adev->dev, "Failed to disable smu features.\n");
		}
	}

	/* Notify SMU RLC is going to be off, stop RLC and SMU interaction.
	 * otherwise SMU will hang while interacting with RLC if RLC is halted
	 * this is a WA for Vangogh asic which fix the SMU hang issue.
	 */
	ret = smu_notify_rlc_state(smu, false);
	if (ret) {
		dev_err(adev->dev, "Fail to notify rlc status!\n");
		return ret;
	}

	if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(9, 4, 2) &&
	    !((adev->flags & AMD_IS_APU) && adev->gfx.imu.funcs) &&
	    !amdgpu_sriov_vf(adev) && adev->gfx.rlc.funcs->stop)
		adev->gfx.rlc.funcs->stop(adev);

	return ret;
}

static int smu_smc_hw_cleanup(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	smu_wbrf_fini(smu);

	cancel_work_sync(&smu->throttling_logging_work);
	cancel_work_sync(&smu->interrupt_work);

	ret = smu_disable_thermal_alert(smu);
	if (ret) {
		dev_err(adev->dev, "Fail to disable thermal alert!\n");
		return ret;
	}

	cancel_delayed_work_sync(&smu->swctf_delayed_work);

	ret = smu_disable_dpms(smu);
	if (ret) {
		dev_err(adev->dev, "Fail to disable dpm features!\n");
		return ret;
	}

	return 0;
}

static int smu_reset_mp1_state(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	if ((!adev->in_runpm) && (!adev->in_suspend) &&
		(!amdgpu_in_reset(adev)) && amdgpu_ip_version(adev, MP1_HWIP, 0) ==
									IP_VERSION(13, 0, 10) &&
		!amdgpu_device_has_display_hardware(adev))
		ret = smu_set_mp1_state(smu, PP_MP1_STATE_UNLOAD);

	return ret;
}

static int smu_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = adev->powerplay.pp_handle;
	int ret;

	if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

	smu_dpm_set_vcn_enable(smu, false);
	smu_dpm_set_jpeg_enable(smu, false);
	smu_dpm_set_vpe_enable(smu, false);
	smu_dpm_set_umsch_mm_enable(smu, false);

	adev->vcn.cur_state = AMD_PG_STATE_GATE;
	adev->jpeg.cur_state = AMD_PG_STATE_GATE;

	if (!smu->pm_enabled)
		return 0;

	adev->pm.dpm_enabled = false;

	ret = smu_smc_hw_cleanup(smu);
	if (ret)
		return ret;

	ret = smu_reset_mp1_state(smu);
	if (ret)
		return ret;

	return 0;
}

static void smu_late_fini(void *handle)
{
	struct amdgpu_device *adev = handle;
	struct smu_context *smu = adev->powerplay.pp_handle;

	kfree(smu);
}

static int smu_reset(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;

	ret = smu_hw_fini(adev);
	if (ret)
		return ret;

	ret = smu_hw_init(adev);
	if (ret)
		return ret;

	ret = smu_late_init(adev);
	if (ret)
		return ret;

	return 0;
}

static int smu_suspend(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = adev->powerplay.pp_handle;
	int ret;
	uint64_t count;

	if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

	if (!smu->pm_enabled)
		return 0;

	adev->pm.dpm_enabled = false;

	ret = smu_smc_hw_cleanup(smu);
	if (ret)
		return ret;

	smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);

	smu_set_gfx_cgpg(smu, false);

	/*
	 * pwfw resets entrycount when device is suspended, so we save the
	 * last value to be used when we resume to keep it consistent
	 */
	ret = smu_get_entrycount_gfxoff(smu, &count);
	if (!ret)
		adev->gfx.gfx_off_entrycount = count;

	return 0;
}

static int smu_resume(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = adev->powerplay.pp_handle;

	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

	if (!smu->pm_enabled)
		return 0;

	dev_info(adev->dev, "SMU is resuming...\n");

	ret = smu_start_smc_engine(smu);
	if (ret) {
		dev_err(adev->dev, "SMC engine is not correctly up!\n");
		return ret;
	}

	ret = smu_smc_hw_setup(smu);
	if (ret) {
		dev_err(adev->dev, "Failed to setup smc hw!\n");
		return ret;
	}

	ret = smu_set_gfx_imu_enable(smu);
	if (ret)
		return ret;

	smu_set_gfx_cgpg(smu, true);

	smu->disable_uclk_switch = 0;

	adev->pm.dpm_enabled = true;

	dev_info(adev->dev, "SMU is resumed successfully!\n");

	return 0;
}

static int smu_display_configuration_change(void *handle,
					    const struct amd_pp_display_configuration *display_config)
{
	struct smu_context *smu = handle;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!display_config)
		return -EINVAL;

	smu_set_min_dcef_deep_sleep(smu,
				    display_config->min_dcef_deep_sleep_set_clk / 100);

	return 0;
}

static int smu_set_clockgating_state(void *handle,
				     enum amd_clockgating_state state)
{
	return 0;
}

static int smu_set_powergating_state(void *handle,
				     enum amd_powergating_state state)
{
	return 0;
}

static int smu_enable_umd_pstate(void *handle,
		      enum amd_dpm_forced_level *level)
{
	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;

	struct smu_context *smu = (struct smu_context*)(handle);
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
		return -EINVAL;

	if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
		/* enter umd pstate, save current level, disable gfx cg*/
		if (*level & profile_mode_mask) {
			smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
			smu_gpo_control(smu, false);
			smu_gfx_ulv_control(smu, false);
			smu_deep_sleep_control(smu, false);
			amdgpu_asic_update_umd_stable_pstate(smu->adev, true);
		}
	} else {
		/* exit umd pstate, restore level, enable gfx cg*/
		if (!(*level & profile_mode_mask)) {
			if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
				*level = smu_dpm_ctx->saved_dpm_level;
			amdgpu_asic_update_umd_stable_pstate(smu->adev, false);
			smu_deep_sleep_control(smu, true);
			smu_gfx_ulv_control(smu, true);
			smu_gpo_control(smu, true);
		}
	}

	return 0;
}

static int smu_bump_power_profile_mode(struct smu_context *smu,
					   long *param,
					   uint32_t param_size)
{
	int ret = 0;

	if (smu->ppt_funcs->set_power_profile_mode)
		ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size);

	return ret;
}

static int smu_adjust_power_state_dynamic(struct smu_context *smu,
				   enum amd_dpm_forced_level level,
				   bool skip_display_settings)
{
	int ret = 0;
	int index = 0;
	long workload;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

	if (!skip_display_settings) {
		ret = smu_display_config_changed(smu);
		if (ret) {
			dev_err(smu->adev->dev, "Failed to change display config!");
			return ret;
		}
	}

	ret = smu_apply_clocks_adjust_rules(smu);
	if (ret) {
		dev_err(smu->adev->dev, "Failed to apply clocks adjust rules!");
		return ret;
	}

	if (!skip_display_settings) {
		ret = smu_notify_smc_display_config(smu);
		if (ret) {
			dev_err(smu->adev->dev, "Failed to notify smc display config!");
			return ret;
		}
	}

	if (smu_dpm_ctx->dpm_level != level) {
		ret = smu_asic_set_performance_level(smu, level);
		if (ret) {
			dev_err(smu->adev->dev, "Failed to set performance level!");
			return ret;
		}

		/* update the saved copy */
		smu_dpm_ctx->dpm_level = level;
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL &&
		smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) {
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];

		if (smu->power_profile_mode != workload)
			smu_bump_power_profile_mode(smu, &workload, 0);
	}

	return ret;
}

static int smu_handle_task(struct smu_context *smu,
			   enum amd_dpm_forced_level level,
			   enum amd_pp_task task_id)
{
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	switch (task_id) {
	case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
		ret = smu_pre_display_config_changed(smu);
		if (ret)
			return ret;
		ret = smu_adjust_power_state_dynamic(smu, level, false);
		break;
	case AMD_PP_TASK_COMPLETE_INIT:
	case AMD_PP_TASK_READJUST_POWER_STATE:
		ret = smu_adjust_power_state_dynamic(smu, level, true);
		break;
	default:
		break;
	}

	return ret;
}

static int smu_handle_dpm_task(void *handle,
			       enum amd_pp_task task_id,
			       enum amd_pm_state_type *user_state)
{
	struct smu_context *smu = handle;
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	return smu_handle_task(smu, smu_dpm->dpm_level, task_id);

}

static int smu_switch_power_profile(void *handle,
				    enum PP_SMC_POWER_PROFILE type,
				    bool en)
{
	struct smu_context *smu = handle;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	long workload;
	uint32_t index;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
		return -EINVAL;

	if (!en) {
		smu->workload_mask &= ~(1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	} else {
		smu->workload_mask |= (1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL &&
		smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM)
		smu_bump_power_profile_mode(smu, &workload, 0);

	return 0;
}

static enum amd_dpm_forced_level smu_get_performance_level(void *handle)
{
	struct smu_context *smu = handle;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
		return -EINVAL;

	return smu_dpm_ctx->dpm_level;
}

static int smu_force_performance_level(void *handle,
				       enum amd_dpm_forced_level level)
{
	struct smu_context *smu = handle;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
		return -EINVAL;

	ret = smu_enable_umd_pstate(smu, &level);
	if (ret)
		return ret;

	ret = smu_handle_task(smu, level,
			      AMD_PP_TASK_READJUST_POWER_STATE);

	/* reset user dpm clock state */
	if (!ret && smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		memset(smu->user_dpm_profile.clk_mask, 0, sizeof(smu->user_dpm_profile.clk_mask));
		smu->user_dpm_profile.clk_dependency = 0;
	}

	return ret;
}

static int smu_set_display_count(void *handle, uint32_t count)
{
	struct smu_context *smu = handle;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	return smu_init_display_count(smu, count);
}

static int smu_force_smuclk_levels(struct smu_context *smu,
			 enum smu_clk_type clk_type,
			 uint32_t mask)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		dev_dbg(smu->adev->dev, "force clock level is for dpm manual mode only.\n");
		return -EINVAL;
	}

	if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels) {
		ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask);
		if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) {
			smu->user_dpm_profile.clk_mask[clk_type] = mask;
			smu_set_user_clk_dependencies(smu, clk_type);
		}
	}

	return ret;
}

static int smu_force_ppclk_levels(void *handle,
				  enum pp_clock_type type,
				  uint32_t mask)
{
	struct smu_context *smu = handle;
	enum smu_clk_type clk_type;

	switch (type) {
	case PP_SCLK:
		clk_type = SMU_SCLK; break;
	case PP_MCLK:
		clk_type = SMU_MCLK; break;
	case PP_PCIE:
		clk_type = SMU_PCIE; break;
	case PP_SOCCLK:
		clk_type = SMU_SOCCLK; break;
	case PP_FCLK:
		clk_type = SMU_FCLK; break;
	case PP_DCEFCLK:
		clk_type = SMU_DCEFCLK; break;
	case PP_VCLK:
		clk_type = SMU_VCLK; break;
	case PP_VCLK1:
		clk_type = SMU_VCLK1; break;
	case PP_DCLK:
		clk_type = SMU_DCLK; break;
	case PP_DCLK1:
		clk_type = SMU_DCLK1; break;
	case OD_SCLK:
		clk_type = SMU_OD_SCLK; break;
	case OD_MCLK:
		clk_type = SMU_OD_MCLK; break;
	case OD_VDDC_CURVE:
		clk_type = SMU_OD_VDDC_CURVE; break;
	case OD_RANGE:
		clk_type = SMU_OD_RANGE; break;
	default:
		return -EINVAL;
	}

	return smu_force_smuclk_levels(smu, clk_type, mask);
}

/*
 * On system suspending or resetting, the dpm_enabled
 * flag will be cleared. So that those SMU services which
 * are not supported will be gated.
 * However, the mp1 state setting should still be granted
 * even if the dpm_enabled cleared.
 */
static int smu_set_mp1_state(void *handle,
			     enum pp_mp1_state mp1_state)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs &&
	    smu->ppt_funcs->set_mp1_state)
		ret = smu->ppt_funcs->set_mp1_state(smu, mp1_state);

	return ret;
}

static int smu_set_df_cstate(void *handle,
			     enum pp_df_cstate state)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate)
		return 0;

	ret = smu->ppt_funcs->set_df_cstate(smu, state);
	if (ret)
		dev_err(smu->adev->dev, "[SetDfCstate] failed!\n");

	return ret;
}

int smu_write_watermarks_table(struct smu_context *smu)
{
	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	return smu_set_watermarks_table(smu, NULL);
}

static int smu_set_watermarks_for_clock_ranges(void *handle,
					       struct pp_smu_wm_range_sets *clock_ranges)
{
	struct smu_context *smu = handle;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu->disable_watermark)
		return 0;

	return smu_set_watermarks_table(smu, clock_ranges);
}

int smu_set_ac_dc(struct smu_context *smu)
{
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	/* controlled by firmware */
	if (smu->dc_controlled_by_gpio)
		return 0;

	ret = smu_set_power_source(smu,
				   smu->adev->pm.ac_power ? SMU_POWER_SOURCE_AC :
				   SMU_POWER_SOURCE_DC);
	if (ret)
		dev_err(smu->adev->dev, "Failed to switch to %s mode!\n",
		       smu->adev->pm.ac_power ? "AC" : "DC");

	return ret;
}

const struct amd_ip_funcs smu_ip_funcs = {
	.name = "smu",
	.early_init = smu_early_init,
	.late_init = smu_late_init,
	.sw_init = smu_sw_init,
	.sw_fini = smu_sw_fini,
	.hw_init = smu_hw_init,
	.hw_fini = smu_hw_fini,
	.late_fini = smu_late_fini,
	.suspend = smu_suspend,
	.resume = smu_resume,
	.is_idle = NULL,
	.check_soft_reset = NULL,
	.wait_for_idle = NULL,
	.soft_reset = NULL,
	.set_clockgating_state = smu_set_clockgating_state,
	.set_powergating_state = smu_set_powergating_state,
};

const struct amdgpu_ip_block_version smu_v11_0_ip_block = {
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 11,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};

const struct amdgpu_ip_block_version smu_v12_0_ip_block = {
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 12,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};

const struct amdgpu_ip_block_version smu_v13_0_ip_block = {
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 13,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};

const struct amdgpu_ip_block_version smu_v14_0_ip_block = {
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 14,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};

static int smu_load_microcode(void *handle)
{
	struct smu_context *smu = handle;
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	if (!smu->pm_enabled)
		return -EOPNOTSUPP;

	/* This should be used for non PSP loading */
	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)
		return 0;

	if (smu->ppt_funcs->load_microcode) {
		ret = smu->ppt_funcs->load_microcode(smu);
		if (ret) {
			dev_err(adev->dev, "Load microcode failed\n");
			return ret;
		}
	}

	if (smu->ppt_funcs->check_fw_status) {
		ret = smu->ppt_funcs->check_fw_status(smu);
		if (ret) {
			dev_err(adev->dev, "SMC is not ready\n");
			return ret;
		}
	}

	return ret;
}

static int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled)
{
	int ret = 0;

	if (smu->ppt_funcs->set_gfx_cgpg)
		ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled);

	return ret;
}

static int smu_set_fan_speed_rpm(void *handle, uint32_t speed)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu->ppt_funcs->set_fan_speed_rpm)
		return -EOPNOTSUPP;

	if (speed == U32_MAX)
		return -EINVAL;

	ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed);
	if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) {
		smu->user_dpm_profile.flags |= SMU_CUSTOM_FAN_SPEED_RPM;
		smu->user_dpm_profile.fan_speed_rpm = speed;

		/* Override custom PWM setting as they cannot co-exist */
		smu->user_dpm_profile.flags &= ~SMU_CUSTOM_FAN_SPEED_PWM;
		smu->user_dpm_profile.fan_speed_pwm = 0;
	}

	return ret;
}

/**
 * smu_get_power_limit - Request one of the SMU Power Limits
 *
 * @handle: pointer to smu context
 * @limit: requested limit is written back to this variable
 * @pp_limit_level: &pp_power_limit_level which limit of the power to return
 * @pp_power_type: &pp_power_type type of power
 * Return:  0 on success, <0 on error
 *
 */
int smu_get_power_limit(void *handle,
			uint32_t *limit,
			enum pp_power_limit_level pp_limit_level,
			enum pp_power_type pp_power_type)
{
	struct smu_context *smu = handle;
	struct amdgpu_device *adev = smu->adev;
	enum smu_ppt_limit_level limit_level;
	uint32_t limit_type;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	switch (pp_power_type) {
	case PP_PWR_TYPE_SUSTAINED:
		limit_type = SMU_DEFAULT_PPT_LIMIT;
		break;
	case PP_PWR_TYPE_FAST:
		limit_type = SMU_FAST_PPT_LIMIT;
		break;
	default:
		return -EOPNOTSUPP;
	}

	switch (pp_limit_level) {
	case PP_PWR_LIMIT_CURRENT:
		limit_level = SMU_PPT_LIMIT_CURRENT;
		break;
	case PP_PWR_LIMIT_DEFAULT:
		limit_level = SMU_PPT_LIMIT_DEFAULT;
		break;
	case PP_PWR_LIMIT_MAX:
		limit_level = SMU_PPT_LIMIT_MAX;
		break;
	case PP_PWR_LIMIT_MIN:
		limit_level = SMU_PPT_LIMIT_MIN;
		break;
	default:
		return -EOPNOTSUPP;
	}

	if (limit_type != SMU_DEFAULT_PPT_LIMIT) {
		if (smu->ppt_funcs->get_ppt_limit)
			ret = smu->ppt_funcs->get_ppt_limit(smu, limit, limit_type, limit_level);
	} else {
		switch (limit_level) {
		case SMU_PPT_LIMIT_CURRENT:
			switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
			case IP_VERSION(13, 0, 2):
			case IP_VERSION(13, 0, 6):
			case IP_VERSION(11, 0, 7):
			case IP_VERSION(11, 0, 11):
			case IP_VERSION(11, 0, 12):
			case IP_VERSION(11, 0, 13):
				ret = smu_get_asic_power_limits(smu,
								&smu->current_power_limit,
								NULL, NULL, NULL);
				break;
			default:
				break;
			}
			*limit = smu->current_power_limit;
			break;
		case SMU_PPT_LIMIT_DEFAULT:
			*limit = smu->default_power_limit;
			break;
		case SMU_PPT_LIMIT_MAX:
			*limit = smu->max_power_limit;
			break;
		case SMU_PPT_LIMIT_MIN:
			*limit = smu->min_power_limit;
			break;
		default:
			return -EINVAL;
		}
	}

	return ret;
}

static int smu_set_power_limit(void *handle, uint32_t limit)
{
	struct smu_context *smu = handle;
	uint32_t limit_type = limit >> 24;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	limit &= (1<<24)-1;
	if (limit_type != SMU_DEFAULT_PPT_LIMIT)
		if (smu->ppt_funcs->set_power_limit)
			return smu->ppt_funcs->set_power_limit(smu, limit_type, limit);

	if ((limit > smu->max_power_limit) || (limit < smu->min_power_limit)) {
		dev_err(smu->adev->dev,
			"New power limit (%d) is out of range [%d,%d]\n",
			limit, smu->min_power_limit, smu->max_power_limit);
		return -EINVAL;
	}

	if (!limit)
		limit = smu->current_power_limit;

	if (smu->ppt_funcs->set_power_limit) {
		ret = smu->ppt_funcs->set_power_limit(smu, limit_type, limit);
		if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE))
			smu->user_dpm_profile.power_limit = limit;
	}

	return ret;
}

static int smu_print_smuclk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf)
{
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->print_clk_levels)
		ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf);

	return ret;
}

static enum smu_clk_type smu_convert_to_smuclk(enum pp_clock_type type)
{
	enum smu_clk_type clk_type;

	switch (type) {
	case PP_SCLK:
		clk_type = SMU_SCLK; break;
	case PP_MCLK:
		clk_type = SMU_MCLK; break;
	case PP_PCIE:
		clk_type = SMU_PCIE; break;
	case PP_SOCCLK:
		clk_type = SMU_SOCCLK; break;
	case PP_FCLK:
		clk_type = SMU_FCLK; break;
	case PP_DCEFCLK:
		clk_type = SMU_DCEFCLK; break;
	case PP_VCLK:
		clk_type = SMU_VCLK; break;
	case PP_VCLK1:
		clk_type = SMU_VCLK1; break;
	case PP_DCLK:
		clk_type = SMU_DCLK; break;
	case PP_DCLK1:
		clk_type = SMU_DCLK1; break;
	case OD_SCLK:
		clk_type = SMU_OD_SCLK; break;
	case OD_MCLK:
		clk_type = SMU_OD_MCLK; break;
	case OD_VDDC_CURVE:
		clk_type = SMU_OD_VDDC_CURVE; break;
	case OD_RANGE:
		clk_type = SMU_OD_RANGE; break;
	case OD_VDDGFX_OFFSET:
		clk_type = SMU_OD_VDDGFX_OFFSET; break;
	case OD_CCLK:
		clk_type = SMU_OD_CCLK; break;
	case OD_FAN_CURVE:
		clk_type = SMU_OD_FAN_CURVE; break;
	case OD_ACOUSTIC_LIMIT:
		clk_type = SMU_OD_ACOUSTIC_LIMIT; break;
	case OD_ACOUSTIC_TARGET:
		clk_type = SMU_OD_ACOUSTIC_TARGET; break;
	case OD_FAN_TARGET_TEMPERATURE:
		clk_type = SMU_OD_FAN_TARGET_TEMPERATURE; break;
	case OD_FAN_MINIMUM_PWM:
		clk_type = SMU_OD_FAN_MINIMUM_PWM; break;
	default:
		clk_type = SMU_CLK_COUNT; break;
	}

	return clk_type;
}

static int smu_print_ppclk_levels(void *handle,
				  enum pp_clock_type type,
				  char *buf)
{
	struct smu_context *smu = handle;
	enum smu_clk_type clk_type;

	clk_type = smu_convert_to_smuclk(type);
	if (clk_type == SMU_CLK_COUNT)
		return -EINVAL;

	return smu_print_smuclk_levels(smu, clk_type, buf);
}

static int smu_emit_ppclk_levels(void *handle, enum pp_clock_type type, char *buf, int *offset)
{
	struct smu_context *smu = handle;
	enum smu_clk_type clk_type;

	clk_type = smu_convert_to_smuclk(type);
	if (clk_type == SMU_CLK_COUNT)
		return -EINVAL;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu->ppt_funcs->emit_clk_levels)
		return -ENOENT;

	return smu->ppt_funcs->emit_clk_levels(smu, clk_type, buf, offset);

}

static int smu_od_edit_dpm_table(void *handle,
				 enum PP_OD_DPM_TABLE_COMMAND type,
				 long *input, uint32_t size)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->od_edit_dpm_table) {
		ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size);
	}

	return ret;
}

static int smu_read_sensor(void *handle,
			   int sensor,
			   void *data,
			   int *size_arg)
{
	struct smu_context *smu = handle;
	struct smu_umd_pstate_table *pstate_table =
				&smu->pstate_table;
	int ret = 0;
	uint32_t *size, size_val;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!data || !size_arg)
		return -EINVAL;

	size_val = *size_arg;
	size = &size_val;

	if (smu->ppt_funcs->read_sensor)
		if (!smu->ppt_funcs->read_sensor(smu, sensor, data, size))
			goto unlock;

	switch (sensor) {
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
		*((uint32_t *)data) = pstate_table->gfxclk_pstate.standard * 100;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
		*((uint32_t *)data) = pstate_table->uclk_pstate.standard * 100;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_PEAK_PSTATE_SCLK:
		*((uint32_t *)data) = pstate_table->gfxclk_pstate.peak * 100;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_PEAK_PSTATE_MCLK:
		*((uint32_t *)data) = pstate_table->uclk_pstate.peak * 100;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
		ret = smu_feature_get_enabled_mask(smu, (uint64_t *)data);
		*size = 8;
		break;
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
		*(uint32_t *)data = atomic_read(&smu->smu_power.power_gate.vcn_gated) ? 0 : 1;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
	default:
		*size = 0;
		ret = -EOPNOTSUPP;
		break;
	}

unlock:
	// assign uint32_t to int
	*size_arg = size_val;

	return ret;
}

static int smu_get_apu_thermal_limit(void *handle, uint32_t *limit)
{
	int ret = -EOPNOTSUPP;
	struct smu_context *smu = handle;

	if (smu->ppt_funcs && smu->ppt_funcs->get_apu_thermal_limit)
		ret = smu->ppt_funcs->get_apu_thermal_limit(smu, limit);

	return ret;
}

static int smu_set_apu_thermal_limit(void *handle, uint32_t limit)
{
	int ret = -EOPNOTSUPP;
	struct smu_context *smu = handle;

	if (smu->ppt_funcs && smu->ppt_funcs->set_apu_thermal_limit)
		ret = smu->ppt_funcs->set_apu_thermal_limit(smu, limit);

	return ret;
}

static int smu_get_power_profile_mode(void *handle, char *buf)
{
	struct smu_context *smu = handle;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled ||
	    !smu->ppt_funcs->get_power_profile_mode)
		return -EOPNOTSUPP;
	if (!buf)
		return -EINVAL;

	return smu->ppt_funcs->get_power_profile_mode(smu, buf);
}

static int smu_set_power_profile_mode(void *handle,
				      long *param,
				      uint32_t param_size)
{
	struct smu_context *smu = handle;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled ||
	    !smu->ppt_funcs->set_power_profile_mode)
		return -EOPNOTSUPP;

	return smu_bump_power_profile_mode(smu, param, param_size);
}

static int smu_get_fan_control_mode(void *handle, u32 *fan_mode)
{
	struct smu_context *smu = handle;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu->ppt_funcs->get_fan_control_mode)
		return -EOPNOTSUPP;

	if (!fan_mode)
		return -EINVAL;

	*fan_mode = smu->ppt_funcs->get_fan_control_mode(smu);

	return 0;
}

static int smu_set_fan_control_mode(void *handle, u32 value)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu->ppt_funcs->set_fan_control_mode)
		return -EOPNOTSUPP;

	if (value == U32_MAX)
		return -EINVAL;

	ret = smu->ppt_funcs->set_fan_control_mode(smu, value);
	if (ret)
		goto out;

	if (!(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) {
		smu->user_dpm_profile.fan_mode = value;

		/* reset user dpm fan speed */
		if (value != AMD_FAN_CTRL_MANUAL) {
			smu->user_dpm_profile.fan_speed_pwm = 0;
			smu->user_dpm_profile.fan_speed_rpm = 0;
			smu->user_dpm_profile.flags &= ~(SMU_CUSTOM_FAN_SPEED_RPM | SMU_CUSTOM_FAN_SPEED_PWM);
		}
	}

out:
	return ret;
}

static int smu_get_fan_speed_pwm(void *handle, u32 *speed)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu->ppt_funcs->get_fan_speed_pwm)
		return -EOPNOTSUPP;

	if (!speed)
		return -EINVAL;

	ret = smu->ppt_funcs->get_fan_speed_pwm(smu, speed);

	return ret;
}

static int smu_set_fan_speed_pwm(void *handle, u32 speed)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu->ppt_funcs->set_fan_speed_pwm)
		return -EOPNOTSUPP;

	if (speed == U32_MAX)
		return -EINVAL;

	ret = smu->ppt_funcs->set_fan_speed_pwm(smu, speed);
	if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) {
		smu->user_dpm_profile.flags |= SMU_CUSTOM_FAN_SPEED_PWM;
		smu->user_dpm_profile.fan_speed_pwm = speed;

		/* Override custom RPM setting as they cannot co-exist */
		smu->user_dpm_profile.flags &= ~SMU_CUSTOM_FAN_SPEED_RPM;
		smu->user_dpm_profile.fan_speed_rpm = 0;
	}

	return ret;
}

static int smu_get_fan_speed_rpm(void *handle, uint32_t *speed)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu->ppt_funcs->get_fan_speed_rpm)
		return -EOPNOTSUPP;

	if (!speed)
		return -EINVAL;

	ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed);

	return ret;
}

static int smu_set_deep_sleep_dcefclk(void *handle, uint32_t clk)
{
	struct smu_context *smu = handle;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	return smu_set_min_dcef_deep_sleep(smu, clk);
}

static int smu_get_clock_by_type_with_latency(void *handle,
					      enum amd_pp_clock_type type,
					      struct pp_clock_levels_with_latency *clocks)
{
	struct smu_context *smu = handle;
	enum smu_clk_type clk_type;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->get_clock_by_type_with_latency) {
		switch (type) {
		case amd_pp_sys_clock:
			clk_type = SMU_GFXCLK;
			break;
		case amd_pp_mem_clock:
			clk_type = SMU_MCLK;
			break;
		case amd_pp_dcef_clock:
			clk_type = SMU_DCEFCLK;
			break;
		case amd_pp_disp_clock:
			clk_type = SMU_DISPCLK;
			break;
		default:
			dev_err(smu->adev->dev, "Invalid clock type!\n");
			return -EINVAL;
		}

		ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks);
	}

	return ret;
}

static int smu_display_clock_voltage_request(void *handle,
					     struct pp_display_clock_request *clock_req)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->display_clock_voltage_request)
		ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req);

	return ret;
}


static int smu_display_disable_memory_clock_switch(void *handle,
						   bool disable_memory_clock_switch)
{
	struct smu_context *smu = handle;
	int ret = -EINVAL;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->display_disable_memory_clock_switch)
		ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch);

	return ret;
}

static int smu_set_xgmi_pstate(void *handle,
			       uint32_t pstate)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->set_xgmi_pstate)
		ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate);

	if (ret)
		dev_err(smu->adev->dev, "Failed to set XGMI pstate!\n");

	return ret;
}

static int smu_get_baco_capability(void *handle)
{
	struct smu_context *smu = handle;

	if (!smu->pm_enabled)
		return false;

	if (!smu->ppt_funcs || !smu->ppt_funcs->get_bamaco_support)
		return false;

	return smu->ppt_funcs->get_bamaco_support(smu);
}

static int smu_baco_set_state(void *handle, int state)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled)
		return -EOPNOTSUPP;

	if (state == 0) {
		if (smu->ppt_funcs->baco_exit)
			ret = smu->ppt_funcs->baco_exit(smu);
	} else if (state == 1) {
		if (smu->ppt_funcs->baco_enter)
			ret = smu->ppt_funcs->baco_enter(smu);
	} else {
		return -EINVAL;
	}

	if (ret)
		dev_err(smu->adev->dev, "Failed to %s BACO state!\n",
				(state)?"enter":"exit");

	return ret;
}

bool smu_mode1_reset_is_support(struct smu_context *smu)
{
	bool ret = false;

	if (!smu->pm_enabled)
		return false;

	if (smu->ppt_funcs && smu->ppt_funcs->mode1_reset_is_support)
		ret = smu->ppt_funcs->mode1_reset_is_support(smu);

	return ret;
}

bool smu_mode2_reset_is_support(struct smu_context *smu)
{
	bool ret = false;

	if (!smu->pm_enabled)
		return false;

	if (smu->ppt_funcs && smu->ppt_funcs->mode2_reset_is_support)
		ret = smu->ppt_funcs->mode2_reset_is_support(smu);

	return ret;
}

int smu_mode1_reset(struct smu_context *smu)
{
	int ret = 0;

	if (!smu->pm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->mode1_reset)
		ret = smu->ppt_funcs->mode1_reset(smu);

	return ret;
}

static int smu_mode2_reset(void *handle)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->mode2_reset)
		ret = smu->ppt_funcs->mode2_reset(smu);

	if (ret)
		dev_err(smu->adev->dev, "Mode2 reset failed!\n");

	return ret;
}

static int smu_enable_gfx_features(void *handle)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->enable_gfx_features)
		ret = smu->ppt_funcs->enable_gfx_features(smu);

	if (ret)
		dev_err(smu->adev->dev, "enable gfx features failed!\n");

	return ret;
}

static int smu_get_max_sustainable_clocks_by_dc(void *handle,
						struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc)
		ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks);

	return ret;
}

static int smu_get_uclk_dpm_states(void *handle,
				   unsigned int *clock_values_in_khz,
				   unsigned int *num_states)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->get_uclk_dpm_states)
		ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states);

	return ret;
}

static enum amd_pm_state_type smu_get_current_power_state(void *handle)
{
	struct smu_context *smu = handle;
	enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->get_current_power_state)
		pm_state = smu->ppt_funcs->get_current_power_state(smu);

	return pm_state;
}

static int smu_get_dpm_clock_table(void *handle,
				   struct dpm_clocks *clock_table)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->get_dpm_clock_table)
		ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table);

	return ret;
}

static ssize_t smu_sys_get_gpu_metrics(void *handle, void **table)
{
	struct smu_context *smu = handle;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu->ppt_funcs->get_gpu_metrics)
		return -EOPNOTSUPP;

	return smu->ppt_funcs->get_gpu_metrics(smu, table);
}

static ssize_t smu_sys_get_pm_metrics(void *handle, void *pm_metrics,
				      size_t size)
{
	struct smu_context *smu = handle;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (!smu->ppt_funcs->get_pm_metrics)
		return -EOPNOTSUPP;

	return smu->ppt_funcs->get_pm_metrics(smu, pm_metrics, size);
}

static int smu_enable_mgpu_fan_boost(void *handle)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return -EOPNOTSUPP;

	if (smu->ppt_funcs->enable_mgpu_fan_boost)
		ret = smu->ppt_funcs->enable_mgpu_fan_boost(smu);

	return ret;
}

static int smu_gfx_state_change_set(void *handle,
				    uint32_t state)
{
	struct smu_context *smu = handle;
	int ret = 0;

	if (smu->ppt_funcs->gfx_state_change_set)
		ret = smu->ppt_funcs->gfx_state_change_set(smu, state);

	return ret;
}

int smu_handle_passthrough_sbr(struct smu_context *smu, bool enable)
{
	int ret = 0;

	if (smu->ppt_funcs->smu_handle_passthrough_sbr)
		ret = smu->ppt_funcs->smu_handle_passthrough_sbr(smu, enable);

	return ret;
}

int smu_get_ecc_info(struct smu_context *smu, void *umc_ecc)
{
	int ret = -EOPNOTSUPP;

	if (smu->ppt_funcs &&
		smu->ppt_funcs->get_ecc_info)
		ret = smu->ppt_funcs->get_ecc_info(smu, umc_ecc);

	return ret;

}

static int smu_get_prv_buffer_details(void *handle, void **addr, size_t *size)
{
	struct smu_context *smu = handle;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;

	if (!addr || !size)
		return -EINVAL;

	*addr = NULL;
	*size = 0;
	if (memory_pool->bo) {
		*addr = memory_pool->cpu_addr;
		*size = memory_pool->size;
	}

	return 0;
}

int smu_set_xgmi_plpd_mode(struct smu_context *smu,
			   enum pp_xgmi_plpd_mode mode)
{
	int ret = -EOPNOTSUPP;

	if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled)
		return ret;

	/* PLPD policy is not supported if it's NONE */
	if (smu->plpd_mode == XGMI_PLPD_NONE)
		return ret;

	if (smu->plpd_mode == mode)
		return 0;

	if (smu->ppt_funcs && smu->ppt_funcs->select_xgmi_plpd_policy)
		ret = smu->ppt_funcs->select_xgmi_plpd_policy(smu, mode);

	if (!ret)
		smu->plpd_mode = mode;

	return ret;
}

static const struct amd_pm_funcs swsmu_pm_funcs = {
	/* export for sysfs */
	.set_fan_control_mode    = smu_set_fan_control_mode,
	.get_fan_control_mode    = smu_get_fan_control_mode,
	.set_fan_speed_pwm   = smu_set_fan_speed_pwm,
	.get_fan_speed_pwm   = smu_get_fan_speed_pwm,
	.force_clock_level       = smu_force_ppclk_levels,
	.print_clock_levels      = smu_print_ppclk_levels,
	.emit_clock_levels       = smu_emit_ppclk_levels,
	.force_performance_level = smu_force_performance_level,
	.read_sensor             = smu_read_sensor,
	.get_apu_thermal_limit       = smu_get_apu_thermal_limit,
	.set_apu_thermal_limit       = smu_set_apu_thermal_limit,
	.get_performance_level   = smu_get_performance_level,
	.get_current_power_state = smu_get_current_power_state,
	.get_fan_speed_rpm       = smu_get_fan_speed_rpm,
	.set_fan_speed_rpm       = smu_set_fan_speed_rpm,
	.get_pp_num_states       = smu_get_power_num_states,
	.get_pp_table            = smu_sys_get_pp_table,
	.set_pp_table            = smu_sys_set_pp_table,
	.switch_power_profile    = smu_switch_power_profile,
	/* export to amdgpu */
	.dispatch_tasks          = smu_handle_dpm_task,
	.load_firmware           = smu_load_microcode,
	.set_powergating_by_smu  = smu_dpm_set_power_gate,
	.set_power_limit         = smu_set_power_limit,
	.get_power_limit         = smu_get_power_limit,
	.get_power_profile_mode  = smu_get_power_profile_mode,
	.set_power_profile_mode  = smu_set_power_profile_mode,
	.odn_edit_dpm_table      = smu_od_edit_dpm_table,
	.set_mp1_state           = smu_set_mp1_state,
	.gfx_state_change_set    = smu_gfx_state_change_set,
	/* export to DC */
	.get_sclk                         = smu_get_sclk,
	.get_mclk                         = smu_get_mclk,
	.display_configuration_change     = smu_display_configuration_change,
	.get_clock_by_type_with_latency   = smu_get_clock_by_type_with_latency,
	.display_clock_voltage_request    = smu_display_clock_voltage_request,
	.enable_mgpu_fan_boost            = smu_enable_mgpu_fan_boost,
	.set_active_display_count         = smu_set_display_count,
	.set_min_deep_sleep_dcefclk       = smu_set_deep_sleep_dcefclk,
	.get_asic_baco_capability         = smu_get_baco_capability,
	.set_asic_baco_state              = smu_baco_set_state,
	.get_ppfeature_status             = smu_sys_get_pp_feature_mask,
	.set_ppfeature_status             = smu_sys_set_pp_feature_mask,
	.asic_reset_mode_2                = smu_mode2_reset,
	.asic_reset_enable_gfx_features   = smu_enable_gfx_features,
	.set_df_cstate                    = smu_set_df_cstate,
	.set_xgmi_pstate                  = smu_set_xgmi_pstate,
	.get_gpu_metrics                  = smu_sys_get_gpu_metrics,
	.get_pm_metrics                   = smu_sys_get_pm_metrics,
	.set_watermarks_for_clock_ranges     = smu_set_watermarks_for_clock_ranges,
	.display_disable_memory_clock_switch = smu_display_disable_memory_clock_switch,
	.get_max_sustainable_clocks_by_dc    = smu_get_max_sustainable_clocks_by_dc,
	.get_uclk_dpm_states              = smu_get_uclk_dpm_states,
	.get_dpm_clock_table              = smu_get_dpm_clock_table,
	.get_smu_prv_buf_details = smu_get_prv_buffer_details,
};

int smu_wait_for_event(struct smu_context *smu, enum smu_event_type event,
		       uint64_t event_arg)
{
	int ret = -EINVAL;

	if (smu->ppt_funcs->wait_for_event)
		ret = smu->ppt_funcs->wait_for_event(smu, event, event_arg);

	return ret;
}

int smu_stb_collect_info(struct smu_context *smu, void *buf, uint32_t size)
{

	if (!smu->ppt_funcs->stb_collect_info || !smu->stb_context.enabled)
		return -EOPNOTSUPP;

	/* Confirm the buffer allocated is of correct size */
	if (size != smu->stb_context.stb_buf_size)
		return -EINVAL;

	/*
	 * No need to lock smu mutex as we access STB directly through MMIO
	 * and not going through SMU messaging route (for now at least).
	 * For registers access rely on implementation internal locking.
	 */
	return smu->ppt_funcs->stb_collect_info(smu, buf, size);
}

#if defined(CONFIG_DEBUG_FS)

static int smu_stb_debugfs_open(struct inode *inode, struct file *filp)
{
	struct amdgpu_device *adev = filp->f_inode->i_private;
	struct smu_context *smu = adev->powerplay.pp_handle;
	unsigned char *buf;
	int r;

	buf = kvmalloc_array(smu->stb_context.stb_buf_size, sizeof(*buf), GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	r = smu_stb_collect_info(smu, buf, smu->stb_context.stb_buf_size);
	if (r)
		goto out;

	filp->private_data = buf;

	return 0;

out:
	kvfree(buf);
	return r;
}

static ssize_t smu_stb_debugfs_read(struct file *filp, char __user *buf, size_t size,
				loff_t *pos)
{
	struct amdgpu_device *adev = filp->f_inode->i_private;
	struct smu_context *smu = adev->powerplay.pp_handle;


	if (!filp->private_data)
		return -EINVAL;

	return simple_read_from_buffer(buf,
				       size,
				       pos, filp->private_data,
				       smu->stb_context.stb_buf_size);
}

static int smu_stb_debugfs_release(struct inode *inode, struct file *filp)
{
	kvfree(filp->private_data);
	filp->private_data = NULL;

	return 0;
}

/*
 * We have to define not only read method but also
 * open and release because .read takes up to PAGE_SIZE
 * data each time so and so is invoked multiple times.
 *  We allocate the STB buffer in .open and release it
 *  in .release
 */
static const struct file_operations smu_stb_debugfs_fops = {
	.owner = THIS_MODULE,
	.open = smu_stb_debugfs_open,
	.read = smu_stb_debugfs_read,
	.release = smu_stb_debugfs_release,
	.llseek = default_llseek,
};

#endif

void amdgpu_smu_stb_debug_fs_init(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)

	struct smu_context *smu = adev->powerplay.pp_handle;

	if (!smu || (!smu->stb_context.stb_buf_size))
		return;

	debugfs_create_file_size("amdgpu_smu_stb_dump",
			    S_IRUSR,
			    adev_to_drm(adev)->primary->debugfs_root,
			    adev,
			    &smu_stb_debugfs_fops,
			    smu->stb_context.stb_buf_size);
#endif
}

int smu_send_hbm_bad_pages_num(struct smu_context *smu, uint32_t size)
{
	int ret = 0;

	if (smu->ppt_funcs && smu->ppt_funcs->send_hbm_bad_pages_num)
		ret = smu->ppt_funcs->send_hbm_bad_pages_num(smu, size);

	return ret;
}

int smu_send_hbm_bad_channel_flag(struct smu_context *smu, uint32_t size)
{
	int ret = 0;

	if (smu->ppt_funcs && smu->ppt_funcs->send_hbm_bad_channel_flag)
		ret = smu->ppt_funcs->send_hbm_bad_channel_flag(smu, size);

	return ret;
}

int smu_send_rma_reason(struct smu_context *smu)
{
	int ret = 0;

	if (smu->ppt_funcs && smu->ppt_funcs->send_rma_reason)
		ret = smu->ppt_funcs->send_rma_reason(smu);

	return ret;
}