Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Fabio Estevam | 4274 | 27.45% | 4 | 2.35% |
Neil Armstrong | 2473 | 15.88% | 14 | 8.24% |
Russell King | 2054 | 13.19% | 34 | 20.00% |
Laurent Pinchart | 2037 | 13.08% | 32 | 18.82% |
Vladimir Zapolskiy | 1091 | 7.01% | 2 | 1.18% |
Sandor Yu | 696 | 4.47% | 5 | 2.94% |
Jonas Karlman | 401 | 2.58% | 4 | 2.35% |
Jernej Škrabec | 358 | 2.30% | 6 | 3.53% |
Andy Yan | 358 | 2.30% | 9 | 5.29% |
Nickey Yang | 311 | 2.00% | 2 | 1.18% |
Doug Anderson | 278 | 1.79% | 4 | 2.35% |
Kieran Bingham | 268 | 1.72% | 2 | 1.18% |
Romain Perier | 182 | 1.17% | 3 | 1.76% |
Cheng-Yi Chiang | 138 | 0.89% | 1 | 0.59% |
Pierre-Hugues Husson | 120 | 0.77% | 1 | 0.59% |
Jerome Brunet | 89 | 0.57% | 3 | 1.76% |
Darek Marcinkiewicz | 76 | 0.49% | 1 | 0.59% |
Kuninori Morimoto | 52 | 0.33% | 1 | 0.59% |
Jani Nikula | 44 | 0.28% | 1 | 0.59% |
Adrian Larumbe | 41 | 0.26% | 3 | 1.76% |
Lucas Stach | 33 | 0.21% | 1 | 0.59% |
Yakir Yang | 32 | 0.21% | 3 | 1.76% |
Jose Abreu | 25 | 0.16% | 2 | 1.18% |
Mark Yao | 19 | 0.12% | 1 | 0.59% |
Sam Ravnborg | 17 | 0.11% | 1 | 0.59% |
Matthias Kaehlcke | 15 | 0.10% | 1 | 0.59% |
Maxime Ripard | 10 | 0.06% | 3 | 1.76% |
Guillaume BRUN | 9 | 0.06% | 1 | 0.59% |
Ville Syrjälä | 8 | 0.05% | 4 | 2.35% |
Alexander Stein | 8 | 0.05% | 1 | 0.59% |
Emil Renner Berthing | 8 | 0.05% | 1 | 0.59% |
Heiko Stübner | 8 | 0.05% | 1 | 0.59% |
Thomas Zimmermann | 7 | 0.04% | 2 | 1.18% |
Liu Ying | 4 | 0.03% | 1 | 0.59% |
Dave Airlie | 3 | 0.02% | 1 | 0.59% |
Jyri Sarha | 3 | 0.02% | 1 | 0.59% |
Daniel Kurtz | 3 | 0.02% | 1 | 0.59% |
Sachin Kamat | 2 | 0.01% | 1 | 0.59% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.59% |
Sui Jingfeng | 2 | 0.01% | 1 | 0.59% |
Boris Brezillon | 2 | 0.01% | 1 | 0.59% |
Thierry Reding | 1 | 0.01% | 1 | 0.59% |
Philipp Zabel | 1 | 0.01% | 1 | 0.59% |
Marek Vašut | 1 | 0.01% | 1 | 0.59% |
Shashank Sharma | 1 | 0.01% | 1 | 0.59% |
Azeem Shaikh | 1 | 0.01% | 1 | 0.59% |
Steve Longerbeam | 1 | 0.01% | 1 | 0.59% |
Dan Carpenter | 1 | 0.01% | 1 | 0.59% |
Rob Herring | 1 | 0.01% | 1 | 0.59% |
Total | 15569 | 170 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * DesignWare High-Definition Multimedia Interface (HDMI) driver * * Copyright (C) 2013-2015 Mentor Graphics Inc. * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. * Copyright (C) 2010, Guennadi Liakhovetski <g.liakhovetski@gmx.de> */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/hdmi.h> #include <linux/i2c.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/pinctrl/consumer.h> #include <linux/regmap.h> #include <linux/dma-mapping.h> #include <linux/spinlock.h> #include <media/cec-notifier.h> #include <uapi/linux/media-bus-format.h> #include <uapi/linux/videodev2.h> #include <drm/bridge/dw_hdmi.h> #include <drm/display/drm_hdmi_helper.h> #include <drm/display/drm_scdc_helper.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_edid.h> #include <drm/drm_of.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> #include "dw-hdmi-audio.h" #include "dw-hdmi-cec.h" #include "dw-hdmi.h" #define DDC_CI_ADDR 0x37 #define DDC_SEGMENT_ADDR 0x30 #define HDMI_EDID_LEN 512 /* DW-HDMI Controller >= 0x200a are at least compliant with SCDC version 1 */ #define SCDC_MIN_SOURCE_VERSION 0x1 #define HDMI14_MAX_TMDSCLK 340000000 static const u16 csc_coeff_default[3][4] = { { 0x2000, 0x0000, 0x0000, 0x0000 }, { 0x0000, 0x2000, 0x0000, 0x0000 }, { 0x0000, 0x0000, 0x2000, 0x0000 } }; static const u16 csc_coeff_rgb_out_eitu601[3][4] = { { 0x2000, 0x6926, 0x74fd, 0x010e }, { 0x2000, 0x2cdd, 0x0000, 0x7e9a }, { 0x2000, 0x0000, 0x38b4, 0x7e3b } }; static const u16 csc_coeff_rgb_out_eitu709[3][4] = { { 0x2000, 0x7106, 0x7a02, 0x00a7 }, { 0x2000, 0x3264, 0x0000, 0x7e6d }, { 0x2000, 0x0000, 0x3b61, 0x7e25 } }; static const u16 csc_coeff_rgb_in_eitu601[3][4] = { { 0x2591, 0x1322, 0x074b, 0x0000 }, { 0x6535, 0x2000, 0x7acc, 0x0200 }, { 0x6acd, 0x7534, 0x2000, 0x0200 } }; static const u16 csc_coeff_rgb_in_eitu709[3][4] = { { 0x2dc5, 0x0d9b, 0x049e, 0x0000 }, { 0x62f0, 0x2000, 0x7d11, 0x0200 }, { 0x6756, 0x78ab, 0x2000, 0x0200 } }; static const u16 csc_coeff_rgb_full_to_rgb_limited[3][4] = { { 0x1b7c, 0x0000, 0x0000, 0x0020 }, { 0x0000, 0x1b7c, 0x0000, 0x0020 }, { 0x0000, 0x0000, 0x1b7c, 0x0020 } }; struct hdmi_vmode { bool mdataenablepolarity; unsigned int mpixelclock; unsigned int mpixelrepetitioninput; unsigned int mpixelrepetitionoutput; unsigned int mtmdsclock; }; struct hdmi_data_info { unsigned int enc_in_bus_format; unsigned int enc_out_bus_format; unsigned int enc_in_encoding; unsigned int enc_out_encoding; unsigned int pix_repet_factor; unsigned int hdcp_enable; struct hdmi_vmode video_mode; bool rgb_limited_range; }; struct dw_hdmi_i2c { struct i2c_adapter adap; struct mutex lock; /* used to serialize data transfers */ struct completion cmp; u8 stat; u8 slave_reg; bool is_regaddr; bool is_segment; }; struct dw_hdmi_phy_data { enum dw_hdmi_phy_type type; const char *name; unsigned int gen; bool has_svsret; int (*configure)(struct dw_hdmi *hdmi, const struct dw_hdmi_plat_data *pdata, unsigned long mpixelclock); }; struct dw_hdmi { struct drm_connector connector; struct drm_bridge bridge; struct drm_bridge *next_bridge; unsigned int version; struct platform_device *audio; struct platform_device *cec; struct device *dev; struct clk *isfr_clk; struct clk *iahb_clk; struct clk *cec_clk; struct dw_hdmi_i2c *i2c; struct hdmi_data_info hdmi_data; const struct dw_hdmi_plat_data *plat_data; int vic; u8 edid[HDMI_EDID_LEN]; struct { const struct dw_hdmi_phy_ops *ops; const char *name; void *data; bool enabled; } phy; struct drm_display_mode previous_mode; struct i2c_adapter *ddc; void __iomem *regs; bool sink_is_hdmi; bool sink_has_audio; struct pinctrl *pinctrl; struct pinctrl_state *default_state; struct pinctrl_state *unwedge_state; struct mutex mutex; /* for state below and previous_mode */ enum drm_connector_force force; /* mutex-protected force state */ struct drm_connector *curr_conn;/* current connector (only valid when !disabled) */ bool disabled; /* DRM has disabled our bridge */ bool bridge_is_on; /* indicates the bridge is on */ bool rxsense; /* rxsense state */ u8 phy_mask; /* desired phy int mask settings */ u8 mc_clkdis; /* clock disable register */ spinlock_t audio_lock; struct mutex audio_mutex; unsigned int sample_non_pcm; unsigned int sample_width; unsigned int sample_rate; unsigned int channels; unsigned int audio_cts; unsigned int audio_n; bool audio_enable; unsigned int reg_shift; struct regmap *regm; void (*enable_audio)(struct dw_hdmi *hdmi); void (*disable_audio)(struct dw_hdmi *hdmi); struct mutex cec_notifier_mutex; struct cec_notifier *cec_notifier; hdmi_codec_plugged_cb plugged_cb; struct device *codec_dev; enum drm_connector_status last_connector_result; }; #define HDMI_IH_PHY_STAT0_RX_SENSE \ (HDMI_IH_PHY_STAT0_RX_SENSE0 | HDMI_IH_PHY_STAT0_RX_SENSE1 | \ HDMI_IH_PHY_STAT0_RX_SENSE2 | HDMI_IH_PHY_STAT0_RX_SENSE3) #define HDMI_PHY_RX_SENSE \ (HDMI_PHY_RX_SENSE0 | HDMI_PHY_RX_SENSE1 | \ HDMI_PHY_RX_SENSE2 | HDMI_PHY_RX_SENSE3) static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset) { regmap_write(hdmi->regm, offset << hdmi->reg_shift, val); } static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset) { unsigned int val = 0; regmap_read(hdmi->regm, offset << hdmi->reg_shift, &val); return val; } static void handle_plugged_change(struct dw_hdmi *hdmi, bool plugged) { if (hdmi->plugged_cb && hdmi->codec_dev) hdmi->plugged_cb(hdmi->codec_dev, plugged); } int dw_hdmi_set_plugged_cb(struct dw_hdmi *hdmi, hdmi_codec_plugged_cb fn, struct device *codec_dev) { bool plugged; mutex_lock(&hdmi->mutex); hdmi->plugged_cb = fn; hdmi->codec_dev = codec_dev; plugged = hdmi->last_connector_result == connector_status_connected; handle_plugged_change(hdmi, plugged); mutex_unlock(&hdmi->mutex); return 0; } EXPORT_SYMBOL_GPL(dw_hdmi_set_plugged_cb); static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg) { regmap_update_bits(hdmi->regm, reg << hdmi->reg_shift, mask, data); } static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg, u8 shift, u8 mask) { hdmi_modb(hdmi, data << shift, mask, reg); } static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi) { hdmi_writeb(hdmi, HDMI_PHY_I2CM_INT_ADDR_DONE_POL, HDMI_PHY_I2CM_INT_ADDR); hdmi_writeb(hdmi, HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL | HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL, HDMI_PHY_I2CM_CTLINT_ADDR); /* Software reset */ hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ); /* Set Standard Mode speed (determined to be 100KHz on iMX6) */ hdmi_writeb(hdmi, 0x00, HDMI_I2CM_DIV); /* Set done, not acknowledged and arbitration interrupt polarities */ hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT); hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL, HDMI_I2CM_CTLINT); /* Clear DONE and ERROR interrupts */ hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE, HDMI_IH_I2CM_STAT0); /* Mute DONE and ERROR interrupts */ hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE, HDMI_IH_MUTE_I2CM_STAT0); } static bool dw_hdmi_i2c_unwedge(struct dw_hdmi *hdmi) { /* If no unwedge state then give up */ if (!hdmi->unwedge_state) return false; dev_info(hdmi->dev, "Attempting to unwedge stuck i2c bus\n"); /* * This is a huge hack to workaround a problem where the dw_hdmi i2c * bus could sometimes get wedged. Once wedged there doesn't appear * to be any way to unwedge it (including the HDMI_I2CM_SOFTRSTZ) * other than pulsing the SDA line. * * We appear to be able to pulse the SDA line (in the eyes of dw_hdmi) * by: * 1. Remux the pin as a GPIO output, driven low. * 2. Wait a little while. 1 ms seems to work, but we'll do 10. * 3. Immediately jump to remux the pin as dw_hdmi i2c again. * * At the moment of remuxing, the line will still be low due to its * recent stint as an output, but then it will be pulled high by the * (presumed) external pullup. dw_hdmi seems to see this as a rising * edge and that seems to get it out of its jam. * * This wedging was only ever seen on one TV, and only on one of * its HDMI ports. It happened when the TV was powered on while the * device was plugged in. A scope trace shows the TV bringing both SDA * and SCL low, then bringing them both back up at roughly the same * time. Presumably this confuses dw_hdmi because it saw activity but * no real STOP (maybe it thinks there's another master on the bus?). * Giving it a clean rising edge of SDA while SCL is already high * presumably makes dw_hdmi see a STOP which seems to bring dw_hdmi out * of its stupor. * * Note that after coming back alive, transfers seem to immediately * resume, so if we unwedge due to a timeout we should wait a little * longer for our transfer to finish, since it might have just started * now. */ pinctrl_select_state(hdmi->pinctrl, hdmi->unwedge_state); msleep(10); pinctrl_select_state(hdmi->pinctrl, hdmi->default_state); return true; } static int dw_hdmi_i2c_wait(struct dw_hdmi *hdmi) { struct dw_hdmi_i2c *i2c = hdmi->i2c; int stat; stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10); if (!stat) { /* If we can't unwedge, return timeout */ if (!dw_hdmi_i2c_unwedge(hdmi)) return -EAGAIN; /* We tried to unwedge; give it another chance */ stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10); if (!stat) return -EAGAIN; } /* Check for error condition on the bus */ if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR) return -EIO; return 0; } static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi, unsigned char *buf, unsigned int length) { struct dw_hdmi_i2c *i2c = hdmi->i2c; int ret; if (!i2c->is_regaddr) { dev_dbg(hdmi->dev, "set read register address to 0\n"); i2c->slave_reg = 0x00; i2c->is_regaddr = true; } while (length--) { reinit_completion(&i2c->cmp); hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS); if (i2c->is_segment) hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ_EXT, HDMI_I2CM_OPERATION); else hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ, HDMI_I2CM_OPERATION); ret = dw_hdmi_i2c_wait(hdmi); if (ret) return ret; *buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI); } i2c->is_segment = false; return 0; } static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi, unsigned char *buf, unsigned int length) { struct dw_hdmi_i2c *i2c = hdmi->i2c; int ret; if (!i2c->is_regaddr) { /* Use the first write byte as register address */ i2c->slave_reg = buf[0]; length--; buf++; i2c->is_regaddr = true; } while (length--) { reinit_completion(&i2c->cmp); hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO); hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS); hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE, HDMI_I2CM_OPERATION); ret = dw_hdmi_i2c_wait(hdmi); if (ret) return ret; } return 0; } static int dw_hdmi_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct dw_hdmi *hdmi = i2c_get_adapdata(adap); struct dw_hdmi_i2c *i2c = hdmi->i2c; u8 addr = msgs[0].addr; int i, ret = 0; if (addr == DDC_CI_ADDR) /* * The internal I2C controller does not support the multi-byte * read and write operations needed for DDC/CI. * TOFIX: Blacklist the DDC/CI address until we filter out * unsupported I2C operations. */ return -EOPNOTSUPP; dev_dbg(hdmi->dev, "xfer: num: %d, addr: %#x\n", num, addr); for (i = 0; i < num; i++) { if (msgs[i].len == 0) { dev_dbg(hdmi->dev, "unsupported transfer %d/%d, no data\n", i + 1, num); return -EOPNOTSUPP; } } mutex_lock(&i2c->lock); /* Unmute DONE and ERROR interrupts */ hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0); /* Set slave device address taken from the first I2C message */ hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE); /* Set slave device register address on transfer */ i2c->is_regaddr = false; /* Set segment pointer for I2C extended read mode operation */ i2c->is_segment = false; for (i = 0; i < num; i++) { dev_dbg(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n", i + 1, num, msgs[i].len, msgs[i].flags); if (msgs[i].addr == DDC_SEGMENT_ADDR && msgs[i].len == 1) { i2c->is_segment = true; hdmi_writeb(hdmi, DDC_SEGMENT_ADDR, HDMI_I2CM_SEGADDR); hdmi_writeb(hdmi, *msgs[i].buf, HDMI_I2CM_SEGPTR); } else { if (msgs[i].flags & I2C_M_RD) ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf, msgs[i].len); else ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf, msgs[i].len); } if (ret < 0) break; } if (!ret) ret = num; /* Mute DONE and ERROR interrupts */ hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE, HDMI_IH_MUTE_I2CM_STAT0); mutex_unlock(&i2c->lock); return ret; } static u32 dw_hdmi_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm dw_hdmi_algorithm = { .master_xfer = dw_hdmi_i2c_xfer, .functionality = dw_hdmi_i2c_func, }; static struct i2c_adapter *dw_hdmi_i2c_adapter(struct dw_hdmi *hdmi) { struct i2c_adapter *adap; struct dw_hdmi_i2c *i2c; int ret; i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL); if (!i2c) return ERR_PTR(-ENOMEM); mutex_init(&i2c->lock); init_completion(&i2c->cmp); adap = &i2c->adap; adap->owner = THIS_MODULE; adap->dev.parent = hdmi->dev; adap->algo = &dw_hdmi_algorithm; strscpy(adap->name, "DesignWare HDMI", sizeof(adap->name)); i2c_set_adapdata(adap, hdmi); ret = i2c_add_adapter(adap); if (ret) { dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name); devm_kfree(hdmi->dev, i2c); return ERR_PTR(ret); } hdmi->i2c = i2c; dev_info(hdmi->dev, "registered %s I2C bus driver\n", adap->name); return adap; } static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts, unsigned int n) { /* Must be set/cleared first */ hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3); /* nshift factor = 0 */ hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3); /* Use automatic CTS generation mode when CTS is not set */ if (cts) hdmi_writeb(hdmi, ((cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK) | HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3); else hdmi_writeb(hdmi, 0, HDMI_AUD_CTS3); hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2); hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1); hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3); hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2); hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1); } static unsigned int hdmi_compute_n(unsigned int freq, unsigned long pixel_clk) { unsigned int n = (128 * freq) / 1000; unsigned int mult = 1; while (freq > 48000) { mult *= 2; freq /= 2; } switch (freq) { case 32000: if (pixel_clk == 25175000) n = 4576; else if (pixel_clk == 27027000) n = 4096; else if (pixel_clk == 74176000 || pixel_clk == 148352000) n = 11648; else if (pixel_clk == 297000000) n = 3072; else n = 4096; n *= mult; break; case 44100: if (pixel_clk == 25175000) n = 7007; else if (pixel_clk == 74176000) n = 17836; else if (pixel_clk == 148352000) n = 8918; else if (pixel_clk == 297000000) n = 4704; else n = 6272; n *= mult; break; case 48000: if (pixel_clk == 25175000) n = 6864; else if (pixel_clk == 27027000) n = 6144; else if (pixel_clk == 74176000) n = 11648; else if (pixel_clk == 148352000) n = 5824; else if (pixel_clk == 297000000) n = 5120; else n = 6144; n *= mult; break; default: break; } return n; } /* * When transmitting IEC60958 linear PCM audio, these registers allow to * configure the channel status information of all the channel status * bits in the IEC60958 frame. For the moment this configuration is only * used when the I2S audio interface, General Purpose Audio (GPA), * or AHB audio DMA (AHBAUDDMA) interface is active * (for S/PDIF interface this information comes from the stream). */ void dw_hdmi_set_channel_status(struct dw_hdmi *hdmi, u8 *channel_status) { /* * Set channel status register for frequency and word length. * Use default values for other registers. */ hdmi_writeb(hdmi, channel_status[3], HDMI_FC_AUDSCHNLS7); hdmi_writeb(hdmi, channel_status[4], HDMI_FC_AUDSCHNLS8); } EXPORT_SYMBOL_GPL(dw_hdmi_set_channel_status); static void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi, unsigned long pixel_clk, unsigned int sample_rate) { unsigned long ftdms = pixel_clk; unsigned int n, cts; u8 config3; u64 tmp; n = hdmi_compute_n(sample_rate, pixel_clk); config3 = hdmi_readb(hdmi, HDMI_CONFIG3_ID); /* Compute CTS when using internal AHB audio or General Parallel audio*/ if ((config3 & HDMI_CONFIG3_AHBAUDDMA) || (config3 & HDMI_CONFIG3_GPAUD)) { /* * Compute the CTS value from the N value. Note that CTS and N * can be up to 20 bits in total, so we need 64-bit math. Also * note that our TDMS clock is not fully accurate; it is * accurate to kHz. This can introduce an unnecessary remainder * in the calculation below, so we don't try to warn about that. */ tmp = (u64)ftdms * n; do_div(tmp, 128 * sample_rate); cts = tmp; dev_dbg(hdmi->dev, "%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n", __func__, sample_rate, ftdms / 1000000, (ftdms / 1000) % 1000, n, cts); } else { cts = 0; } spin_lock_irq(&hdmi->audio_lock); hdmi->audio_n = n; hdmi->audio_cts = cts; hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0); spin_unlock_irq(&hdmi->audio_lock); } static void hdmi_init_clk_regenerator(struct dw_hdmi *hdmi) { mutex_lock(&hdmi->audio_mutex); hdmi_set_clk_regenerator(hdmi, 74250000, hdmi->sample_rate); mutex_unlock(&hdmi->audio_mutex); } static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi) { mutex_lock(&hdmi->audio_mutex); hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mtmdsclock, hdmi->sample_rate); mutex_unlock(&hdmi->audio_mutex); } void dw_hdmi_set_sample_width(struct dw_hdmi *hdmi, unsigned int width) { mutex_lock(&hdmi->audio_mutex); hdmi->sample_width = width; mutex_unlock(&hdmi->audio_mutex); } EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_width); void dw_hdmi_set_sample_non_pcm(struct dw_hdmi *hdmi, unsigned int non_pcm) { mutex_lock(&hdmi->audio_mutex); hdmi->sample_non_pcm = non_pcm; mutex_unlock(&hdmi->audio_mutex); } EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_non_pcm); void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate) { mutex_lock(&hdmi->audio_mutex); hdmi->sample_rate = rate; hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mtmdsclock, hdmi->sample_rate); mutex_unlock(&hdmi->audio_mutex); } EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_rate); void dw_hdmi_set_channel_count(struct dw_hdmi *hdmi, unsigned int cnt) { u8 layout; mutex_lock(&hdmi->audio_mutex); hdmi->channels = cnt; /* * For >2 channel PCM audio, we need to select layout 1 * and set an appropriate channel map. */ if (cnt > 2) layout = HDMI_FC_AUDSCONF_AUD_PACKET_LAYOUT_LAYOUT1; else layout = HDMI_FC_AUDSCONF_AUD_PACKET_LAYOUT_LAYOUT0; hdmi_modb(hdmi, layout, HDMI_FC_AUDSCONF_AUD_PACKET_LAYOUT_MASK, HDMI_FC_AUDSCONF); /* Set the audio infoframes channel count */ hdmi_modb(hdmi, (cnt - 1) << HDMI_FC_AUDICONF0_CC_OFFSET, HDMI_FC_AUDICONF0_CC_MASK, HDMI_FC_AUDICONF0); mutex_unlock(&hdmi->audio_mutex); } EXPORT_SYMBOL_GPL(dw_hdmi_set_channel_count); void dw_hdmi_set_channel_allocation(struct dw_hdmi *hdmi, unsigned int ca) { mutex_lock(&hdmi->audio_mutex); hdmi_writeb(hdmi, ca, HDMI_FC_AUDICONF2); mutex_unlock(&hdmi->audio_mutex); } EXPORT_SYMBOL_GPL(dw_hdmi_set_channel_allocation); static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi, bool enable) { if (enable) hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_AUDCLK_DISABLE; else hdmi->mc_clkdis |= HDMI_MC_CLKDIS_AUDCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); } static u8 *hdmi_audio_get_eld(struct dw_hdmi *hdmi) { if (!hdmi->curr_conn) return NULL; return hdmi->curr_conn->eld; } static void dw_hdmi_gp_audio_enable(struct dw_hdmi *hdmi) { const struct dw_hdmi_plat_data *pdata = hdmi->plat_data; int sample_freq = 0x2, org_sample_freq = 0xD; int ch_mask = BIT(hdmi->channels) - 1; switch (hdmi->sample_rate) { case 32000: sample_freq = 0x03; org_sample_freq = 0x0C; break; case 44100: sample_freq = 0x00; org_sample_freq = 0x0F; break; case 48000: sample_freq = 0x02; org_sample_freq = 0x0D; break; case 88200: sample_freq = 0x08; org_sample_freq = 0x07; break; case 96000: sample_freq = 0x0A; org_sample_freq = 0x05; break; case 176400: sample_freq = 0x0C; org_sample_freq = 0x03; break; case 192000: sample_freq = 0x0E; org_sample_freq = 0x01; break; default: break; } hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n); hdmi_enable_audio_clk(hdmi, true); hdmi_writeb(hdmi, 0x1, HDMI_FC_AUDSCHNLS0); hdmi_writeb(hdmi, hdmi->channels, HDMI_FC_AUDSCHNLS2); hdmi_writeb(hdmi, 0x22, HDMI_FC_AUDSCHNLS3); hdmi_writeb(hdmi, 0x22, HDMI_FC_AUDSCHNLS4); hdmi_writeb(hdmi, 0x11, HDMI_FC_AUDSCHNLS5); hdmi_writeb(hdmi, 0x11, HDMI_FC_AUDSCHNLS6); hdmi_writeb(hdmi, (0x3 << 4) | sample_freq, HDMI_FC_AUDSCHNLS7); hdmi_writeb(hdmi, (org_sample_freq << 4) | 0xb, HDMI_FC_AUDSCHNLS8); hdmi_writeb(hdmi, ch_mask, HDMI_GP_CONF1); hdmi_writeb(hdmi, 0x02, HDMI_GP_CONF2); hdmi_writeb(hdmi, 0x01, HDMI_GP_CONF0); hdmi_modb(hdmi, 0x3, 0x3, HDMI_FC_DATAUTO3); /* hbr */ if (hdmi->sample_rate == 192000 && hdmi->channels == 8 && hdmi->sample_width == 32 && hdmi->sample_non_pcm) hdmi_modb(hdmi, 0x01, 0x01, HDMI_GP_CONF2); if (pdata->enable_audio) pdata->enable_audio(hdmi, hdmi->channels, hdmi->sample_width, hdmi->sample_rate, hdmi->sample_non_pcm); } static void dw_hdmi_gp_audio_disable(struct dw_hdmi *hdmi) { const struct dw_hdmi_plat_data *pdata = hdmi->plat_data; hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0); hdmi_modb(hdmi, 0, 0x3, HDMI_FC_DATAUTO3); if (pdata->disable_audio) pdata->disable_audio(hdmi); hdmi_enable_audio_clk(hdmi, false); } static void dw_hdmi_ahb_audio_enable(struct dw_hdmi *hdmi) { hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n); } static void dw_hdmi_ahb_audio_disable(struct dw_hdmi *hdmi) { hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0); } static void dw_hdmi_i2s_audio_enable(struct dw_hdmi *hdmi) { hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n); hdmi_enable_audio_clk(hdmi, true); } static void dw_hdmi_i2s_audio_disable(struct dw_hdmi *hdmi) { hdmi_enable_audio_clk(hdmi, false); } void dw_hdmi_audio_enable(struct dw_hdmi *hdmi) { unsigned long flags; spin_lock_irqsave(&hdmi->audio_lock, flags); hdmi->audio_enable = true; if (hdmi->enable_audio) hdmi->enable_audio(hdmi); spin_unlock_irqrestore(&hdmi->audio_lock, flags); } EXPORT_SYMBOL_GPL(dw_hdmi_audio_enable); void dw_hdmi_audio_disable(struct dw_hdmi *hdmi) { unsigned long flags; spin_lock_irqsave(&hdmi->audio_lock, flags); hdmi->audio_enable = false; if (hdmi->disable_audio) hdmi->disable_audio(hdmi); spin_unlock_irqrestore(&hdmi->audio_lock, flags); } EXPORT_SYMBOL_GPL(dw_hdmi_audio_disable); static bool hdmi_bus_fmt_is_rgb(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_RGB888_1X24: case MEDIA_BUS_FMT_RGB101010_1X30: case MEDIA_BUS_FMT_RGB121212_1X36: case MEDIA_BUS_FMT_RGB161616_1X48: return true; default: return false; } } static bool hdmi_bus_fmt_is_yuv444(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_YUV8_1X24: case MEDIA_BUS_FMT_YUV10_1X30: case MEDIA_BUS_FMT_YUV12_1X36: case MEDIA_BUS_FMT_YUV16_1X48: return true; default: return false; } } static bool hdmi_bus_fmt_is_yuv422(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_UYVY8_1X16: case MEDIA_BUS_FMT_UYVY10_1X20: case MEDIA_BUS_FMT_UYVY12_1X24: return true; default: return false; } } static bool hdmi_bus_fmt_is_yuv420(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_UYYVYY8_0_5X24: case MEDIA_BUS_FMT_UYYVYY10_0_5X30: case MEDIA_BUS_FMT_UYYVYY12_0_5X36: case MEDIA_BUS_FMT_UYYVYY16_0_5X48: return true; default: return false; } } static int hdmi_bus_fmt_color_depth(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_RGB888_1X24: case MEDIA_BUS_FMT_YUV8_1X24: case MEDIA_BUS_FMT_UYVY8_1X16: case MEDIA_BUS_FMT_UYYVYY8_0_5X24: return 8; case MEDIA_BUS_FMT_RGB101010_1X30: case MEDIA_BUS_FMT_YUV10_1X30: case MEDIA_BUS_FMT_UYVY10_1X20: case MEDIA_BUS_FMT_UYYVYY10_0_5X30: return 10; case MEDIA_BUS_FMT_RGB121212_1X36: case MEDIA_BUS_FMT_YUV12_1X36: case MEDIA_BUS_FMT_UYVY12_1X24: case MEDIA_BUS_FMT_UYYVYY12_0_5X36: return 12; case MEDIA_BUS_FMT_RGB161616_1X48: case MEDIA_BUS_FMT_YUV16_1X48: case MEDIA_BUS_FMT_UYYVYY16_0_5X48: return 16; default: return 0; } } /* * this submodule is responsible for the video data synchronization. * for example, for RGB 4:4:4 input, the data map is defined as * pin{47~40} <==> R[7:0] * pin{31~24} <==> G[7:0] * pin{15~8} <==> B[7:0] */ static void hdmi_video_sample(struct dw_hdmi *hdmi) { int color_format = 0; u8 val; switch (hdmi->hdmi_data.enc_in_bus_format) { case MEDIA_BUS_FMT_RGB888_1X24: color_format = 0x01; break; case MEDIA_BUS_FMT_RGB101010_1X30: color_format = 0x03; break; case MEDIA_BUS_FMT_RGB121212_1X36: color_format = 0x05; break; case MEDIA_BUS_FMT_RGB161616_1X48: color_format = 0x07; break; case MEDIA_BUS_FMT_YUV8_1X24: case MEDIA_BUS_FMT_UYYVYY8_0_5X24: color_format = 0x09; break; case MEDIA_BUS_FMT_YUV10_1X30: case MEDIA_BUS_FMT_UYYVYY10_0_5X30: color_format = 0x0B; break; case MEDIA_BUS_FMT_YUV12_1X36: case MEDIA_BUS_FMT_UYYVYY12_0_5X36: color_format = 0x0D; break; case MEDIA_BUS_FMT_YUV16_1X48: case MEDIA_BUS_FMT_UYYVYY16_0_5X48: color_format = 0x0F; break; case MEDIA_BUS_FMT_UYVY8_1X16: color_format = 0x16; break; case MEDIA_BUS_FMT_UYVY10_1X20: color_format = 0x14; break; case MEDIA_BUS_FMT_UYVY12_1X24: color_format = 0x12; break; default: return; } val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE | ((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) & HDMI_TX_INVID0_VIDEO_MAPPING_MASK); hdmi_writeb(hdmi, val, HDMI_TX_INVID0); /* Enable TX stuffing: When DE is inactive, fix the output data to 0 */ val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE | HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE | HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE; hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING); hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0); hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1); hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0); hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1); hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0); hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1); } static int is_color_space_conversion(struct dw_hdmi *hdmi) { struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data; bool is_input_rgb, is_output_rgb; is_input_rgb = hdmi_bus_fmt_is_rgb(hdmi_data->enc_in_bus_format); is_output_rgb = hdmi_bus_fmt_is_rgb(hdmi_data->enc_out_bus_format); return (is_input_rgb != is_output_rgb) || (is_input_rgb && is_output_rgb && hdmi_data->rgb_limited_range); } static int is_color_space_decimation(struct dw_hdmi *hdmi) { if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) return 0; if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format) || hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_in_bus_format)) return 1; return 0; } static int is_color_space_interpolation(struct dw_hdmi *hdmi) { if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_in_bus_format)) return 0; if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) || hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format)) return 1; return 0; } static bool is_csc_needed(struct dw_hdmi *hdmi) { return is_color_space_conversion(hdmi) || is_color_space_decimation(hdmi) || is_color_space_interpolation(hdmi); } static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi) { const u16 (*csc_coeff)[3][4] = &csc_coeff_default; bool is_input_rgb, is_output_rgb; unsigned i; u32 csc_scale = 1; is_input_rgb = hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format); is_output_rgb = hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format); if (!is_input_rgb && is_output_rgb) { if (hdmi->hdmi_data.enc_out_encoding == V4L2_YCBCR_ENC_601) csc_coeff = &csc_coeff_rgb_out_eitu601; else csc_coeff = &csc_coeff_rgb_out_eitu709; } else if (is_input_rgb && !is_output_rgb) { if (hdmi->hdmi_data.enc_out_encoding == V4L2_YCBCR_ENC_601) csc_coeff = &csc_coeff_rgb_in_eitu601; else csc_coeff = &csc_coeff_rgb_in_eitu709; csc_scale = 0; } else if (is_input_rgb && is_output_rgb && hdmi->hdmi_data.rgb_limited_range) { csc_coeff = &csc_coeff_rgb_full_to_rgb_limited; } /* The CSC registers are sequential, alternating MSB then LSB */ for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) { u16 coeff_a = (*csc_coeff)[0][i]; u16 coeff_b = (*csc_coeff)[1][i]; u16 coeff_c = (*csc_coeff)[2][i]; hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2); hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2); hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2); hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2); hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2); hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2); } hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK, HDMI_CSC_SCALE); } static void hdmi_video_csc(struct dw_hdmi *hdmi) { int color_depth = 0; int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE; int decimation = 0; /* YCC422 interpolation to 444 mode */ if (is_color_space_interpolation(hdmi)) interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1; else if (is_color_space_decimation(hdmi)) decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3; switch (hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format)) { case 8: color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP; break; case 10: color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP; break; case 12: color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP; break; case 16: color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP; break; default: return; } /* Configure the CSC registers */ hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG); hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK, HDMI_CSC_SCALE); dw_hdmi_update_csc_coeffs(hdmi); } /* * HDMI video packetizer is used to packetize the data. * for example, if input is YCC422 mode or repeater is used, * data should be repacked this module can be bypassed. */ static void hdmi_video_packetize(struct dw_hdmi *hdmi) { unsigned int color_depth = 0; unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit; unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP; struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data; u8 val, vp_conf; u8 clear_gcp_auto = 0; if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) || hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format) || hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) { switch (hdmi_bus_fmt_color_depth( hdmi->hdmi_data.enc_out_bus_format)) { case 8: color_depth = 4; output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS; clear_gcp_auto = 1; break; case 10: color_depth = 5; break; case 12: color_depth = 6; break; case 16: color_depth = 7; break; default: output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS; } } else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) { switch (hdmi_bus_fmt_color_depth( hdmi->hdmi_data.enc_out_bus_format)) { case 0: case 8: remap_size = HDMI_VP_REMAP_YCC422_16bit; clear_gcp_auto = 1; break; case 10: remap_size = HDMI_VP_REMAP_YCC422_20bit; break; case 12: remap_size = HDMI_VP_REMAP_YCC422_24bit; break; default: return; } output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422; } else { return; } /* set the packetizer registers */ val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) & HDMI_VP_PR_CD_COLOR_DEPTH_MASK) | ((hdmi_data->pix_repet_factor << HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) & HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK); hdmi_writeb(hdmi, val, HDMI_VP_PR_CD); /* HDMI1.4b specification section 6.5.3: * Source shall only send GCPs with non-zero CD to sinks * that indicate support for Deep Color. * GCP only transmit CD and do not handle AVMUTE, PP norDefault_Phase (yet). * Disable Auto GCP when 24-bit color for sinks that not support Deep Color. */ val = hdmi_readb(hdmi, HDMI_FC_DATAUTO3); if (clear_gcp_auto == 1) val &= ~HDMI_FC_DATAUTO3_GCP_AUTO; else val |= HDMI_FC_DATAUTO3_GCP_AUTO; hdmi_writeb(hdmi, val, HDMI_FC_DATAUTO3); hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE, HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF); /* Data from pixel repeater block */ if (hdmi_data->pix_repet_factor > 1) { vp_conf = HDMI_VP_CONF_PR_EN_ENABLE | HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER; } else { /* data from packetizer block */ vp_conf = HDMI_VP_CONF_PR_EN_DISABLE | HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER; } hdmi_modb(hdmi, vp_conf, HDMI_VP_CONF_PR_EN_MASK | HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF); hdmi_modb(hdmi, 1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET, HDMI_VP_STUFF_IDEFAULT_PHASE_MASK, HDMI_VP_STUFF); hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP); if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) { vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE | HDMI_VP_CONF_PP_EN_ENABLE | HDMI_VP_CONF_YCC422_EN_DISABLE; } else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) { vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE | HDMI_VP_CONF_PP_EN_DISABLE | HDMI_VP_CONF_YCC422_EN_ENABLE; } else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) { vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE | HDMI_VP_CONF_PP_EN_DISABLE | HDMI_VP_CONF_YCC422_EN_DISABLE; } else { return; } hdmi_modb(hdmi, vp_conf, HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK | HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF); hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE | HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE, HDMI_VP_STUFF_PP_STUFFING_MASK | HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF); hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK, HDMI_VP_CONF); } /* ----------------------------------------------------------------------------- * Synopsys PHY Handling */ static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi, unsigned char bit) { hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET, HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0); } static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec) { u32 val; while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) { if (msec-- == 0) return false; udelay(1000); } hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0); return true; } void dw_hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data, unsigned char addr) { hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0); hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR); hdmi_writeb(hdmi, (unsigned char)(data >> 8), HDMI_PHY_I2CM_DATAO_1_ADDR); hdmi_writeb(hdmi, (unsigned char)(data >> 0), HDMI_PHY_I2CM_DATAO_0_ADDR); hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE, HDMI_PHY_I2CM_OPERATION_ADDR); hdmi_phy_wait_i2c_done(hdmi, 1000); } EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_write); /* Filter out invalid setups to avoid configuring SCDC and scrambling */ static bool dw_hdmi_support_scdc(struct dw_hdmi *hdmi, const struct drm_display_info *display) { /* Completely disable SCDC support for older controllers */ if (hdmi->version < 0x200a) return false; /* Disable if no DDC bus */ if (!hdmi->ddc) return false; /* Disable if SCDC is not supported, or if an HF-VSDB block is absent */ if (!display->hdmi.scdc.supported || !display->hdmi.scdc.scrambling.supported) return false; /* * Disable if display only support low TMDS rates and scrambling * for low rates is not supported either */ if (!display->hdmi.scdc.scrambling.low_rates && display->max_tmds_clock <= 340000) return false; return true; } /* * HDMI2.0 Specifies the following procedure for High TMDS Bit Rates: * - The Source shall suspend transmission of the TMDS clock and data * - The Source shall write to the TMDS_Bit_Clock_Ratio bit to change it * from a 0 to a 1 or from a 1 to a 0 * - The Source shall allow a minimum of 1 ms and a maximum of 100 ms from * the time the TMDS_Bit_Clock_Ratio bit is written until resuming * transmission of TMDS clock and data * * To respect the 100ms maximum delay, the dw_hdmi_set_high_tmds_clock_ratio() * helper should called right before enabling the TMDS Clock and Data in * the PHY configuration callback. */ void dw_hdmi_set_high_tmds_clock_ratio(struct dw_hdmi *hdmi, const struct drm_display_info *display) { unsigned long mtmdsclock = hdmi->hdmi_data.video_mode.mtmdsclock; /* Control for TMDS Bit Period/TMDS Clock-Period Ratio */ if (dw_hdmi_support_scdc(hdmi, display)) { if (mtmdsclock > HDMI14_MAX_TMDSCLK) drm_scdc_set_high_tmds_clock_ratio(hdmi->curr_conn, 1); else drm_scdc_set_high_tmds_clock_ratio(hdmi->curr_conn, 0); } } EXPORT_SYMBOL_GPL(dw_hdmi_set_high_tmds_clock_ratio); static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable) { hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_PDZ_OFFSET, HDMI_PHY_CONF0_PDZ_MASK); } static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_ENTMDS_OFFSET, HDMI_PHY_CONF0_ENTMDS_MASK); } static void dw_hdmi_phy_enable_svsret(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_SVSRET_OFFSET, HDMI_PHY_CONF0_SVSRET_MASK); } void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET, HDMI_PHY_CONF0_GEN2_PDDQ_MASK); } EXPORT_SYMBOL_GPL(dw_hdmi_phy_gen2_pddq); void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET, HDMI_PHY_CONF0_GEN2_TXPWRON_MASK); } EXPORT_SYMBOL_GPL(dw_hdmi_phy_gen2_txpwron); static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_SELDATAENPOL_OFFSET, HDMI_PHY_CONF0_SELDATAENPOL_MASK); } static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_SELDIPIF_OFFSET, HDMI_PHY_CONF0_SELDIPIF_MASK); } void dw_hdmi_phy_gen1_reset(struct dw_hdmi *hdmi) { /* PHY reset. The reset signal is active low on Gen1 PHYs. */ hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ); hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ); } EXPORT_SYMBOL_GPL(dw_hdmi_phy_gen1_reset); void dw_hdmi_phy_gen2_reset(struct dw_hdmi *hdmi) { /* PHY reset. The reset signal is active high on Gen2 PHYs. */ hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ); hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ); } EXPORT_SYMBOL_GPL(dw_hdmi_phy_gen2_reset); void dw_hdmi_phy_i2c_set_addr(struct dw_hdmi *hdmi, u8 address) { hdmi_phy_test_clear(hdmi, 1); hdmi_writeb(hdmi, address, HDMI_PHY_I2CM_SLAVE_ADDR); hdmi_phy_test_clear(hdmi, 0); } EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_set_addr); static void dw_hdmi_phy_power_off(struct dw_hdmi *hdmi) { const struct dw_hdmi_phy_data *phy = hdmi->phy.data; unsigned int i; u16 val; if (phy->gen == 1) { dw_hdmi_phy_enable_tmds(hdmi, 0); dw_hdmi_phy_enable_powerdown(hdmi, true); return; } dw_hdmi_phy_gen2_txpwron(hdmi, 0); /* * Wait for TX_PHY_LOCK to be deasserted to indicate that the PHY went * to low power mode. */ for (i = 0; i < 5; ++i) { val = hdmi_readb(hdmi, HDMI_PHY_STAT0); if (!(val & HDMI_PHY_TX_PHY_LOCK)) break; usleep_range(1000, 2000); } if (val & HDMI_PHY_TX_PHY_LOCK) dev_warn(hdmi->dev, "PHY failed to power down\n"); else dev_dbg(hdmi->dev, "PHY powered down in %u iterations\n", i); dw_hdmi_phy_gen2_pddq(hdmi, 1); } static int dw_hdmi_phy_power_on(struct dw_hdmi *hdmi) { const struct dw_hdmi_phy_data *phy = hdmi->phy.data; unsigned int i; u8 val; if (phy->gen == 1) { dw_hdmi_phy_enable_powerdown(hdmi, false); /* Toggle TMDS enable. */ dw_hdmi_phy_enable_tmds(hdmi, 0); dw_hdmi_phy_enable_tmds(hdmi, 1); return 0; } dw_hdmi_phy_gen2_txpwron(hdmi, 1); dw_hdmi_phy_gen2_pddq(hdmi, 0); /* Wait for PHY PLL lock */ for (i = 0; i < 5; ++i) { val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK; if (val) break; usleep_range(1000, 2000); } if (!val) { dev_err(hdmi->dev, "PHY PLL failed to lock\n"); return -ETIMEDOUT; } dev_dbg(hdmi->dev, "PHY PLL locked %u iterations\n", i); return 0; } /* * PHY configuration function for the DWC HDMI 3D TX PHY. Based on the available * information the DWC MHL PHY has the same register layout and is thus also * supported by this function. */ static int hdmi_phy_configure_dwc_hdmi_3d_tx(struct dw_hdmi *hdmi, const struct dw_hdmi_plat_data *pdata, unsigned long mpixelclock) { const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg; const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr; const struct dw_hdmi_phy_config *phy_config = pdata->phy_config; /* TOFIX Will need 420 specific PHY configuration tables */ /* PLL/MPLL Cfg - always match on final entry */ for (; mpll_config->mpixelclock != ~0UL; mpll_config++) if (mpixelclock <= mpll_config->mpixelclock) break; for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++) if (mpixelclock <= curr_ctrl->mpixelclock) break; for (; phy_config->mpixelclock != ~0UL; phy_config++) if (mpixelclock <= phy_config->mpixelclock) break; if (mpll_config->mpixelclock == ~0UL || curr_ctrl->mpixelclock == ~0UL || phy_config->mpixelclock == ~0UL) return -EINVAL; dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].cpce, HDMI_3D_TX_PHY_CPCE_CTRL); dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].gmp, HDMI_3D_TX_PHY_GMPCTRL); dw_hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[0], HDMI_3D_TX_PHY_CURRCTRL); dw_hdmi_phy_i2c_write(hdmi, 0, HDMI_3D_TX_PHY_PLLPHBYCTRL); dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_MSM_CTRL_CKO_SEL_FB_CLK, HDMI_3D_TX_PHY_MSM_CTRL); dw_hdmi_phy_i2c_write(hdmi, phy_config->term, HDMI_3D_TX_PHY_TXTERM); dw_hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr, HDMI_3D_TX_PHY_CKSYMTXCTRL); dw_hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr, HDMI_3D_TX_PHY_VLEVCTRL); /* Override and disable clock termination. */ dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_CKCALCTRL_OVERRIDE, HDMI_3D_TX_PHY_CKCALCTRL); return 0; } static int hdmi_phy_configure(struct dw_hdmi *hdmi, const struct drm_display_info *display) { const struct dw_hdmi_phy_data *phy = hdmi->phy.data; const struct dw_hdmi_plat_data *pdata = hdmi->plat_data; unsigned long mpixelclock = hdmi->hdmi_data.video_mode.mpixelclock; unsigned long mtmdsclock = hdmi->hdmi_data.video_mode.mtmdsclock; int ret; dw_hdmi_phy_power_off(hdmi); dw_hdmi_set_high_tmds_clock_ratio(hdmi, display); /* Leave low power consumption mode by asserting SVSRET. */ if (phy->has_svsret) dw_hdmi_phy_enable_svsret(hdmi, 1); dw_hdmi_phy_gen2_reset(hdmi); hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST); dw_hdmi_phy_i2c_set_addr(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2); /* Write to the PHY as configured by the platform */ if (pdata->configure_phy) ret = pdata->configure_phy(hdmi, pdata->priv_data, mpixelclock); else ret = phy->configure(hdmi, pdata, mpixelclock); if (ret) { dev_err(hdmi->dev, "PHY configuration failed (clock %lu)\n", mpixelclock); return ret; } /* Wait for resuming transmission of TMDS clock and data */ if (mtmdsclock > HDMI14_MAX_TMDSCLK) msleep(100); return dw_hdmi_phy_power_on(hdmi); } static int dw_hdmi_phy_init(struct dw_hdmi *hdmi, void *data, const struct drm_display_info *display, const struct drm_display_mode *mode) { int i, ret; /* HDMI Phy spec says to do the phy initialization sequence twice */ for (i = 0; i < 2; i++) { dw_hdmi_phy_sel_data_en_pol(hdmi, 1); dw_hdmi_phy_sel_interface_control(hdmi, 0); ret = hdmi_phy_configure(hdmi, display); if (ret) return ret; } return 0; } static void dw_hdmi_phy_disable(struct dw_hdmi *hdmi, void *data) { dw_hdmi_phy_power_off(hdmi); } enum drm_connector_status dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi, void *data) { return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ? connector_status_connected : connector_status_disconnected; } EXPORT_SYMBOL_GPL(dw_hdmi_phy_read_hpd); void dw_hdmi_phy_update_hpd(struct dw_hdmi *hdmi, void *data, bool force, bool disabled, bool rxsense) { u8 old_mask = hdmi->phy_mask; if (force || disabled || !rxsense) hdmi->phy_mask |= HDMI_PHY_RX_SENSE; else hdmi->phy_mask &= ~HDMI_PHY_RX_SENSE; if (old_mask != hdmi->phy_mask) hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0); } EXPORT_SYMBOL_GPL(dw_hdmi_phy_update_hpd); void dw_hdmi_phy_setup_hpd(struct dw_hdmi *hdmi, void *data) { /* * Configure the PHY RX SENSE and HPD interrupts polarities and clear * any pending interrupt. */ hdmi_writeb(hdmi, HDMI_PHY_HPD | HDMI_PHY_RX_SENSE, HDMI_PHY_POL0); hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE, HDMI_IH_PHY_STAT0); /* Enable cable hot plug irq. */ hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0); /* Clear and unmute interrupts. */ hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE, HDMI_IH_PHY_STAT0); hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE), HDMI_IH_MUTE_PHY_STAT0); } EXPORT_SYMBOL_GPL(dw_hdmi_phy_setup_hpd); static const struct dw_hdmi_phy_ops dw_hdmi_synopsys_phy_ops = { .init = dw_hdmi_phy_init, .disable = dw_hdmi_phy_disable, .read_hpd = dw_hdmi_phy_read_hpd, .update_hpd = dw_hdmi_phy_update_hpd, .setup_hpd = dw_hdmi_phy_setup_hpd, }; /* ----------------------------------------------------------------------------- * HDMI TX Setup */ static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi) { u8 de; if (hdmi->hdmi_data.video_mode.mdataenablepolarity) de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH; else de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_LOW; /* disable rx detect */ hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_DISABLE, HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0); hdmi_modb(hdmi, de, HDMI_A_VIDPOLCFG_DATAENPOL_MASK, HDMI_A_VIDPOLCFG); hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_DISABLE, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK, HDMI_A_HDCPCFG1); } static void hdmi_config_AVI(struct dw_hdmi *hdmi, const struct drm_connector *connector, const struct drm_display_mode *mode) { struct hdmi_avi_infoframe frame; u8 val; /* Initialise info frame from DRM mode */ drm_hdmi_avi_infoframe_from_display_mode(&frame, connector, mode); if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format)) { drm_hdmi_avi_infoframe_quant_range(&frame, connector, mode, hdmi->hdmi_data.rgb_limited_range ? HDMI_QUANTIZATION_RANGE_LIMITED : HDMI_QUANTIZATION_RANGE_FULL); } else { frame.quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; frame.ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED; } if (hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format)) frame.colorspace = HDMI_COLORSPACE_YUV444; else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) frame.colorspace = HDMI_COLORSPACE_YUV422; else if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) frame.colorspace = HDMI_COLORSPACE_YUV420; else frame.colorspace = HDMI_COLORSPACE_RGB; /* Set up colorimetry */ if (!hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format)) { switch (hdmi->hdmi_data.enc_out_encoding) { case V4L2_YCBCR_ENC_601: if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV601) frame.colorimetry = HDMI_COLORIMETRY_EXTENDED; else frame.colorimetry = HDMI_COLORIMETRY_ITU_601; frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; break; case V4L2_YCBCR_ENC_709: if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV709) frame.colorimetry = HDMI_COLORIMETRY_EXTENDED; else frame.colorimetry = HDMI_COLORIMETRY_ITU_709; frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_709; break; default: /* Carries no data */ frame.colorimetry = HDMI_COLORIMETRY_ITU_601; frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; break; } } else { frame.colorimetry = HDMI_COLORIMETRY_NONE; frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; } /* * The Designware IP uses a different byte format from standard * AVI info frames, though generally the bits are in the correct * bytes. */ /* * AVI data byte 1 differences: Colorspace in bits 0,1 rather than 5,6, * scan info in bits 4,5 rather than 0,1 and active aspect present in * bit 6 rather than 4. */ val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 3); if (frame.active_aspect & 15) val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT; if (frame.top_bar || frame.bottom_bar) val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR; if (frame.left_bar || frame.right_bar) val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR; hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0); /* AVI data byte 2 differences: none */ val = ((frame.colorimetry & 0x3) << 6) | ((frame.picture_aspect & 0x3) << 4) | (frame.active_aspect & 0xf); hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1); /* AVI data byte 3 differences: none */ val = ((frame.extended_colorimetry & 0x7) << 4) | ((frame.quantization_range & 0x3) << 2) | (frame.nups & 0x3); if (frame.itc) val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID; hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2); /* AVI data byte 4 differences: none */ val = frame.video_code & 0x7f; hdmi_writeb(hdmi, val, HDMI_FC_AVIVID); /* AVI Data Byte 5- set up input and output pixel repetition */ val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) << HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) & HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) | ((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput << HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) & HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK); hdmi_writeb(hdmi, val, HDMI_FC_PRCONF); /* * AVI data byte 5 differences: content type in 0,1 rather than 4,5, * ycc range in bits 2,3 rather than 6,7 */ val = ((frame.ycc_quantization_range & 0x3) << 2) | (frame.content_type & 0x3); hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3); /* AVI Data Bytes 6-13 */ hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0); hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1); hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0); hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1); hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0); hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1); hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0); hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1); } static void hdmi_config_vendor_specific_infoframe(struct dw_hdmi *hdmi, const struct drm_connector *connector, const struct drm_display_mode *mode) { struct hdmi_vendor_infoframe frame; u8 buffer[10]; ssize_t err; err = drm_hdmi_vendor_infoframe_from_display_mode(&frame, connector, mode); if (err < 0) /* * Going into that statement does not means vendor infoframe * fails. It just informed us that vendor infoframe is not * needed for the selected mode. Only 4k or stereoscopic 3D * mode requires vendor infoframe. So just simply return. */ return; err = hdmi_vendor_infoframe_pack(&frame, buffer, sizeof(buffer)); if (err < 0) { dev_err(hdmi->dev, "Failed to pack vendor infoframe: %zd\n", err); return; } hdmi_mask_writeb(hdmi, 0, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET, HDMI_FC_DATAUTO0_VSD_MASK); /* Set the length of HDMI vendor specific InfoFrame payload */ hdmi_writeb(hdmi, buffer[2], HDMI_FC_VSDSIZE); /* Set 24bit IEEE Registration Identifier */ hdmi_writeb(hdmi, buffer[4], HDMI_FC_VSDIEEEID0); hdmi_writeb(hdmi, buffer[5], HDMI_FC_VSDIEEEID1); hdmi_writeb(hdmi, buffer[6], HDMI_FC_VSDIEEEID2); /* Set HDMI_Video_Format and HDMI_VIC/3D_Structure */ hdmi_writeb(hdmi, buffer[7], HDMI_FC_VSDPAYLOAD0); hdmi_writeb(hdmi, buffer[8], HDMI_FC_VSDPAYLOAD1); if (frame.s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF) hdmi_writeb(hdmi, buffer[9], HDMI_FC_VSDPAYLOAD2); /* Packet frame interpolation */ hdmi_writeb(hdmi, 1, HDMI_FC_DATAUTO1); /* Auto packets per frame and line spacing */ hdmi_writeb(hdmi, 0x11, HDMI_FC_DATAUTO2); /* Configures the Frame Composer On RDRB mode */ hdmi_mask_writeb(hdmi, 1, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET, HDMI_FC_DATAUTO0_VSD_MASK); } static void hdmi_config_drm_infoframe(struct dw_hdmi *hdmi, const struct drm_connector *connector) { const struct drm_connector_state *conn_state = connector->state; struct hdmi_drm_infoframe frame; u8 buffer[30]; ssize_t err; int i; if (!hdmi->plat_data->use_drm_infoframe) return; hdmi_modb(hdmi, HDMI_FC_PACKET_TX_EN_DRM_DISABLE, HDMI_FC_PACKET_TX_EN_DRM_MASK, HDMI_FC_PACKET_TX_EN); err = drm_hdmi_infoframe_set_hdr_metadata(&frame, conn_state); if (err < 0) return; err = hdmi_drm_infoframe_pack(&frame, buffer, sizeof(buffer)); if (err < 0) { dev_err(hdmi->dev, "Failed to pack drm infoframe: %zd\n", err); return; } hdmi_writeb(hdmi, frame.version, HDMI_FC_DRM_HB0); hdmi_writeb(hdmi, frame.length, HDMI_FC_DRM_HB1); for (i = 0; i < frame.length; i++) hdmi_writeb(hdmi, buffer[4 + i], HDMI_FC_DRM_PB0 + i); hdmi_writeb(hdmi, 1, HDMI_FC_DRM_UP); hdmi_modb(hdmi, HDMI_FC_PACKET_TX_EN_DRM_ENABLE, HDMI_FC_PACKET_TX_EN_DRM_MASK, HDMI_FC_PACKET_TX_EN); } static void hdmi_av_composer(struct dw_hdmi *hdmi, const struct drm_display_info *display, const struct drm_display_mode *mode) { u8 inv_val, bytes; const struct drm_hdmi_info *hdmi_info = &display->hdmi; struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode; int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len; unsigned int vdisplay, hdisplay; vmode->mpixelclock = mode->clock * 1000; dev_dbg(hdmi->dev, "final pixclk = %d\n", vmode->mpixelclock); vmode->mtmdsclock = vmode->mpixelclock; if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) { switch (hdmi_bus_fmt_color_depth( hdmi->hdmi_data.enc_out_bus_format)) { case 16: vmode->mtmdsclock = vmode->mpixelclock * 2; break; case 12: vmode->mtmdsclock = vmode->mpixelclock * 3 / 2; break; case 10: vmode->mtmdsclock = vmode->mpixelclock * 5 / 4; break; } } if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) vmode->mtmdsclock /= 2; dev_dbg(hdmi->dev, "final tmdsclock = %d\n", vmode->mtmdsclock); /* Set up HDMI_FC_INVIDCONF */ inv_val = (hdmi->hdmi_data.hdcp_enable || (dw_hdmi_support_scdc(hdmi, display) && (vmode->mtmdsclock > HDMI14_MAX_TMDSCLK || hdmi_info->scdc.scrambling.low_rates)) ? HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE : HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE); inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ? HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH : HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW; inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ? HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH : HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW; inv_val |= (vmode->mdataenablepolarity ? HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH : HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW); if (hdmi->vic == 39) inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH; else inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ? HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH : HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW; inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ? HDMI_FC_INVIDCONF_IN_I_P_INTERLACED : HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE; inv_val |= hdmi->sink_is_hdmi ? HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE : HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE; hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF); hdisplay = mode->hdisplay; hblank = mode->htotal - mode->hdisplay; h_de_hs = mode->hsync_start - mode->hdisplay; hsync_len = mode->hsync_end - mode->hsync_start; /* * When we're setting a YCbCr420 mode, we need * to adjust the horizontal timing to suit. */ if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) { hdisplay /= 2; hblank /= 2; h_de_hs /= 2; hsync_len /= 2; } vdisplay = mode->vdisplay; vblank = mode->vtotal - mode->vdisplay; v_de_vs = mode->vsync_start - mode->vdisplay; vsync_len = mode->vsync_end - mode->vsync_start; /* * When we're setting an interlaced mode, we need * to adjust the vertical timing to suit. */ if (mode->flags & DRM_MODE_FLAG_INTERLACE) { vdisplay /= 2; vblank /= 2; v_de_vs /= 2; vsync_len /= 2; } /* Scrambling Control */ if (dw_hdmi_support_scdc(hdmi, display)) { if (vmode->mtmdsclock > HDMI14_MAX_TMDSCLK || hdmi_info->scdc.scrambling.low_rates) { /* * HDMI2.0 Specifies the following procedure: * After the Source Device has determined that * SCDC_Present is set (=1), the Source Device should * write the accurate Version of the Source Device * to the Source Version field in the SCDCS. * Source Devices compliant shall set the * Source Version = 1. */ drm_scdc_readb(hdmi->ddc, SCDC_SINK_VERSION, &bytes); drm_scdc_writeb(hdmi->ddc, SCDC_SOURCE_VERSION, min_t(u8, bytes, SCDC_MIN_SOURCE_VERSION)); /* Enabled Scrambling in the Sink */ drm_scdc_set_scrambling(hdmi->curr_conn, 1); /* * To activate the scrambler feature, you must ensure * that the quasi-static configuration bit * fc_invidconf.HDCP_keepout is set at configuration * time, before the required mc_swrstzreq.tmdsswrst_req * reset request is issued. */ hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ); hdmi_writeb(hdmi, 1, HDMI_FC_SCRAMBLER_CTRL); } else { hdmi_writeb(hdmi, 0, HDMI_FC_SCRAMBLER_CTRL); hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ); drm_scdc_set_scrambling(hdmi->curr_conn, 0); } } /* Set up horizontal active pixel width */ hdmi_writeb(hdmi, hdisplay >> 8, HDMI_FC_INHACTV1); hdmi_writeb(hdmi, hdisplay, HDMI_FC_INHACTV0); /* Set up vertical active lines */ hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1); hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0); /* Set up horizontal blanking pixel region width */ hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1); hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0); /* Set up vertical blanking pixel region width */ hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK); /* Set up HSYNC active edge delay width (in pixel clks) */ hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1); hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0); /* Set up VSYNC active edge delay (in lines) */ hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY); /* Set up HSYNC active pulse width (in pixel clks) */ hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1); hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0); /* Set up VSYNC active edge delay (in lines) */ hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH); } /* HDMI Initialization Step B.4 */ static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi) { /* control period minimum duration */ hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR); hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR); hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC); /* Set to fill TMDS data channels */ hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM); hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM); hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM); /* Enable pixel clock and tmds data path */ hdmi->mc_clkdis |= HDMI_MC_CLKDIS_HDCPCLK_DISABLE | HDMI_MC_CLKDIS_CSCCLK_DISABLE | HDMI_MC_CLKDIS_AUDCLK_DISABLE | HDMI_MC_CLKDIS_PREPCLK_DISABLE | HDMI_MC_CLKDIS_TMDSCLK_DISABLE; hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); /* Enable csc path */ if (is_csc_needed(hdmi)) { hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH, HDMI_MC_FLOWCTRL); } else { hdmi->mc_clkdis |= HDMI_MC_CLKDIS_CSCCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS, HDMI_MC_FLOWCTRL); } } /* Workaround to clear the overflow condition */ static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi) { unsigned int count; unsigned int i; u8 val; /* * Under some circumstances the Frame Composer arithmetic unit can miss * an FC register write due to being busy processing the previous one. * The issue can be worked around by issuing a TMDS software reset and * then write one of the FC registers several times. * * The number of iterations matters and depends on the HDMI TX revision * (and possibly on the platform). * 4 iterations for i.MX6Q(v1.30a) and 1 iteration for others. * i.MX6DL (v1.31a), Allwinner SoCs (v1.32a), Rockchip RK3288 SoC (v2.00a), * Amlogic Meson GX SoCs (v2.01a), RK3328/RK3399 SoCs (v2.11a) * and i.MX8MPlus (v2.13a) have been identified as needing the workaround * with a single iteration. */ switch (hdmi->version) { case 0x130a: count = 4; break; default: count = 1; break; } /* TMDS software reset */ hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ); val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF); for (i = 0; i < count; i++) hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF); } static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi) { hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK, HDMI_IH_MUTE_FC_STAT2); } static int dw_hdmi_setup(struct dw_hdmi *hdmi, const struct drm_connector *connector, const struct drm_display_mode *mode) { int ret; hdmi_disable_overflow_interrupts(hdmi); hdmi->vic = drm_match_cea_mode(mode); if (!hdmi->vic) { dev_dbg(hdmi->dev, "Non-CEA mode used in HDMI\n"); } else { dev_dbg(hdmi->dev, "CEA mode used vic=%d\n", hdmi->vic); } if ((hdmi->vic == 6) || (hdmi->vic == 7) || (hdmi->vic == 21) || (hdmi->vic == 22) || (hdmi->vic == 2) || (hdmi->vic == 3) || (hdmi->vic == 17) || (hdmi->vic == 18)) hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_601; else hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_709; hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0; hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0; if (hdmi->hdmi_data.enc_in_bus_format == MEDIA_BUS_FMT_FIXED) hdmi->hdmi_data.enc_in_bus_format = MEDIA_BUS_FMT_RGB888_1X24; /* TOFIX: Get input encoding from plat data or fallback to none */ if (hdmi->plat_data->input_bus_encoding) hdmi->hdmi_data.enc_in_encoding = hdmi->plat_data->input_bus_encoding; else hdmi->hdmi_data.enc_in_encoding = V4L2_YCBCR_ENC_DEFAULT; if (hdmi->hdmi_data.enc_out_bus_format == MEDIA_BUS_FMT_FIXED) hdmi->hdmi_data.enc_out_bus_format = MEDIA_BUS_FMT_RGB888_1X24; hdmi->hdmi_data.rgb_limited_range = hdmi->sink_is_hdmi && drm_default_rgb_quant_range(mode) == HDMI_QUANTIZATION_RANGE_LIMITED; hdmi->hdmi_data.pix_repet_factor = 0; hdmi->hdmi_data.hdcp_enable = 0; hdmi->hdmi_data.video_mode.mdataenablepolarity = true; /* HDMI Initialization Step B.1 */ hdmi_av_composer(hdmi, &connector->display_info, mode); /* HDMI Initializateion Step B.2 */ ret = hdmi->phy.ops->init(hdmi, hdmi->phy.data, &connector->display_info, &hdmi->previous_mode); if (ret) return ret; hdmi->phy.enabled = true; /* HDMI Initialization Step B.3 */ dw_hdmi_enable_video_path(hdmi); if (hdmi->sink_has_audio) { dev_dbg(hdmi->dev, "sink has audio support\n"); /* HDMI Initialization Step E - Configure audio */ hdmi_clk_regenerator_update_pixel_clock(hdmi); hdmi_enable_audio_clk(hdmi, hdmi->audio_enable); } /* not for DVI mode */ if (hdmi->sink_is_hdmi) { dev_dbg(hdmi->dev, "%s HDMI mode\n", __func__); /* HDMI Initialization Step F - Configure AVI InfoFrame */ hdmi_config_AVI(hdmi, connector, mode); hdmi_config_vendor_specific_infoframe(hdmi, connector, mode); hdmi_config_drm_infoframe(hdmi, connector); } else { dev_dbg(hdmi->dev, "%s DVI mode\n", __func__); } hdmi_video_packetize(hdmi); hdmi_video_csc(hdmi); hdmi_video_sample(hdmi); hdmi_tx_hdcp_config(hdmi); dw_hdmi_clear_overflow(hdmi); return 0; } static void initialize_hdmi_ih_mutes(struct dw_hdmi *hdmi) { u8 ih_mute; /* * Boot up defaults are: * HDMI_IH_MUTE = 0x03 (disabled) * HDMI_IH_MUTE_* = 0x00 (enabled) * * Disable top level interrupt bits in HDMI block */ ih_mute = hdmi_readb(hdmi, HDMI_IH_MUTE) | HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT | HDMI_IH_MUTE_MUTE_ALL_INTERRUPT; hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE); /* by default mask all interrupts */ hdmi_writeb(hdmi, 0xff, HDMI_VP_MASK); hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0); hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1); hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2); hdmi_writeb(hdmi, 0xff, HDMI_PHY_MASK0); hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_INT_ADDR); hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_CTLINT_ADDR); hdmi_writeb(hdmi, 0xff, HDMI_AUD_INT); hdmi_writeb(hdmi, 0xff, HDMI_AUD_SPDIFINT); hdmi_writeb(hdmi, 0xff, HDMI_AUD_HBR_MASK); hdmi_writeb(hdmi, 0xff, HDMI_GP_MASK); hdmi_writeb(hdmi, 0xff, HDMI_A_APIINTMSK); hdmi_writeb(hdmi, 0xff, HDMI_I2CM_INT); hdmi_writeb(hdmi, 0xff, HDMI_I2CM_CTLINT); /* Disable interrupts in the IH_MUTE_* registers */ hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_PHY_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0); /* Enable top level interrupt bits in HDMI block */ ih_mute &= ~(HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT | HDMI_IH_MUTE_MUTE_ALL_INTERRUPT); hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE); } static void dw_hdmi_poweron(struct dw_hdmi *hdmi) { hdmi->bridge_is_on = true; /* * The curr_conn field is guaranteed to be valid here, as this function * is only be called when !hdmi->disabled. */ dw_hdmi_setup(hdmi, hdmi->curr_conn, &hdmi->previous_mode); } static void dw_hdmi_poweroff(struct dw_hdmi *hdmi) { if (hdmi->phy.enabled) { hdmi->phy.ops->disable(hdmi, hdmi->phy.data); hdmi->phy.enabled = false; } hdmi->bridge_is_on = false; } static void dw_hdmi_update_power(struct dw_hdmi *hdmi) { int force = hdmi->force; if (hdmi->disabled) { force = DRM_FORCE_OFF; } else if (force == DRM_FORCE_UNSPECIFIED) { if (hdmi->rxsense) force = DRM_FORCE_ON; else force = DRM_FORCE_OFF; } if (force == DRM_FORCE_OFF) { if (hdmi->bridge_is_on) dw_hdmi_poweroff(hdmi); } else { if (!hdmi->bridge_is_on) dw_hdmi_poweron(hdmi); } } /* * Adjust the detection of RXSENSE according to whether we have a forced * connection mode enabled, or whether we have been disabled. There is * no point processing RXSENSE interrupts if we have a forced connection * state, or DRM has us disabled. * * We also disable rxsense interrupts when we think we're disconnected * to avoid floating TDMS signals giving false rxsense interrupts. * * Note: we still need to listen for HPD interrupts even when DRM has us * disabled so that we can detect a connect event. */ static void dw_hdmi_update_phy_mask(struct dw_hdmi *hdmi) { if (hdmi->phy.ops->update_hpd) hdmi->phy.ops->update_hpd(hdmi, hdmi->phy.data, hdmi->force, hdmi->disabled, hdmi->rxsense); } static enum drm_connector_status dw_hdmi_detect(struct dw_hdmi *hdmi) { enum drm_connector_status result; result = hdmi->phy.ops->read_hpd(hdmi, hdmi->phy.data); hdmi->last_connector_result = result; return result; } static const struct drm_edid *dw_hdmi_edid_read(struct dw_hdmi *hdmi, struct drm_connector *connector) { const struct drm_edid *drm_edid; const struct edid *edid; if (!hdmi->ddc) return NULL; drm_edid = drm_edid_read_ddc(connector, hdmi->ddc); if (!drm_edid) { dev_dbg(hdmi->dev, "failed to get edid\n"); return NULL; } /* * FIXME: This should use connector->display_info.is_hdmi and * connector->display_info.has_audio from a path that has read the EDID * and called drm_edid_connector_update(). */ edid = drm_edid_raw(drm_edid); dev_dbg(hdmi->dev, "got edid: width[%d] x height[%d]\n", edid->width_cm, edid->height_cm); hdmi->sink_is_hdmi = drm_detect_hdmi_monitor(edid); hdmi->sink_has_audio = drm_detect_monitor_audio(edid); return drm_edid; } /* ----------------------------------------------------------------------------- * DRM Connector Operations */ static enum drm_connector_status dw_hdmi_connector_detect(struct drm_connector *connector, bool force) { struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi, connector); return dw_hdmi_detect(hdmi); } static int dw_hdmi_connector_get_modes(struct drm_connector *connector) { struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi, connector); const struct drm_edid *drm_edid; int ret; drm_edid = dw_hdmi_edid_read(hdmi, connector); drm_edid_connector_update(connector, drm_edid); cec_notifier_set_phys_addr(hdmi->cec_notifier, connector->display_info.source_physical_address); ret = drm_edid_connector_add_modes(connector); drm_edid_free(drm_edid); return ret; } static int dw_hdmi_connector_atomic_check(struct drm_connector *connector, struct drm_atomic_state *state) { struct drm_connector_state *old_state = drm_atomic_get_old_connector_state(state, connector); struct drm_connector_state *new_state = drm_atomic_get_new_connector_state(state, connector); struct drm_crtc *crtc = new_state->crtc; struct drm_crtc_state *crtc_state; if (!crtc) return 0; if (!drm_connector_atomic_hdr_metadata_equal(old_state, new_state)) { crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); crtc_state->mode_changed = true; } return 0; } static void dw_hdmi_connector_force(struct drm_connector *connector) { struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi, connector); mutex_lock(&hdmi->mutex); hdmi->force = connector->force; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); mutex_unlock(&hdmi->mutex); } static const struct drm_connector_funcs dw_hdmi_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .detect = dw_hdmi_connector_detect, .destroy = drm_connector_cleanup, .force = dw_hdmi_connector_force, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static const struct drm_connector_helper_funcs dw_hdmi_connector_helper_funcs = { .get_modes = dw_hdmi_connector_get_modes, .atomic_check = dw_hdmi_connector_atomic_check, }; static int dw_hdmi_connector_create(struct dw_hdmi *hdmi) { struct drm_connector *connector = &hdmi->connector; struct cec_connector_info conn_info; struct cec_notifier *notifier; if (hdmi->version >= 0x200a) connector->ycbcr_420_allowed = hdmi->plat_data->ycbcr_420_allowed; else connector->ycbcr_420_allowed = false; connector->interlace_allowed = 1; connector->polled = DRM_CONNECTOR_POLL_HPD; drm_connector_helper_add(connector, &dw_hdmi_connector_helper_funcs); drm_connector_init_with_ddc(hdmi->bridge.dev, connector, &dw_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA, hdmi->ddc); /* * drm_connector_attach_max_bpc_property() requires the * connector to have a state. */ drm_atomic_helper_connector_reset(connector); drm_connector_attach_max_bpc_property(connector, 8, 16); if (hdmi->version >= 0x200a && hdmi->plat_data->use_drm_infoframe) drm_connector_attach_hdr_output_metadata_property(connector); drm_connector_attach_encoder(connector, hdmi->bridge.encoder); cec_fill_conn_info_from_drm(&conn_info, connector); notifier = cec_notifier_conn_register(hdmi->dev, NULL, &conn_info); if (!notifier) return -ENOMEM; mutex_lock(&hdmi->cec_notifier_mutex); hdmi->cec_notifier = notifier; mutex_unlock(&hdmi->cec_notifier_mutex); return 0; } /* ----------------------------------------------------------------------------- * DRM Bridge Operations */ /* * Possible output formats : * - MEDIA_BUS_FMT_UYYVYY16_0_5X48, * - MEDIA_BUS_FMT_UYYVYY12_0_5X36, * - MEDIA_BUS_FMT_UYYVYY10_0_5X30, * - MEDIA_BUS_FMT_UYYVYY8_0_5X24, * - MEDIA_BUS_FMT_YUV16_1X48, * - MEDIA_BUS_FMT_RGB161616_1X48, * - MEDIA_BUS_FMT_UYVY12_1X24, * - MEDIA_BUS_FMT_YUV12_1X36, * - MEDIA_BUS_FMT_RGB121212_1X36, * - MEDIA_BUS_FMT_UYVY10_1X20, * - MEDIA_BUS_FMT_YUV10_1X30, * - MEDIA_BUS_FMT_RGB101010_1X30, * - MEDIA_BUS_FMT_UYVY8_1X16, * - MEDIA_BUS_FMT_YUV8_1X24, * - MEDIA_BUS_FMT_RGB888_1X24, */ /* Can return a maximum of 11 possible output formats for a mode/connector */ #define MAX_OUTPUT_SEL_FORMATS 11 static u32 *dw_hdmi_bridge_atomic_get_output_bus_fmts(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, unsigned int *num_output_fmts) { struct drm_connector *conn = conn_state->connector; struct drm_display_info *info = &conn->display_info; struct drm_display_mode *mode = &crtc_state->mode; u8 max_bpc = conn_state->max_requested_bpc; bool is_hdmi2_sink = info->hdmi.scdc.supported || (info->color_formats & DRM_COLOR_FORMAT_YCBCR420); u32 *output_fmts; unsigned int i = 0; *num_output_fmts = 0; output_fmts = kcalloc(MAX_OUTPUT_SEL_FORMATS, sizeof(*output_fmts), GFP_KERNEL); if (!output_fmts) return NULL; /* If dw-hdmi is the first or only bridge, avoid negociating with ourselves */ if (list_is_singular(&bridge->encoder->bridge_chain) || list_is_first(&bridge->chain_node, &bridge->encoder->bridge_chain)) { *num_output_fmts = 1; output_fmts[0] = MEDIA_BUS_FMT_FIXED; return output_fmts; } /* * If the current mode enforces 4:2:0, force the output but format * to 4:2:0 and do not add the YUV422/444/RGB formats */ if (conn->ycbcr_420_allowed && (drm_mode_is_420_only(info, mode) || (is_hdmi2_sink && drm_mode_is_420_also(info, mode)))) { /* Order bus formats from 16bit to 8bit if supported */ if (max_bpc >= 16 && info->bpc == 16 && (info->hdmi.y420_dc_modes & DRM_EDID_YCBCR420_DC_48)) output_fmts[i++] = MEDIA_BUS_FMT_UYYVYY16_0_5X48; if (max_bpc >= 12 && info->bpc >= 12 && (info->hdmi.y420_dc_modes & DRM_EDID_YCBCR420_DC_36)) output_fmts[i++] = MEDIA_BUS_FMT_UYYVYY12_0_5X36; if (max_bpc >= 10 && info->bpc >= 10 && (info->hdmi.y420_dc_modes & DRM_EDID_YCBCR420_DC_30)) output_fmts[i++] = MEDIA_BUS_FMT_UYYVYY10_0_5X30; /* Default 8bit fallback */ output_fmts[i++] = MEDIA_BUS_FMT_UYYVYY8_0_5X24; if (drm_mode_is_420_only(info, mode)) { *num_output_fmts = i; return output_fmts; } } /* * Order bus formats from 16bit to 8bit and from YUV422 to RGB * if supported. In any case the default RGB888 format is added */ /* Default 8bit RGB fallback */ output_fmts[i++] = MEDIA_BUS_FMT_RGB888_1X24; if (max_bpc >= 16 && info->bpc == 16) { if (info->color_formats & DRM_COLOR_FORMAT_YCBCR444) output_fmts[i++] = MEDIA_BUS_FMT_YUV16_1X48; output_fmts[i++] = MEDIA_BUS_FMT_RGB161616_1X48; } if (max_bpc >= 12 && info->bpc >= 12) { if (info->color_formats & DRM_COLOR_FORMAT_YCBCR422) output_fmts[i++] = MEDIA_BUS_FMT_UYVY12_1X24; if (info->color_formats & DRM_COLOR_FORMAT_YCBCR444) output_fmts[i++] = MEDIA_BUS_FMT_YUV12_1X36; output_fmts[i++] = MEDIA_BUS_FMT_RGB121212_1X36; } if (max_bpc >= 10 && info->bpc >= 10) { if (info->color_formats & DRM_COLOR_FORMAT_YCBCR422) output_fmts[i++] = MEDIA_BUS_FMT_UYVY10_1X20; if (info->color_formats & DRM_COLOR_FORMAT_YCBCR444) output_fmts[i++] = MEDIA_BUS_FMT_YUV10_1X30; output_fmts[i++] = MEDIA_BUS_FMT_RGB101010_1X30; } if (info->color_formats & DRM_COLOR_FORMAT_YCBCR422) output_fmts[i++] = MEDIA_BUS_FMT_UYVY8_1X16; if (info->color_formats & DRM_COLOR_FORMAT_YCBCR444) output_fmts[i++] = MEDIA_BUS_FMT_YUV8_1X24; *num_output_fmts = i; return output_fmts; } /* * Possible input formats : * - MEDIA_BUS_FMT_RGB888_1X24 * - MEDIA_BUS_FMT_YUV8_1X24 * - MEDIA_BUS_FMT_UYVY8_1X16 * - MEDIA_BUS_FMT_UYYVYY8_0_5X24 * - MEDIA_BUS_FMT_RGB101010_1X30 * - MEDIA_BUS_FMT_YUV10_1X30 * - MEDIA_BUS_FMT_UYVY10_1X20 * - MEDIA_BUS_FMT_UYYVYY10_0_5X30 * - MEDIA_BUS_FMT_RGB121212_1X36 * - MEDIA_BUS_FMT_YUV12_1X36 * - MEDIA_BUS_FMT_UYVY12_1X24 * - MEDIA_BUS_FMT_UYYVYY12_0_5X36 * - MEDIA_BUS_FMT_RGB161616_1X48 * - MEDIA_BUS_FMT_YUV16_1X48 * - MEDIA_BUS_FMT_UYYVYY16_0_5X48 */ /* Can return a maximum of 3 possible input formats for an output format */ #define MAX_INPUT_SEL_FORMATS 3 static u32 *dw_hdmi_bridge_atomic_get_input_bus_fmts(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, u32 output_fmt, unsigned int *num_input_fmts) { u32 *input_fmts; unsigned int i = 0; *num_input_fmts = 0; input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts), GFP_KERNEL); if (!input_fmts) return NULL; switch (output_fmt) { /* If MEDIA_BUS_FMT_FIXED is tested, return default bus format */ case MEDIA_BUS_FMT_FIXED: input_fmts[i++] = MEDIA_BUS_FMT_RGB888_1X24; break; /* 8bit */ case MEDIA_BUS_FMT_RGB888_1X24: input_fmts[i++] = MEDIA_BUS_FMT_RGB888_1X24; input_fmts[i++] = MEDIA_BUS_FMT_YUV8_1X24; input_fmts[i++] = MEDIA_BUS_FMT_UYVY8_1X16; break; case MEDIA_BUS_FMT_YUV8_1X24: input_fmts[i++] = MEDIA_BUS_FMT_YUV8_1X24; input_fmts[i++] = MEDIA_BUS_FMT_UYVY8_1X16; input_fmts[i++] = MEDIA_BUS_FMT_RGB888_1X24; break; case MEDIA_BUS_FMT_UYVY8_1X16: input_fmts[i++] = MEDIA_BUS_FMT_UYVY8_1X16; input_fmts[i++] = MEDIA_BUS_FMT_YUV8_1X24; input_fmts[i++] = MEDIA_BUS_FMT_RGB888_1X24; break; /* 10bit */ case MEDIA_BUS_FMT_RGB101010_1X30: input_fmts[i++] = MEDIA_BUS_FMT_RGB101010_1X30; input_fmts[i++] = MEDIA_BUS_FMT_YUV10_1X30; input_fmts[i++] = MEDIA_BUS_FMT_UYVY10_1X20; break; case MEDIA_BUS_FMT_YUV10_1X30: input_fmts[i++] = MEDIA_BUS_FMT_YUV10_1X30; input_fmts[i++] = MEDIA_BUS_FMT_UYVY10_1X20; input_fmts[i++] = MEDIA_BUS_FMT_RGB101010_1X30; break; case MEDIA_BUS_FMT_UYVY10_1X20: input_fmts[i++] = MEDIA_BUS_FMT_UYVY10_1X20; input_fmts[i++] = MEDIA_BUS_FMT_YUV10_1X30; input_fmts[i++] = MEDIA_BUS_FMT_RGB101010_1X30; break; /* 12bit */ case MEDIA_BUS_FMT_RGB121212_1X36: input_fmts[i++] = MEDIA_BUS_FMT_RGB121212_1X36; input_fmts[i++] = MEDIA_BUS_FMT_YUV12_1X36; input_fmts[i++] = MEDIA_BUS_FMT_UYVY12_1X24; break; case MEDIA_BUS_FMT_YUV12_1X36: input_fmts[i++] = MEDIA_BUS_FMT_YUV12_1X36; input_fmts[i++] = MEDIA_BUS_FMT_UYVY12_1X24; input_fmts[i++] = MEDIA_BUS_FMT_RGB121212_1X36; break; case MEDIA_BUS_FMT_UYVY12_1X24: input_fmts[i++] = MEDIA_BUS_FMT_UYVY12_1X24; input_fmts[i++] = MEDIA_BUS_FMT_YUV12_1X36; input_fmts[i++] = MEDIA_BUS_FMT_RGB121212_1X36; break; /* 16bit */ case MEDIA_BUS_FMT_RGB161616_1X48: input_fmts[i++] = MEDIA_BUS_FMT_RGB161616_1X48; input_fmts[i++] = MEDIA_BUS_FMT_YUV16_1X48; break; case MEDIA_BUS_FMT_YUV16_1X48: input_fmts[i++] = MEDIA_BUS_FMT_YUV16_1X48; input_fmts[i++] = MEDIA_BUS_FMT_RGB161616_1X48; break; /*YUV 4:2:0 */ case MEDIA_BUS_FMT_UYYVYY8_0_5X24: case MEDIA_BUS_FMT_UYYVYY10_0_5X30: case MEDIA_BUS_FMT_UYYVYY12_0_5X36: case MEDIA_BUS_FMT_UYYVYY16_0_5X48: input_fmts[i++] = output_fmt; break; } *num_input_fmts = i; if (*num_input_fmts == 0) { kfree(input_fmts); input_fmts = NULL; } return input_fmts; } static int dw_hdmi_bridge_atomic_check(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct dw_hdmi *hdmi = bridge->driver_private; hdmi->hdmi_data.enc_out_bus_format = bridge_state->output_bus_cfg.format; hdmi->hdmi_data.enc_in_bus_format = bridge_state->input_bus_cfg.format; dev_dbg(hdmi->dev, "input format 0x%04x, output format 0x%04x\n", bridge_state->input_bus_cfg.format, bridge_state->output_bus_cfg.format); return 0; } static int dw_hdmi_bridge_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct dw_hdmi *hdmi = bridge->driver_private; if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) return drm_bridge_attach(bridge->encoder, hdmi->next_bridge, bridge, flags); return dw_hdmi_connector_create(hdmi); } static void dw_hdmi_bridge_detach(struct drm_bridge *bridge) { struct dw_hdmi *hdmi = bridge->driver_private; mutex_lock(&hdmi->cec_notifier_mutex); cec_notifier_conn_unregister(hdmi->cec_notifier); hdmi->cec_notifier = NULL; mutex_unlock(&hdmi->cec_notifier_mutex); } static enum drm_mode_status dw_hdmi_bridge_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { struct dw_hdmi *hdmi = bridge->driver_private; const struct dw_hdmi_plat_data *pdata = hdmi->plat_data; enum drm_mode_status mode_status = MODE_OK; /* We don't support double-clocked modes */ if (mode->flags & DRM_MODE_FLAG_DBLCLK) return MODE_BAD; if (pdata->mode_valid) mode_status = pdata->mode_valid(hdmi, pdata->priv_data, info, mode); return mode_status; } static void dw_hdmi_bridge_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *orig_mode, const struct drm_display_mode *mode) { struct dw_hdmi *hdmi = bridge->driver_private; mutex_lock(&hdmi->mutex); /* Store the display mode for plugin/DKMS poweron events */ drm_mode_copy(&hdmi->previous_mode, mode); mutex_unlock(&hdmi->mutex); } static void dw_hdmi_bridge_atomic_disable(struct drm_bridge *bridge, struct drm_bridge_state *old_state) { struct dw_hdmi *hdmi = bridge->driver_private; mutex_lock(&hdmi->mutex); hdmi->disabled = true; hdmi->curr_conn = NULL; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); handle_plugged_change(hdmi, false); mutex_unlock(&hdmi->mutex); } static void dw_hdmi_bridge_atomic_enable(struct drm_bridge *bridge, struct drm_bridge_state *old_state) { struct dw_hdmi *hdmi = bridge->driver_private; struct drm_atomic_state *state = old_state->base.state; struct drm_connector *connector; connector = drm_atomic_get_new_connector_for_encoder(state, bridge->encoder); mutex_lock(&hdmi->mutex); hdmi->disabled = false; hdmi->curr_conn = connector; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); handle_plugged_change(hdmi, true); mutex_unlock(&hdmi->mutex); } static enum drm_connector_status dw_hdmi_bridge_detect(struct drm_bridge *bridge) { struct dw_hdmi *hdmi = bridge->driver_private; return dw_hdmi_detect(hdmi); } static const struct drm_edid *dw_hdmi_bridge_edid_read(struct drm_bridge *bridge, struct drm_connector *connector) { struct dw_hdmi *hdmi = bridge->driver_private; return dw_hdmi_edid_read(hdmi, connector); } static const struct drm_bridge_funcs dw_hdmi_bridge_funcs = { .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, .atomic_reset = drm_atomic_helper_bridge_reset, .attach = dw_hdmi_bridge_attach, .detach = dw_hdmi_bridge_detach, .atomic_check = dw_hdmi_bridge_atomic_check, .atomic_get_output_bus_fmts = dw_hdmi_bridge_atomic_get_output_bus_fmts, .atomic_get_input_bus_fmts = dw_hdmi_bridge_atomic_get_input_bus_fmts, .atomic_enable = dw_hdmi_bridge_atomic_enable, .atomic_disable = dw_hdmi_bridge_atomic_disable, .mode_set = dw_hdmi_bridge_mode_set, .mode_valid = dw_hdmi_bridge_mode_valid, .detect = dw_hdmi_bridge_detect, .edid_read = dw_hdmi_bridge_edid_read, }; /* ----------------------------------------------------------------------------- * IRQ Handling */ static irqreturn_t dw_hdmi_i2c_irq(struct dw_hdmi *hdmi) { struct dw_hdmi_i2c *i2c = hdmi->i2c; unsigned int stat; stat = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0); if (!stat) return IRQ_NONE; hdmi_writeb(hdmi, stat, HDMI_IH_I2CM_STAT0); i2c->stat = stat; complete(&i2c->cmp); return IRQ_HANDLED; } static irqreturn_t dw_hdmi_hardirq(int irq, void *dev_id) { struct dw_hdmi *hdmi = dev_id; u8 intr_stat; irqreturn_t ret = IRQ_NONE; if (hdmi->i2c) ret = dw_hdmi_i2c_irq(hdmi); intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0); if (intr_stat) { hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0); return IRQ_WAKE_THREAD; } return ret; } void dw_hdmi_setup_rx_sense(struct dw_hdmi *hdmi, bool hpd, bool rx_sense) { mutex_lock(&hdmi->mutex); if (!hdmi->force) { /* * If the RX sense status indicates we're disconnected, * clear the software rxsense status. */ if (!rx_sense) hdmi->rxsense = false; /* * Only set the software rxsense status when both * rxsense and hpd indicates we're connected. * This avoids what seems to be bad behaviour in * at least iMX6S versions of the phy. */ if (hpd) hdmi->rxsense = true; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); } mutex_unlock(&hdmi->mutex); } EXPORT_SYMBOL_GPL(dw_hdmi_setup_rx_sense); static irqreturn_t dw_hdmi_irq(int irq, void *dev_id) { struct dw_hdmi *hdmi = dev_id; u8 intr_stat, phy_int_pol, phy_pol_mask, phy_stat; enum drm_connector_status status = connector_status_unknown; intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0); phy_int_pol = hdmi_readb(hdmi, HDMI_PHY_POL0); phy_stat = hdmi_readb(hdmi, HDMI_PHY_STAT0); phy_pol_mask = 0; if (intr_stat & HDMI_IH_PHY_STAT0_HPD) phy_pol_mask |= HDMI_PHY_HPD; if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE0) phy_pol_mask |= HDMI_PHY_RX_SENSE0; if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE1) phy_pol_mask |= HDMI_PHY_RX_SENSE1; if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE2) phy_pol_mask |= HDMI_PHY_RX_SENSE2; if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE3) phy_pol_mask |= HDMI_PHY_RX_SENSE3; if (phy_pol_mask) hdmi_modb(hdmi, ~phy_int_pol, phy_pol_mask, HDMI_PHY_POL0); /* * RX sense tells us whether the TDMS transmitters are detecting * load - in other words, there's something listening on the * other end of the link. Use this to decide whether we should * power on the phy as HPD may be toggled by the sink to merely * ask the source to re-read the EDID. */ if (intr_stat & (HDMI_IH_PHY_STAT0_RX_SENSE | HDMI_IH_PHY_STAT0_HPD)) { dw_hdmi_setup_rx_sense(hdmi, phy_stat & HDMI_PHY_HPD, phy_stat & HDMI_PHY_RX_SENSE); if ((phy_stat & (HDMI_PHY_RX_SENSE | HDMI_PHY_HPD)) == 0) { mutex_lock(&hdmi->cec_notifier_mutex); cec_notifier_phys_addr_invalidate(hdmi->cec_notifier); mutex_unlock(&hdmi->cec_notifier_mutex); } if (phy_stat & HDMI_PHY_HPD) status = connector_status_connected; if (!(phy_stat & (HDMI_PHY_HPD | HDMI_PHY_RX_SENSE))) status = connector_status_disconnected; } if (status != connector_status_unknown) { dev_dbg(hdmi->dev, "EVENT=%s\n", status == connector_status_connected ? "plugin" : "plugout"); if (hdmi->bridge.dev) { drm_helper_hpd_irq_event(hdmi->bridge.dev); drm_bridge_hpd_notify(&hdmi->bridge, status); } } hdmi_writeb(hdmi, intr_stat, HDMI_IH_PHY_STAT0); hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE), HDMI_IH_MUTE_PHY_STAT0); return IRQ_HANDLED; } static const struct dw_hdmi_phy_data dw_hdmi_phys[] = { { .type = DW_HDMI_PHY_DWC_HDMI_TX_PHY, .name = "DWC HDMI TX PHY", .gen = 1, }, { .type = DW_HDMI_PHY_DWC_MHL_PHY_HEAC, .name = "DWC MHL PHY + HEAC PHY", .gen = 2, .has_svsret = true, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_DWC_MHL_PHY, .name = "DWC MHL PHY", .gen = 2, .has_svsret = true, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY_HEAC, .name = "DWC HDMI 3D TX PHY + HEAC PHY", .gen = 2, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY, .name = "DWC HDMI 3D TX PHY", .gen = 2, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_DWC_HDMI20_TX_PHY, .name = "DWC HDMI 2.0 TX PHY", .gen = 2, .has_svsret = true, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_VENDOR_PHY, .name = "Vendor PHY", } }; static int dw_hdmi_detect_phy(struct dw_hdmi *hdmi) { unsigned int i; u8 phy_type; phy_type = hdmi->plat_data->phy_force_vendor ? DW_HDMI_PHY_VENDOR_PHY : hdmi_readb(hdmi, HDMI_CONFIG2_ID); if (phy_type == DW_HDMI_PHY_VENDOR_PHY) { /* Vendor PHYs require support from the glue layer. */ if (!hdmi->plat_data->phy_ops || !hdmi->plat_data->phy_name) { dev_err(hdmi->dev, "Vendor HDMI PHY not supported by glue layer\n"); return -ENODEV; } hdmi->phy.ops = hdmi->plat_data->phy_ops; hdmi->phy.data = hdmi->plat_data->phy_data; hdmi->phy.name = hdmi->plat_data->phy_name; return 0; } /* Synopsys PHYs are handled internally. */ for (i = 0; i < ARRAY_SIZE(dw_hdmi_phys); ++i) { if (dw_hdmi_phys[i].type == phy_type) { hdmi->phy.ops = &dw_hdmi_synopsys_phy_ops; hdmi->phy.name = dw_hdmi_phys[i].name; hdmi->phy.data = (void *)&dw_hdmi_phys[i]; if (!dw_hdmi_phys[i].configure && !hdmi->plat_data->configure_phy) { dev_err(hdmi->dev, "%s requires platform support\n", hdmi->phy.name); return -ENODEV; } return 0; } } dev_err(hdmi->dev, "Unsupported HDMI PHY type (%02x)\n", phy_type); return -ENODEV; } static void dw_hdmi_cec_enable(struct dw_hdmi *hdmi) { mutex_lock(&hdmi->mutex); hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_CECCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); mutex_unlock(&hdmi->mutex); } static void dw_hdmi_cec_disable(struct dw_hdmi *hdmi) { mutex_lock(&hdmi->mutex); hdmi->mc_clkdis |= HDMI_MC_CLKDIS_CECCLK_DISABLE; hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS); mutex_unlock(&hdmi->mutex); } static const struct dw_hdmi_cec_ops dw_hdmi_cec_ops = { .write = hdmi_writeb, .read = hdmi_readb, .enable = dw_hdmi_cec_enable, .disable = dw_hdmi_cec_disable, }; static const struct regmap_config hdmi_regmap_8bit_config = { .reg_bits = 32, .val_bits = 8, .reg_stride = 1, .max_register = HDMI_I2CM_FS_SCL_LCNT_0_ADDR, }; static const struct regmap_config hdmi_regmap_32bit_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = HDMI_I2CM_FS_SCL_LCNT_0_ADDR << 2, }; static void dw_hdmi_init_hw(struct dw_hdmi *hdmi) { initialize_hdmi_ih_mutes(hdmi); /* * Reset HDMI DDC I2C master controller and mute I2CM interrupts. * Even if we are using a separate i2c adapter doing this doesn't * hurt. */ dw_hdmi_i2c_init(hdmi); if (hdmi->phy.ops->setup_hpd) hdmi->phy.ops->setup_hpd(hdmi, hdmi->phy.data); } /* ----------------------------------------------------------------------------- * Probe/remove API, used from platforms based on the DRM bridge API. */ static int dw_hdmi_parse_dt(struct dw_hdmi *hdmi) { struct device_node *remote; if (!hdmi->plat_data->output_port) return 0; remote = of_graph_get_remote_node(hdmi->dev->of_node, hdmi->plat_data->output_port, -1); if (!remote) return -ENODEV; hdmi->next_bridge = of_drm_find_bridge(remote); of_node_put(remote); if (!hdmi->next_bridge) return -EPROBE_DEFER; return 0; } bool dw_hdmi_bus_fmt_is_420(struct dw_hdmi *hdmi) { return hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format); } EXPORT_SYMBOL_GPL(dw_hdmi_bus_fmt_is_420); struct dw_hdmi *dw_hdmi_probe(struct platform_device *pdev, const struct dw_hdmi_plat_data *plat_data) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct platform_device_info pdevinfo; struct device_node *ddc_node; struct dw_hdmi_cec_data cec; struct dw_hdmi *hdmi; struct resource *iores = NULL; int irq; int ret; u32 val = 1; u8 prod_id0; u8 prod_id1; u8 config0; u8 config3; hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL); if (!hdmi) return ERR_PTR(-ENOMEM); hdmi->plat_data = plat_data; hdmi->dev = dev; hdmi->sample_rate = 48000; hdmi->channels = 2; hdmi->disabled = true; hdmi->rxsense = true; hdmi->phy_mask = (u8)~(HDMI_PHY_HPD | HDMI_PHY_RX_SENSE); hdmi->mc_clkdis = 0x7f; hdmi->last_connector_result = connector_status_disconnected; mutex_init(&hdmi->mutex); mutex_init(&hdmi->audio_mutex); mutex_init(&hdmi->cec_notifier_mutex); spin_lock_init(&hdmi->audio_lock); ret = dw_hdmi_parse_dt(hdmi); if (ret < 0) return ERR_PTR(ret); ddc_node = of_parse_phandle(np, "ddc-i2c-bus", 0); if (ddc_node) { hdmi->ddc = of_get_i2c_adapter_by_node(ddc_node); of_node_put(ddc_node); if (!hdmi->ddc) { dev_dbg(hdmi->dev, "failed to read ddc node\n"); return ERR_PTR(-EPROBE_DEFER); } } else { dev_dbg(hdmi->dev, "no ddc property found\n"); } if (!plat_data->regm) { const struct regmap_config *reg_config; of_property_read_u32(np, "reg-io-width", &val); switch (val) { case 4: reg_config = &hdmi_regmap_32bit_config; hdmi->reg_shift = 2; break; case 1: reg_config = &hdmi_regmap_8bit_config; break; default: dev_err(dev, "reg-io-width must be 1 or 4\n"); return ERR_PTR(-EINVAL); } iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); hdmi->regs = devm_ioremap_resource(dev, iores); if (IS_ERR(hdmi->regs)) { ret = PTR_ERR(hdmi->regs); goto err_res; } hdmi->regm = devm_regmap_init_mmio(dev, hdmi->regs, reg_config); if (IS_ERR(hdmi->regm)) { dev_err(dev, "Failed to configure regmap\n"); ret = PTR_ERR(hdmi->regm); goto err_res; } } else { hdmi->regm = plat_data->regm; } hdmi->isfr_clk = devm_clk_get(hdmi->dev, "isfr"); if (IS_ERR(hdmi->isfr_clk)) { ret = PTR_ERR(hdmi->isfr_clk); dev_err(hdmi->dev, "Unable to get HDMI isfr clk: %d\n", ret); goto err_res; } ret = clk_prepare_enable(hdmi->isfr_clk); if (ret) { dev_err(hdmi->dev, "Cannot enable HDMI isfr clock: %d\n", ret); goto err_res; } hdmi->iahb_clk = devm_clk_get(hdmi->dev, "iahb"); if (IS_ERR(hdmi->iahb_clk)) { ret = PTR_ERR(hdmi->iahb_clk); dev_err(hdmi->dev, "Unable to get HDMI iahb clk: %d\n", ret); goto err_isfr; } ret = clk_prepare_enable(hdmi->iahb_clk); if (ret) { dev_err(hdmi->dev, "Cannot enable HDMI iahb clock: %d\n", ret); goto err_isfr; } hdmi->cec_clk = devm_clk_get(hdmi->dev, "cec"); if (PTR_ERR(hdmi->cec_clk) == -ENOENT) { hdmi->cec_clk = NULL; } else if (IS_ERR(hdmi->cec_clk)) { ret = PTR_ERR(hdmi->cec_clk); if (ret != -EPROBE_DEFER) dev_err(hdmi->dev, "Cannot get HDMI cec clock: %d\n", ret); hdmi->cec_clk = NULL; goto err_iahb; } else { ret = clk_prepare_enable(hdmi->cec_clk); if (ret) { dev_err(hdmi->dev, "Cannot enable HDMI cec clock: %d\n", ret); goto err_iahb; } } /* Product and revision IDs */ hdmi->version = (hdmi_readb(hdmi, HDMI_DESIGN_ID) << 8) | (hdmi_readb(hdmi, HDMI_REVISION_ID) << 0); prod_id0 = hdmi_readb(hdmi, HDMI_PRODUCT_ID0); prod_id1 = hdmi_readb(hdmi, HDMI_PRODUCT_ID1); if (prod_id0 != HDMI_PRODUCT_ID0_HDMI_TX || (prod_id1 & ~HDMI_PRODUCT_ID1_HDCP) != HDMI_PRODUCT_ID1_HDMI_TX) { dev_err(dev, "Unsupported HDMI controller (%04x:%02x:%02x)\n", hdmi->version, prod_id0, prod_id1); ret = -ENODEV; goto err_iahb; } ret = dw_hdmi_detect_phy(hdmi); if (ret < 0) goto err_iahb; dev_info(dev, "Detected HDMI TX controller v%x.%03x %s HDCP (%s)\n", hdmi->version >> 12, hdmi->version & 0xfff, prod_id1 & HDMI_PRODUCT_ID1_HDCP ? "with" : "without", hdmi->phy.name); dw_hdmi_init_hw(hdmi); irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; goto err_iahb; } ret = devm_request_threaded_irq(dev, irq, dw_hdmi_hardirq, dw_hdmi_irq, IRQF_SHARED, dev_name(dev), hdmi); if (ret) goto err_iahb; /* * To prevent overflows in HDMI_IH_FC_STAT2, set the clk regenerator * N and cts values before enabling phy */ hdmi_init_clk_regenerator(hdmi); /* If DDC bus is not specified, try to register HDMI I2C bus */ if (!hdmi->ddc) { /* Look for (optional) stuff related to unwedging */ hdmi->pinctrl = devm_pinctrl_get(dev); if (!IS_ERR(hdmi->pinctrl)) { hdmi->unwedge_state = pinctrl_lookup_state(hdmi->pinctrl, "unwedge"); hdmi->default_state = pinctrl_lookup_state(hdmi->pinctrl, "default"); if (IS_ERR(hdmi->default_state) || IS_ERR(hdmi->unwedge_state)) { if (!IS_ERR(hdmi->unwedge_state)) dev_warn(dev, "Unwedge requires default pinctrl\n"); hdmi->default_state = NULL; hdmi->unwedge_state = NULL; } } hdmi->ddc = dw_hdmi_i2c_adapter(hdmi); if (IS_ERR(hdmi->ddc)) hdmi->ddc = NULL; } hdmi->bridge.driver_private = hdmi; hdmi->bridge.funcs = &dw_hdmi_bridge_funcs; hdmi->bridge.ops = DRM_BRIDGE_OP_DETECT | DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_HPD; hdmi->bridge.interlace_allowed = true; hdmi->bridge.ddc = hdmi->ddc; hdmi->bridge.of_node = pdev->dev.of_node; hdmi->bridge.type = DRM_MODE_CONNECTOR_HDMIA; memset(&pdevinfo, 0, sizeof(pdevinfo)); pdevinfo.parent = dev; pdevinfo.id = PLATFORM_DEVID_AUTO; config0 = hdmi_readb(hdmi, HDMI_CONFIG0_ID); config3 = hdmi_readb(hdmi, HDMI_CONFIG3_ID); if (iores && config3 & HDMI_CONFIG3_AHBAUDDMA) { struct dw_hdmi_audio_data audio; audio.phys = iores->start; audio.base = hdmi->regs; audio.irq = irq; audio.hdmi = hdmi; audio.get_eld = hdmi_audio_get_eld; hdmi->enable_audio = dw_hdmi_ahb_audio_enable; hdmi->disable_audio = dw_hdmi_ahb_audio_disable; pdevinfo.name = "dw-hdmi-ahb-audio"; pdevinfo.data = &audio; pdevinfo.size_data = sizeof(audio); pdevinfo.dma_mask = DMA_BIT_MASK(32); hdmi->audio = platform_device_register_full(&pdevinfo); } else if (config0 & HDMI_CONFIG0_I2S) { struct dw_hdmi_i2s_audio_data audio; audio.hdmi = hdmi; audio.get_eld = hdmi_audio_get_eld; audio.write = hdmi_writeb; audio.read = hdmi_readb; hdmi->enable_audio = dw_hdmi_i2s_audio_enable; hdmi->disable_audio = dw_hdmi_i2s_audio_disable; pdevinfo.name = "dw-hdmi-i2s-audio"; pdevinfo.data = &audio; pdevinfo.size_data = sizeof(audio); pdevinfo.dma_mask = DMA_BIT_MASK(32); hdmi->audio = platform_device_register_full(&pdevinfo); } else if (iores && config3 & HDMI_CONFIG3_GPAUD) { struct dw_hdmi_audio_data audio; audio.phys = iores->start; audio.base = hdmi->regs; audio.irq = irq; audio.hdmi = hdmi; audio.get_eld = hdmi_audio_get_eld; hdmi->enable_audio = dw_hdmi_gp_audio_enable; hdmi->disable_audio = dw_hdmi_gp_audio_disable; pdevinfo.name = "dw-hdmi-gp-audio"; pdevinfo.id = PLATFORM_DEVID_NONE; pdevinfo.data = &audio; pdevinfo.size_data = sizeof(audio); pdevinfo.dma_mask = DMA_BIT_MASK(32); hdmi->audio = platform_device_register_full(&pdevinfo); } if (!plat_data->disable_cec && (config0 & HDMI_CONFIG0_CEC)) { cec.hdmi = hdmi; cec.ops = &dw_hdmi_cec_ops; cec.irq = irq; pdevinfo.name = "dw-hdmi-cec"; pdevinfo.data = &cec; pdevinfo.size_data = sizeof(cec); pdevinfo.dma_mask = 0; hdmi->cec = platform_device_register_full(&pdevinfo); } drm_bridge_add(&hdmi->bridge); return hdmi; err_iahb: clk_disable_unprepare(hdmi->iahb_clk); clk_disable_unprepare(hdmi->cec_clk); err_isfr: clk_disable_unprepare(hdmi->isfr_clk); err_res: i2c_put_adapter(hdmi->ddc); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(dw_hdmi_probe); void dw_hdmi_remove(struct dw_hdmi *hdmi) { drm_bridge_remove(&hdmi->bridge); if (hdmi->audio && !IS_ERR(hdmi->audio)) platform_device_unregister(hdmi->audio); if (!IS_ERR(hdmi->cec)) platform_device_unregister(hdmi->cec); /* Disable all interrupts */ hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0); clk_disable_unprepare(hdmi->iahb_clk); clk_disable_unprepare(hdmi->isfr_clk); clk_disable_unprepare(hdmi->cec_clk); if (hdmi->i2c) i2c_del_adapter(&hdmi->i2c->adap); else i2c_put_adapter(hdmi->ddc); } EXPORT_SYMBOL_GPL(dw_hdmi_remove); /* ----------------------------------------------------------------------------- * Bind/unbind API, used from platforms based on the component framework. */ struct dw_hdmi *dw_hdmi_bind(struct platform_device *pdev, struct drm_encoder *encoder, const struct dw_hdmi_plat_data *plat_data) { struct dw_hdmi *hdmi; int ret; hdmi = dw_hdmi_probe(pdev, plat_data); if (IS_ERR(hdmi)) return hdmi; ret = drm_bridge_attach(encoder, &hdmi->bridge, NULL, 0); if (ret) { dw_hdmi_remove(hdmi); return ERR_PTR(ret); } return hdmi; } EXPORT_SYMBOL_GPL(dw_hdmi_bind); void dw_hdmi_unbind(struct dw_hdmi *hdmi) { dw_hdmi_remove(hdmi); } EXPORT_SYMBOL_GPL(dw_hdmi_unbind); void dw_hdmi_resume(struct dw_hdmi *hdmi) { dw_hdmi_init_hw(hdmi); } EXPORT_SYMBOL_GPL(dw_hdmi_resume); MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>"); MODULE_AUTHOR("Andy Yan <andy.yan@rock-chips.com>"); MODULE_AUTHOR("Yakir Yang <ykk@rock-chips.com>"); MODULE_AUTHOR("Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com>"); MODULE_DESCRIPTION("DW HDMI transmitter driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:dw-hdmi");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1