Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zhi Wang | 12054 | 65.30% | 20 | 11.56% |
Colin Xu | 3480 | 18.85% | 19 | 10.98% |
Zhao Yan | 750 | 4.06% | 12 | 6.94% |
Changbin Du | 686 | 3.72% | 14 | 8.09% |
Chris Wilson | 351 | 1.90% | 7 | 4.05% |
Zhenyu Wang | 217 | 1.18% | 10 | 5.78% |
Weinan Li | 138 | 0.75% | 6 | 3.47% |
Min He | 130 | 0.70% | 2 | 1.16% |
fred gao | 99 | 0.54% | 8 | 4.62% |
Tina Zhang | 84 | 0.46% | 5 | 2.89% |
Jani Nikula | 71 | 0.38% | 15 | 8.67% |
Ville Syrjälä | 60 | 0.33% | 9 | 5.20% |
Pankaj Bharadiya | 58 | 0.31% | 2 | 1.16% |
Matt Roper | 41 | 0.22% | 6 | 3.47% |
Xu Han | 40 | 0.22% | 2 | 1.16% |
Pei Zhang | 38 | 0.21% | 2 | 1.16% |
Jian Jun Chen | 19 | 0.10% | 1 | 0.58% |
Ping Gao | 19 | 0.10% | 4 | 2.31% |
Xiong Zhang | 19 | 0.10% | 2 | 1.16% |
Chuanxiao Dong | 17 | 0.09% | 1 | 0.58% |
Hang Yuan | 16 | 0.09% | 1 | 0.58% |
Xiaolin Zhang | 14 | 0.08% | 1 | 0.58% |
Imre Deak | 12 | 0.07% | 2 | 1.16% |
Lucas De Marchi | 7 | 0.04% | 2 | 1.16% |
Daniele Ceraolo Spurio | 6 | 0.03% | 3 | 1.73% |
Wan Jiabing | 5 | 0.03% | 1 | 0.58% |
Xinda Zhao | 4 | 0.02% | 1 | 0.58% |
Colin Ian King | 4 | 0.02% | 3 | 1.73% |
Dave Airlie | 3 | 0.02% | 1 | 0.58% |
Michal Wajdeczko | 3 | 0.02% | 1 | 0.58% |
Arnd Bergmann | 3 | 0.02% | 1 | 0.58% |
Aleksei Gimbitskii | 2 | 0.01% | 1 | 0.58% |
Gustavo A. R. Silva | 2 | 0.01% | 1 | 0.58% |
Takashi Iwai | 1 | 0.01% | 1 | 0.58% |
Nicolas Iooss | 1 | 0.01% | 1 | 0.58% |
Jiapeng Chong | 1 | 0.01% | 1 | 0.58% |
Dan Carpenter | 1 | 0.01% | 1 | 0.58% |
Tvrtko A. Ursulin | 1 | 0.01% | 1 | 0.58% |
Longhe Zheng | 1 | 0.01% | 1 | 0.58% |
Bing Niu | 1 | 0.01% | 1 | 0.58% |
Total | 18459 | 173 |
/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Kevin Tian <kevin.tian@intel.com> * Eddie Dong <eddie.dong@intel.com> * Zhiyuan Lv <zhiyuan.lv@intel.com> * * Contributors: * Min He <min.he@intel.com> * Tina Zhang <tina.zhang@intel.com> * Pei Zhang <pei.zhang@intel.com> * Niu Bing <bing.niu@intel.com> * Ping Gao <ping.a.gao@intel.com> * Zhi Wang <zhi.a.wang@intel.com> * */ #include "i915_drv.h" #include "i915_reg.h" #include "gvt.h" #include "i915_pvinfo.h" #include "intel_mchbar_regs.h" #include "display/bxt_dpio_phy_regs.h" #include "display/intel_display_types.h" #include "display/intel_dmc_regs.h" #include "display/intel_dp_aux_regs.h" #include "display/intel_dpio_phy.h" #include "display/intel_fbc.h" #include "display/intel_fdi_regs.h" #include "display/intel_pps_regs.h" #include "display/intel_psr_regs.h" #include "display/intel_sprite_regs.h" #include "display/skl_watermark_regs.h" #include "display/vlv_dsi_pll_regs.h" #include "gt/intel_gt_regs.h" #include <linux/vmalloc.h> /* XXX FIXME i915 has changed PP_XXX definition */ #define PCH_PP_STATUS _MMIO(0xc7200) #define PCH_PP_CONTROL _MMIO(0xc7204) #define PCH_PP_ON_DELAYS _MMIO(0xc7208) #define PCH_PP_OFF_DELAYS _MMIO(0xc720c) #define PCH_PP_DIVISOR _MMIO(0xc7210) unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt) { struct drm_i915_private *i915 = gvt->gt->i915; if (IS_BROADWELL(i915)) return D_BDW; else if (IS_SKYLAKE(i915)) return D_SKL; else if (IS_KABYLAKE(i915)) return D_KBL; else if (IS_BROXTON(i915)) return D_BXT; else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) return D_CFL; return 0; } static bool intel_gvt_match_device(struct intel_gvt *gvt, unsigned long device) { return intel_gvt_get_device_type(gvt) & device; } static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes); } static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes); } struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt, unsigned int offset) { struct intel_gvt_mmio_info *e; hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) { if (e->offset == offset) return e; } return NULL; } static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size, u16 flags, u32 addr_mask, u32 ro_mask, u32 device, gvt_mmio_func read, gvt_mmio_func write) { struct intel_gvt_mmio_info *p; u32 start, end, i; if (!intel_gvt_match_device(gvt, device)) return 0; if (WARN_ON(!IS_ALIGNED(offset, 4))) return -EINVAL; start = offset; end = offset + size; for (i = start; i < end; i += 4) { p = intel_gvt_find_mmio_info(gvt, i); if (!p) { WARN(1, "assign a handler to a non-tracked mmio %x\n", i); return -ENODEV; } p->ro_mask = ro_mask; gvt->mmio.mmio_attribute[i / 4] = flags; if (read) p->read = read; if (write) p->write = write; } return 0; } /** * intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine * @gvt: a GVT device * @offset: register offset * * Returns: * The engine containing the offset within its mmio page. */ const struct intel_engine_cs * intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset) { struct intel_engine_cs *engine; enum intel_engine_id id; offset &= ~GENMASK(11, 0); for_each_engine(engine, gvt->gt, id) if (engine->mmio_base == offset) return engine; return NULL; } #define offset_to_fence_num(offset) \ ((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3) #define fence_num_to_offset(num) \ (num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason) { switch (reason) { case GVT_FAILSAFE_UNSUPPORTED_GUEST: pr_err("Detected your guest driver doesn't support GVT-g.\n"); break; case GVT_FAILSAFE_INSUFFICIENT_RESOURCE: pr_err("Graphics resource is not enough for the guest\n"); break; case GVT_FAILSAFE_GUEST_ERR: pr_err("GVT Internal error for the guest\n"); break; default: break; } pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id); vgpu->failsafe = true; } static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu, unsigned int fence_num, void *p_data, unsigned int bytes) { unsigned int max_fence = vgpu_fence_sz(vgpu); if (fence_num >= max_fence) { gvt_vgpu_err("access oob fence reg %d/%d\n", fence_num, max_fence); /* When guest access oob fence regs without access * pv_info first, we treat guest not supporting GVT, * and we will let vgpu enter failsafe mode. */ if (!vgpu->pv_notified) enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); memset(p_data, 0, bytes); return -EINVAL; } return 0; } static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD; if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) { if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD) gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id); else if (!ips) gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id); else { /* All engines must be enabled together for vGPU, * since we don't know which engine the ppgtt will * bind to when shadowing. */ gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n", ips); return -EINVAL; } } write_vreg(vgpu, offset, p_data, bytes); return 0; } static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off, void *p_data, unsigned int bytes) { int ret; ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off), p_data, bytes); if (ret) return ret; read_vreg(vgpu, off, p_data, bytes); return 0; } static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off, void *p_data, unsigned int bytes) { struct intel_gvt *gvt = vgpu->gvt; unsigned int fence_num = offset_to_fence_num(off); int ret; ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes); if (ret) return ret; write_vreg(vgpu, off, p_data, bytes); mmio_hw_access_pre(gvt->gt); intel_vgpu_write_fence(vgpu, fence_num, vgpu_vreg64(vgpu, fence_num_to_offset(fence_num))); mmio_hw_access_post(gvt->gt); return 0; } #define CALC_MODE_MASK_REG(old, new) \ (((new) & GENMASK(31, 16)) \ | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \ | ((new) & ((new) >> 16)))) static int mul_force_wake_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 old, new; u32 ack_reg_offset; old = vgpu_vreg(vgpu, offset); new = CALC_MODE_MASK_REG(old, *(u32 *)p_data); if (GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9) { switch (offset) { case FORCEWAKE_RENDER_GEN9_REG: ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG; break; case FORCEWAKE_GT_GEN9_REG: ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG; break; case FORCEWAKE_MEDIA_GEN9_REG: ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG; break; default: /*should not hit here*/ gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset); return -EINVAL; } } else { ack_reg_offset = FORCEWAKE_ACK_HSW_REG; } vgpu_vreg(vgpu, offset) = new; vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0)); return 0; } static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { intel_engine_mask_t engine_mask = 0; u32 data; write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); if (data & GEN6_GRDOM_FULL) { gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id); engine_mask = ALL_ENGINES; } else { if (data & GEN6_GRDOM_RENDER) { gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id); engine_mask |= BIT(RCS0); } if (data & GEN6_GRDOM_MEDIA) { gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id); engine_mask |= BIT(VCS0); } if (data & GEN6_GRDOM_BLT) { gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id); engine_mask |= BIT(BCS0); } if (data & GEN6_GRDOM_VECS) { gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id); engine_mask |= BIT(VECS0); } if (data & GEN8_GRDOM_MEDIA2) { gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id); engine_mask |= BIT(VCS1); } if (data & GEN9_GRDOM_GUC) { gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id); vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET; } engine_mask &= vgpu->gvt->gt->info.engine_mask; } /* vgpu_lock already hold by emulate mmio r/w */ intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask); /* sw will wait for the device to ack the reset request */ vgpu_vreg(vgpu, offset) = 0; return 0; } static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes); } static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes); } static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) { vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON; vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE; vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN; vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE; } else vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~(PP_ON | PP_SEQUENCE_POWER_DOWN | PP_CYCLE_DELAY_ACTIVE); return 0; } static int transconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE) vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE; else vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE; return 0; } static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE) vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK; else vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK; if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK) vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE; else vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE; return 0; } static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { switch (offset) { case 0xe651c: case 0xe661c: case 0xe671c: case 0xe681c: vgpu_vreg(vgpu, offset) = 1 << 17; break; case 0xe6c04: vgpu_vreg(vgpu, offset) = 0x3; break; case 0xe6e1c: vgpu_vreg(vgpu, offset) = 0x2f << 16; break; default: return -EINVAL; } read_vreg(vgpu, offset, p_data, bytes); return 0; } /* * Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to * TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on * setup_virtual_dp_monitor(). * emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled * DPLL. Later guest driver may setup a different DPLLx when setting mode. * So the correct sequence to find DP stream clock is: * Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x. * Check correct PLLx for PORT_x to get PLL frequency and DP bitrate. * Then Refresh rate then can be calculated based on follow equations: * Pixel clock = h_total * v_total * refresh_rate * stream clock = Pixel clock * ls_clk = DP bitrate * Link M/N = strm_clk / ls_clk */ static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port) { u32 dp_br = 0; u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)); switch (ddi_pll_sel) { case PORT_CLK_SEL_LCPLL_2700: dp_br = 270000 * 2; break; case PORT_CLK_SEL_LCPLL_1350: dp_br = 135000 * 2; break; case PORT_CLK_SEL_LCPLL_810: dp_br = 81000 * 2; break; case PORT_CLK_SEL_SPLL: { switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) { case SPLL_FREQ_810MHz: dp_br = 81000 * 2; break; case SPLL_FREQ_1350MHz: dp_br = 135000 * 2; break; case SPLL_FREQ_2700MHz: dp_br = 270000 * 2; break; default: gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n", vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL)); break; } break; } case PORT_CLK_SEL_WRPLL1: case PORT_CLK_SEL_WRPLL2: { u32 wrpll_ctl; int refclk, n, p, r; if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1) wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1)); else wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2)); switch (wrpll_ctl & WRPLL_REF_MASK) { case WRPLL_REF_PCH_SSC: refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.ssc; break; case WRPLL_REF_LCPLL: refclk = 2700000; break; default: gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n", vgpu->id, port_name(port), wrpll_ctl); goto out; } r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK; p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT; n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT; dp_br = (refclk * n / 10) / (p * r) * 2; break; } default: gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n", vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port))); break; } out: return dp_br; } static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port) { u32 dp_br = 0; int refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.nssc; enum dpio_phy phy = DPIO_PHY0; enum dpio_channel ch = DPIO_CH0; struct dpll clock = {}; u32 temp; /* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */ switch (port) { case PORT_A: phy = DPIO_PHY1; ch = DPIO_CH0; break; case PORT_B: phy = DPIO_PHY0; ch = DPIO_CH0; break; case PORT_C: phy = DPIO_PHY0; ch = DPIO_CH1; break; default: gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port)); goto out; } temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port)); if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) { gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n", vgpu->id, port_name(port), temp); goto out; } clock.m1 = 2; clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK, vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22; if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE) clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK, vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2))); clock.n = REG_FIELD_GET(PORT_PLL_N_MASK, vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1))); clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK, vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch))); clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK, vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch))); clock.m = clock.m1 * clock.m2; clock.p = clock.p1 * clock.p2 * 5; if (clock.n == 0 || clock.p == 0) { gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port)); goto out; } clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22); clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p); dp_br = clock.dot; out: return dp_br; } static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port) { u32 dp_br = 0; enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0; /* Find the enabled DPLL for the DDI/PORT */ if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) && (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) { dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >> DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port); } else { gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n", vgpu->id, port_name(port)); return dp_br; } /* Find PLL output frequency from correct DPLL, and get bir rate */ switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) & DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >> DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) { case DPLL_CTRL1_LINK_RATE_810: dp_br = 81000 * 2; break; case DPLL_CTRL1_LINK_RATE_1080: dp_br = 108000 * 2; break; case DPLL_CTRL1_LINK_RATE_1350: dp_br = 135000 * 2; break; case DPLL_CTRL1_LINK_RATE_1620: dp_br = 162000 * 2; break; case DPLL_CTRL1_LINK_RATE_2160: dp_br = 216000 * 2; break; case DPLL_CTRL1_LINK_RATE_2700: dp_br = 270000 * 2; break; default: dp_br = 0; gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n", vgpu->id, port_name(port), dpll_id); } return dp_br; } static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu) { struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; enum port port; u32 dp_br, link_m, link_n, htotal, vtotal; /* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */ port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(TRANSCODER_A)) & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT; if (port != PORT_B && port != PORT_D) { gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port)); return; } /* Calculate DP bitrate from PLL */ if (IS_BROADWELL(dev_priv)) dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port); else if (IS_BROXTON(dev_priv)) dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port); else dp_br = skl_vgpu_get_dp_bitrate(vgpu, port); /* Get DP link symbol clock M/N */ link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(TRANSCODER_A)); link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(TRANSCODER_A)); /* Get H/V total from transcoder timing */ htotal = (vgpu_vreg_t(vgpu, TRANS_HTOTAL(TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT); vtotal = (vgpu_vreg_t(vgpu, TRANS_VTOTAL(TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT); if (dp_br && link_n && htotal && vtotal) { u64 pixel_clk = 0; u32 new_rate = 0; u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k); /* Calcuate pixel clock by (ls_clk * M / N) */ pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n); pixel_clk *= MSEC_PER_SEC; /* Calcuate refresh rate by (pixel_clk / (h_total * v_total)) */ new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1)); if (*old_rate != new_rate) *old_rate = new_rate; gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n", vgpu->id, pipe_name(PIPE_A), new_rate); } } static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data; write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); if (data & TRANSCONF_ENABLE) { vgpu_vreg(vgpu, offset) |= TRANSCONF_STATE_ENABLE; vgpu_update_refresh_rate(vgpu); vgpu_update_vblank_emulation(vgpu, true); } else { vgpu_vreg(vgpu, offset) &= ~TRANSCONF_STATE_ENABLE; vgpu_update_vblank_emulation(vgpu, false); } return 0; } /* sorted in ascending order */ static i915_reg_t force_nonpriv_white_list[] = { _MMIO(0xd80), GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec) GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248) CL_PRIMITIVES_COUNT, //_MMIO(0x2340) PS_INVOCATION_COUNT, //_MMIO(0x2348) PS_DEPTH_COUNT, //_MMIO(0x2350) GEN8_CS_CHICKEN1,//_MMIO(0x2580) _MMIO(0x2690), _MMIO(0x2694), _MMIO(0x2698), _MMIO(0x2754), _MMIO(0x28a0), _MMIO(0x4de0), _MMIO(0x4de4), _MMIO(0x4dfc), GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010) _MMIO(0x7014), HDC_CHICKEN0,//_MMIO(0x7300) GEN8_HDC_CHICKEN1,//_MMIO(0x7304) _MMIO(0x7700), _MMIO(0x7704), _MMIO(0x7708), _MMIO(0x770c), _MMIO(0x83a8), _MMIO(0xb110), _MMIO(0xb118), _MMIO(0xe100), _MMIO(0xe18c), _MMIO(0xe48c), _MMIO(0xe5f4), _MMIO(0x64844), }; /* a simple bsearch */ static inline bool in_whitelist(u32 reg) { int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list); i915_reg_t *array = force_nonpriv_white_list; while (left < right) { int mid = (left + right)/2; if (reg > array[mid].reg) left = mid + 1; else if (reg < array[mid].reg) right = mid; else return true; } return false; } static int force_nonpriv_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2); const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset); if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) { gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n", vgpu->id, offset, bytes); return -EINVAL; } if (!in_whitelist(reg_nonpriv) && reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) { gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n", vgpu->id, reg_nonpriv, offset); } else intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes); return 0; } static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) { vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE; } else { vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE; if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E))) vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) &= ~DP_TP_STATUS_AUTOTRAIN_DONE; } return 0; } static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data; return 0; } #define FDI_LINK_TRAIN_PATTERN1 0 #define FDI_LINK_TRAIN_PATTERN2 1 static int fdi_auto_training_started(struct intel_vgpu *vgpu) { u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E)); u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL); u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E)); if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) && (rx_ctl & FDI_RX_ENABLE) && (rx_ctl & FDI_AUTO_TRAINING) && (tx_ctl & DP_TP_CTL_ENABLE) && (tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN)) return 1; else return 0; } static int check_fdi_rx_train_status(struct intel_vgpu *vgpu, enum pipe pipe, unsigned int train_pattern) { i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl; unsigned int fdi_rx_check_bits, fdi_tx_check_bits; unsigned int fdi_rx_train_bits, fdi_tx_train_bits; unsigned int fdi_iir_check_bits; fdi_rx_imr = FDI_RX_IMR(pipe); fdi_tx_ctl = FDI_TX_CTL(pipe); fdi_rx_ctl = FDI_RX_CTL(pipe); if (train_pattern == FDI_LINK_TRAIN_PATTERN1) { fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT; fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1; fdi_iir_check_bits = FDI_RX_BIT_LOCK; } else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) { fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT; fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2; fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK; } else { gvt_vgpu_err("Invalid train pattern %d\n", train_pattern); return -EINVAL; } fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits; fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits; /* If imr bit has been masked */ if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits) return 0; if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits) == fdi_tx_check_bits) && ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits) == fdi_rx_check_bits)) return 1; else return 0; } #define INVALID_INDEX (~0U) static unsigned int calc_index(unsigned int offset, unsigned int start, unsigned int next, unsigned int end, i915_reg_t i915_end) { unsigned int range = next - start; if (!end) end = i915_mmio_reg_offset(i915_end); if (offset < start || offset > end) return INVALID_INDEX; offset -= start; return offset / range; } #define FDI_RX_CTL_TO_PIPE(offset) \ calc_index(offset, _FDI_RXA_CTL, _FDI_RXB_CTL, 0, FDI_RX_CTL(PIPE_C)) #define FDI_TX_CTL_TO_PIPE(offset) \ calc_index(offset, _FDI_TXA_CTL, _FDI_TXB_CTL, 0, FDI_TX_CTL(PIPE_C)) #define FDI_RX_IMR_TO_PIPE(offset) \ calc_index(offset, _FDI_RXA_IMR, _FDI_RXB_IMR, 0, FDI_RX_IMR(PIPE_C)) static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { i915_reg_t fdi_rx_iir; unsigned int index; int ret; if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX) index = FDI_RX_CTL_TO_PIPE(offset); else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX) index = FDI_TX_CTL_TO_PIPE(offset); else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX) index = FDI_RX_IMR_TO_PIPE(offset); else { gvt_vgpu_err("Unsupported registers %x\n", offset); return -EINVAL; } write_vreg(vgpu, offset, p_data, bytes); fdi_rx_iir = FDI_RX_IIR(index); ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1); if (ret < 0) return ret; if (ret) vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK; ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2); if (ret < 0) return ret; if (ret) vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK; if (offset == _FDI_RXA_CTL) if (fdi_auto_training_started(vgpu)) vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |= DP_TP_STATUS_AUTOTRAIN_DONE; return 0; } #define DP_TP_CTL_TO_PORT(offset) \ calc_index(offset, _DP_TP_CTL_A, _DP_TP_CTL_B, 0, DP_TP_CTL(PORT_E)) static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { i915_reg_t status_reg; unsigned int index; u32 data; write_vreg(vgpu, offset, p_data, bytes); index = DP_TP_CTL_TO_PORT(offset); data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8; if (data == 0x2) { status_reg = DP_TP_STATUS(index); vgpu_vreg_t(vgpu, status_reg) |= (1 << 25); } return 0; } static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 reg_val; u32 sticky_mask; reg_val = *((u32 *)p_data); sticky_mask = GENMASK(27, 26) | (1 << 24); vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) | (vgpu_vreg(vgpu, offset) & sticky_mask); vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask); return 0; } static int pch_adpa_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data; write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER) vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER; return 0; } static int south_chicken2_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data; write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); if (data & FDI_MPHY_IOSFSB_RESET_CTL) vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS; else vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS; return 0; } #define DSPSURF_TO_PIPE(offset) \ calc_index(offset, _DSPASURF, _DSPBSURF, 0, DSPSURF(PIPE_C)) static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; u32 pipe = DSPSURF_TO_PIPE(offset); int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY); write_vreg(vgpu, offset, p_data, bytes); vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset); vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++; if (vgpu_vreg_t(vgpu, DSPCNTR(pipe)) & PLANE_CTL_ASYNC_FLIP) intel_vgpu_trigger_virtual_event(vgpu, event); else set_bit(event, vgpu->irq.flip_done_event[pipe]); return 0; } #define SPRSURF_TO_PIPE(offset) \ calc_index(offset, _SPRA_SURF, _SPRB_SURF, 0, SPRSURF(PIPE_C)) static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 pipe = SPRSURF_TO_PIPE(offset); int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0); write_vreg(vgpu, offset, p_data, bytes); vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset); if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP) intel_vgpu_trigger_virtual_event(vgpu, event); else set_bit(event, vgpu->irq.flip_done_event[pipe]); return 0; } static int reg50080_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; enum pipe pipe = REG_50080_TO_PIPE(offset); enum plane_id plane = REG_50080_TO_PLANE(offset); int event = SKL_FLIP_EVENT(pipe, plane); write_vreg(vgpu, offset, p_data, bytes); if (plane == PLANE_PRIMARY) { vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset); vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++; } else { vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset); } if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC) intel_vgpu_trigger_virtual_event(vgpu, event); else set_bit(event, vgpu->irq.flip_done_event[pipe]); return 0; } static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu, unsigned int reg) { struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; enum intel_gvt_event_type event; if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A))) event = AUX_CHANNEL_A; else if (reg == _PCH_DPB_AUX_CH_CTL || reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B))) event = AUX_CHANNEL_B; else if (reg == _PCH_DPC_AUX_CH_CTL || reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C))) event = AUX_CHANNEL_C; else if (reg == _PCH_DPD_AUX_CH_CTL || reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D))) event = AUX_CHANNEL_D; else { drm_WARN_ON(&dev_priv->drm, true); return -EINVAL; } intel_vgpu_trigger_virtual_event(vgpu, event); return 0; } static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value, unsigned int reg, int len, bool data_valid) { /* mark transaction done */ value |= DP_AUX_CH_CTL_DONE; value &= ~DP_AUX_CH_CTL_SEND_BUSY; value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR; if (data_valid) value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR; else value |= DP_AUX_CH_CTL_TIME_OUT_ERROR; /* message size */ value &= ~(0xf << 20); value |= (len << 20); vgpu_vreg(vgpu, reg) = value; if (value & DP_AUX_CH_CTL_INTERRUPT) return trigger_aux_channel_interrupt(vgpu, reg); return 0; } static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd, u8 t) { if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_1) { /* training pattern 1 for CR */ /* set LANE0_CR_DONE, LANE1_CR_DONE */ dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_CR_DONE; /* set LANE2_CR_DONE, LANE3_CR_DONE */ dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_CR_DONE; } else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_2) { /* training pattern 2 for EQ */ /* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane0_1 */ dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_EQ_DONE; dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_SYMBOL_LOCKED; /* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane2_3 */ dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_EQ_DONE; dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_SYMBOL_LOCKED; /* set INTERLANE_ALIGN_DONE */ dpcd->data[DPCD_LANE_ALIGN_STATUS_UPDATED] |= DPCD_INTERLANE_ALIGN_DONE; } else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_LINK_TRAINING_DISABLED) { /* finish link training */ /* set sink status as synchronized */ dpcd->data[DPCD_SINK_STATUS] = DPCD_SINK_IN_SYNC; } } #define _REG_HSW_DP_AUX_CH_CTL(dp) \ ((dp) ? (_PCH_DPB_AUX_CH_CTL + ((dp)-1)*0x100) : 0x64010) #define _REG_SKL_DP_AUX_CH_CTL(dp) (0x64010 + (dp) * 0x100) #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8) #define dpy_is_valid_port(port) \ (((port) >= PORT_A) && ((port) < I915_MAX_PORTS)) static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct intel_vgpu_display *display = &vgpu->display; int msg, addr, ctrl, op, len; int port_index = OFFSET_TO_DP_AUX_PORT(offset); struct intel_vgpu_dpcd_data *dpcd = NULL; struct intel_vgpu_port *port = NULL; u32 data; if (!dpy_is_valid_port(port_index)) { gvt_vgpu_err("Unsupported DP port access!\n"); return 0; } write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); if ((GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9) && offset != _REG_SKL_DP_AUX_CH_CTL(port_index)) { /* SKL DPB/C/D aux ctl register changed */ return 0; } else if (IS_BROADWELL(vgpu->gvt->gt->i915) && offset != _REG_HSW_DP_AUX_CH_CTL(port_index)) { /* write to the data registers */ return 0; } if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) { /* just want to clear the sticky bits */ vgpu_vreg(vgpu, offset) = 0; return 0; } port = &display->ports[port_index]; dpcd = port->dpcd; /* read out message from DATA1 register */ msg = vgpu_vreg(vgpu, offset + 4); addr = (msg >> 8) & 0xffff; ctrl = (msg >> 24) & 0xff; len = msg & 0xff; op = ctrl >> 4; if (op == GVT_AUX_NATIVE_WRITE) { int t; u8 buf[16]; if ((addr + len + 1) >= DPCD_SIZE) { /* * Write request exceeds what we supported, * DCPD spec: When a Source Device is writing a DPCD * address not supported by the Sink Device, the Sink * Device shall reply with AUX NACK and “M” equal to * zero. */ /* NAK the write */ vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK; dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true); return 0; } /* * Write request format: Headr (command + address + size) occupies * 4 bytes, followed by (len + 1) bytes of data. See details at * intel_dp_aux_transfer(). */ if ((len + 1 + 4) > AUX_BURST_SIZE) { gvt_vgpu_err("dp_aux_header: len %d is too large\n", len); return -EINVAL; } /* unpack data from vreg to buf */ for (t = 0; t < 4; t++) { u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4); buf[t * 4] = (r >> 24) & 0xff; buf[t * 4 + 1] = (r >> 16) & 0xff; buf[t * 4 + 2] = (r >> 8) & 0xff; buf[t * 4 + 3] = r & 0xff; } /* write to virtual DPCD */ if (dpcd && dpcd->data_valid) { for (t = 0; t <= len; t++) { int p = addr + t; dpcd->data[p] = buf[t]; /* check for link training */ if (p == DPCD_TRAINING_PATTERN_SET) dp_aux_ch_ctl_link_training(dpcd, buf[t]); } } /* ACK the write */ vgpu_vreg(vgpu, offset + 4) = 0; dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1, dpcd && dpcd->data_valid); return 0; } if (op == GVT_AUX_NATIVE_READ) { int idx, i, ret = 0; if ((addr + len + 1) >= DPCD_SIZE) { /* * read request exceeds what we supported * DPCD spec: A Sink Device receiving a Native AUX CH * read request for an unsupported DPCD address must * reply with an AUX ACK and read data set equal to * zero instead of replying with AUX NACK. */ /* ACK the READ*/ vgpu_vreg(vgpu, offset + 4) = 0; vgpu_vreg(vgpu, offset + 8) = 0; vgpu_vreg(vgpu, offset + 12) = 0; vgpu_vreg(vgpu, offset + 16) = 0; vgpu_vreg(vgpu, offset + 20) = 0; dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2, true); return 0; } for (idx = 1; idx <= 5; idx++) { /* clear the data registers */ vgpu_vreg(vgpu, offset + 4 * idx) = 0; } /* * Read reply format: ACK (1 byte) plus (len + 1) bytes of data. */ if ((len + 2) > AUX_BURST_SIZE) { gvt_vgpu_err("dp_aux_header: len %d is too large\n", len); return -EINVAL; } /* read from virtual DPCD to vreg */ /* first 4 bytes: [ACK][addr][addr+1][addr+2] */ if (dpcd && dpcd->data_valid) { for (i = 1; i <= (len + 1); i++) { int t; t = dpcd->data[addr + i - 1]; t <<= (24 - 8 * (i % 4)); ret |= t; if ((i % 4 == 3) || (i == (len + 1))) { vgpu_vreg(vgpu, offset + (i / 4 + 1) * 4) = ret; ret = 0; } } } dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2, dpcd && dpcd->data_valid); return 0; } /* i2c transaction starts */ intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data); if (data & DP_AUX_CH_CTL_INTERRUPT) trigger_aux_channel_interrupt(vgpu, offset); return 0; } static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { *(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH); write_vreg(vgpu, offset, p_data, bytes); return 0; } static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { bool vga_disable; write_vreg(vgpu, offset, p_data, bytes); vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE; gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id, vga_disable ? "Disable" : "Enable"); return 0; } static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu, unsigned int sbi_offset) { struct intel_vgpu_display *display = &vgpu->display; int num = display->sbi.number; int i; for (i = 0; i < num; ++i) if (display->sbi.registers[i].offset == sbi_offset) break; if (i == num) return 0; return display->sbi.registers[i].value; } static void write_virtual_sbi_register(struct intel_vgpu *vgpu, unsigned int offset, u32 value) { struct intel_vgpu_display *display = &vgpu->display; int num = display->sbi.number; int i; for (i = 0; i < num; ++i) { if (display->sbi.registers[i].offset == offset) break; } if (i == num) { if (num == SBI_REG_MAX) { gvt_vgpu_err("SBI caching meets maximum limits\n"); return; } display->sbi.number++; } display->sbi.registers[i].offset = offset; display->sbi.registers[i].value = value; } static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >> SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) { unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) & SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT; vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu, sbi_offset); } read_vreg(vgpu, offset, p_data, bytes); return 0; } static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data; write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT); data |= SBI_READY; data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT); data |= SBI_RESPONSE_SUCCESS; vgpu_vreg(vgpu, offset) = data; if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >> SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) { unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) & SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT; write_virtual_sbi_register(vgpu, sbi_offset, vgpu_vreg_t(vgpu, SBI_DATA)); } return 0; } #define _vgtif_reg(x) \ (VGT_PVINFO_PAGE + offsetof(struct vgt_if, x)) static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { bool invalid_read = false; read_vreg(vgpu, offset, p_data, bytes); switch (offset) { case _vgtif_reg(magic) ... _vgtif_reg(vgt_id): if (offset + bytes > _vgtif_reg(vgt_id) + 4) invalid_read = true; break; case _vgtif_reg(avail_rs.mappable_gmadr.base) ... _vgtif_reg(avail_rs.fence_num): if (offset + bytes > _vgtif_reg(avail_rs.fence_num) + 4) invalid_read = true; break; case 0x78010: /* vgt_caps */ case 0x7881c: break; default: invalid_read = true; break; } if (invalid_read) gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n", offset, bytes, *(u32 *)p_data); vgpu->pv_notified = true; return 0; } static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification) { enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; struct intel_vgpu_mm *mm; u64 *pdps; pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0])); switch (notification) { case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE: root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; fallthrough; case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE: mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps); return PTR_ERR_OR_ZERO(mm); case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY: case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY: return intel_vgpu_put_ppgtt_mm(vgpu, pdps); case VGT_G2V_EXECLIST_CONTEXT_CREATE: case VGT_G2V_EXECLIST_CONTEXT_DESTROY: case 1: /* Remove this in guest driver. */ break; default: gvt_vgpu_err("Invalid PV notification %d\n", notification); } return 0; } static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready) { struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj; char *env[3] = {NULL, NULL, NULL}; char vmid_str[20]; char display_ready_str[20]; snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready); env[0] = display_ready_str; snprintf(vmid_str, 20, "VMID=%d", vgpu->id); env[1] = vmid_str; return kobject_uevent_env(kobj, KOBJ_ADD, env); } static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data = *(u32 *)p_data; bool invalid_write = false; switch (offset) { case _vgtif_reg(display_ready): send_display_ready_uevent(vgpu, data ? 1 : 0); break; case _vgtif_reg(g2v_notify): handle_g2v_notification(vgpu, data); break; /* add xhot and yhot to handled list to avoid error log */ case _vgtif_reg(cursor_x_hot): case _vgtif_reg(cursor_y_hot): case _vgtif_reg(pdp[0].lo): case _vgtif_reg(pdp[0].hi): case _vgtif_reg(pdp[1].lo): case _vgtif_reg(pdp[1].hi): case _vgtif_reg(pdp[2].lo): case _vgtif_reg(pdp[2].hi): case _vgtif_reg(pdp[3].lo): case _vgtif_reg(pdp[3].hi): case _vgtif_reg(execlist_context_descriptor_lo): case _vgtif_reg(execlist_context_descriptor_hi): break; case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]): invalid_write = true; enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE); break; default: invalid_write = true; gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n", offset, bytes, data); break; } if (!invalid_write) write_vreg(vgpu, offset, p_data, bytes); return 0; } static int pf_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; u32 val = *(u32 *)p_data; if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL || offset == _PS_1B_CTRL || offset == _PS_2B_CTRL || offset == _PS_1C_CTRL) && (val & PS_BINDING_MASK) != PS_BINDING_PIPE) { drm_WARN_ONCE(&i915->drm, true, "VM(%d): guest is trying to scaling a plane\n", vgpu->id); return 0; } return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes); } static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL)) vgpu_vreg(vgpu, offset) |= HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL); else vgpu_vreg(vgpu, offset) &= ~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL); return 0; } static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST) vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE; else vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE; return 0; } static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM) vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM; return 0; } static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; u32 mode; write_vreg(vgpu, offset, p_data, bytes); mode = vgpu_vreg(vgpu, offset); if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) { drm_WARN_ONCE(&i915->drm, 1, "VM(%d): iGVT-g doesn't support GuC\n", vgpu->id); return 0; } return 0; } static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; u32 trtte = *(u32 *)p_data; if ((trtte & 1) && (trtte & (1 << 1)) == 0) { drm_WARN(&i915->drm, 1, "VM(%d): Use physical address for TRTT!\n", vgpu->id); return -EINVAL; } write_vreg(vgpu, offset, p_data, bytes); return 0; } static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); return 0; } static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 v = 0; if (vgpu_vreg(vgpu, 0x46010) & (1 << 31)) v |= (1 << 0); if (vgpu_vreg(vgpu, 0x46014) & (1 << 31)) v |= (1 << 8); if (vgpu_vreg(vgpu, 0x46040) & (1 << 31)) v |= (1 << 16); if (vgpu_vreg(vgpu, 0x46060) & (1 << 31)) v |= (1 << 24); vgpu_vreg(vgpu, offset) = v; return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes); } static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 value = *(u32 *)p_data; u32 cmd = value & 0xff; u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA); switch (cmd) { case GEN9_PCODE_READ_MEM_LATENCY: if (IS_SKYLAKE(vgpu->gvt->gt->i915) || IS_KABYLAKE(vgpu->gvt->gt->i915) || IS_COFFEELAKE(vgpu->gvt->gt->i915) || IS_COMETLAKE(vgpu->gvt->gt->i915)) { /** * "Read memory latency" command on gen9. * Below memory latency values are read * from skylake platform. */ if (!*data0) *data0 = 0x1e1a1100; else *data0 = 0x61514b3d; } else if (IS_BROXTON(vgpu->gvt->gt->i915)) { /** * "Read memory latency" command on gen9. * Below memory latency values are read * from Broxton MRB. */ if (!*data0) *data0 = 0x16080707; else *data0 = 0x16161616; } break; case SKL_PCODE_CDCLK_CONTROL: if (IS_SKYLAKE(vgpu->gvt->gt->i915) || IS_KABYLAKE(vgpu->gvt->gt->i915) || IS_COFFEELAKE(vgpu->gvt->gt->i915) || IS_COMETLAKE(vgpu->gvt->gt->i915)) *data0 = SKL_CDCLK_READY_FOR_CHANGE; break; case GEN6_PCODE_READ_RC6VIDS: *data0 |= 0x1; break; } gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n", vgpu->id, value, *data0); /** * PCODE_READY clear means ready for pcode read/write, * PCODE_ERROR_MASK clear means no error happened. In GVT-g we * always emulate as pcode read/write success and ready for access * anytime, since we don't touch real physical registers here. */ value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK); return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes); } static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 value = *(u32 *)p_data; const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset); if (value != 0 && !intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) { gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n", offset, value); return -EINVAL; } /* * Need to emulate all the HWSP register write to ensure host can * update the VM CSB status correctly. Here listed registers can * support BDW, SKL or other platforms with same HWSP registers. */ if (unlikely(!engine)) { gvt_vgpu_err("access unknown hardware status page register:0x%x\n", offset); return -EINVAL; } vgpu->hws_pga[engine->id] = value; gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n", vgpu->id, value, offset); return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes); } static int skl_power_well_ctl_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 v = *(u32 *)p_data; if (IS_BROXTON(vgpu->gvt->gt->i915)) v &= (1 << 31) | (1 << 29); else v &= (1 << 31) | (1 << 29) | (1 << 9) | (1 << 7) | (1 << 5) | (1 << 3) | (1 << 1); v |= (v >> 1); return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes); } static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 v = *(u32 *)p_data; /* other bits are MBZ. */ v &= (1 << 31) | (1 << 30); v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30)); vgpu_vreg(vgpu, offset) = v; return 0; } static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 v = *(u32 *)p_data; if (v & BXT_DE_PLL_PLL_ENABLE) v |= BXT_DE_PLL_LOCK; vgpu_vreg(vgpu, offset) = v; return 0; } static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 v = *(u32 *)p_data; if (v & PORT_PLL_ENABLE) v |= PORT_PLL_LOCK; vgpu_vreg(vgpu, offset) = v; return 0; } static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 v = *(u32 *)p_data; u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0; switch (offset) { case _PHY_CTL_FAMILY_EDP: vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data; break; case _PHY_CTL_FAMILY_DDI: vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data; vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data; break; } vgpu_vreg(vgpu, offset) = v; return 0; } static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 v = vgpu_vreg(vgpu, offset); v &= ~UNIQUE_TRANGE_EN_METHOD; vgpu_vreg(vgpu, offset) = v; return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes); } static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 v = *(u32 *)p_data; if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) { vgpu_vreg(vgpu, offset - 0x600) = v; vgpu_vreg(vgpu, offset - 0x800) = v; } else { vgpu_vreg(vgpu, offset - 0x400) = v; vgpu_vreg(vgpu, offset - 0x600) = v; } vgpu_vreg(vgpu, offset) = v; return 0; } static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 v = *(u32 *)p_data; if (v & BIT(0)) { vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &= ~PHY_RESERVED; vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |= PHY_POWER_GOOD; } if (v & BIT(1)) { vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &= ~PHY_RESERVED; vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |= PHY_POWER_GOOD; } vgpu_vreg(vgpu, offset) = v; return 0; } static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { vgpu_vreg(vgpu, offset) = 0; return 0; } /* * FixMe: * If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did: * 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.) * Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing * these MI_BATCH_BUFFER. * Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT * PML4 PTE: PAT(0) PCD(1) PWT(1). * The performance is still expected to be low, will need further improvement. */ static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u64 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | GEN8_PPAT(1, 0) | GEN8_PPAT(2, 0) | GEN8_PPAT(3, CHV_PPAT_SNOOP) | GEN8_PPAT(4, CHV_PPAT_SNOOP) | GEN8_PPAT(5, CHV_PPAT_SNOOP) | GEN8_PPAT(6, CHV_PPAT_SNOOP) | GEN8_PPAT(7, CHV_PPAT_SNOOP); vgpu_vreg(vgpu, offset) = lower_32_bits(pat); return 0; } static int guc_status_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { /* keep MIA_IN_RESET before clearing */ read_vreg(vgpu, offset, p_data, bytes); vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET; return 0; } static int mmio_read_from_hw(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct intel_gvt *gvt = vgpu->gvt; const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(gvt, offset); /** * Read HW reg in following case * a. the offset isn't a ring mmio * b. the offset's ring is running on hw. * c. the offset is ring time stamp mmio */ if (!engine || vgpu == gvt->scheduler.engine_owner[engine->id] || offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) || offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) { mmio_hw_access_pre(gvt->gt); vgpu_vreg(vgpu, offset) = intel_uncore_read(gvt->gt->uncore, _MMIO(offset)); mmio_hw_access_post(gvt->gt); } return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes); } static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset); struct intel_vgpu_execlist *execlist; u32 data = *(u32 *)p_data; int ret = 0; if (drm_WARN_ON(&i915->drm, !engine)) return -EINVAL; /* * Due to d3_entered is used to indicate skipping PPGTT invalidation on * vGPU reset, it's set on D0->D3 on PCI config write, and cleared after * vGPU reset if in resuming. * In S0ix exit, the device power state also transite from D3 to D0 as * S3 resume, but no vGPU reset (triggered by QEMU devic model). After * S0ix exit, all engines continue to work. However the d3_entered * remains set which will break next vGPU reset logic (miss the expected * PPGTT invalidation). * Engines can only work in D0. Thus the 1st elsp write gives GVT a * chance to clear d3_entered. */ if (vgpu->d3_entered) vgpu->d3_entered = false; execlist = &vgpu->submission.execlist[engine->id]; execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data; if (execlist->elsp_dwords.index == 3) { ret = intel_vgpu_submit_execlist(vgpu, engine); if(ret) gvt_vgpu_err("fail submit workload on ring %s\n", engine->name); } ++execlist->elsp_dwords.index; execlist->elsp_dwords.index &= 0x3; return ret; } static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data = *(u32 *)p_data; const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset); bool enable_execlist; int ret; (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1); if (IS_COFFEELAKE(vgpu->gvt->gt->i915) || IS_COMETLAKE(vgpu->gvt->gt->i915)) (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2); write_vreg(vgpu, offset, p_data, bytes); if (IS_MASKED_BITS_ENABLED(data, 1)) { enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); return 0; } if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) || IS_COMETLAKE(vgpu->gvt->gt->i915)) && IS_MASKED_BITS_ENABLED(data, 2)) { enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); return 0; } /* when PPGTT mode enabled, we will check if guest has called * pvinfo, if not, we will treat this guest as non-gvtg-aware * guest, and stop emulating its cfg space, mmio, gtt, etc. */ if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) || IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) && !vgpu->pv_notified) { enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); return 0; } if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) || IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) { enable_execlist = !!(data & GFX_RUN_LIST_ENABLE); gvt_dbg_core("EXECLIST %s on ring %s\n", (enable_execlist ? "enabling" : "disabling"), engine->name); if (!enable_execlist) return 0; ret = intel_vgpu_select_submission_ops(vgpu, engine->mask, INTEL_VGPU_EXECLIST_SUBMISSION); if (ret) return ret; intel_vgpu_start_schedule(vgpu); } return 0; } static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { unsigned int id = 0; write_vreg(vgpu, offset, p_data, bytes); vgpu_vreg(vgpu, offset) = 0; switch (offset) { case 0x4260: id = RCS0; break; case 0x4264: id = VCS0; break; case 0x4268: id = VCS1; break; case 0x426c: id = BCS0; break; case 0x4270: id = VECS0; break; default: return -EINVAL; } set_bit(id, (void *)vgpu->submission.tlb_handle_pending); return 0; } static int ring_reset_ctl_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data; write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET)) data |= RESET_CTL_READY_TO_RESET; else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)) data &= ~RESET_CTL_READY_TO_RESET; vgpu_vreg(vgpu, offset) = data; return 0; } static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data = *(u32 *)p_data; (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18); write_vreg(vgpu, offset, p_data, bytes); if (IS_MASKED_BITS_ENABLED(data, 0x10) || IS_MASKED_BITS_ENABLED(data, 0x8)) enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); return 0; } #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \ ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \ s, f, am, rm, d, r, w); \ if (ret) \ return ret; \ } while (0) #define MMIO_DH(reg, d, r, w) \ MMIO_F(reg, 4, 0, 0, 0, d, r, w) #define MMIO_DFH(reg, d, f, r, w) \ MMIO_F(reg, 4, f, 0, 0, d, r, w) #define MMIO_GM(reg, d, r, w) \ MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w) #define MMIO_GM_RDR(reg, d, r, w) \ MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w) #define MMIO_RO(reg, d, f, rm, r, w) \ MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w) #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \ MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \ MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \ MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \ MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \ if (HAS_ENGINE(gvt->gt, VCS1)) \ MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \ } while (0) #define MMIO_RING_DFH(prefix, d, f, r, w) \ MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w) #define MMIO_RING_GM(prefix, d, r, w) \ MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w) #define MMIO_RING_GM_RDR(prefix, d, r, w) \ MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w) #define MMIO_RING_RO(prefix, d, f, rm, r, w) \ MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w) static int init_generic_mmio_info(struct intel_gvt *gvt) { struct drm_i915_private *dev_priv = gvt->gt->i915; int ret; MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler); MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler); MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler); MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler); MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL); MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL, gamw_echo_dev_rw_ia_write); MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL); MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL); MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL); #define RING_REG(base) _MMIO((base) + 0x28) MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL); #undef RING_REG #define RING_REG(base) _MMIO((base) + 0x134) MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL); #undef RING_REG #define RING_REG(base) _MMIO((base) + 0x6c) MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL); #undef RING_REG MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL); MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL); MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL); MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL); MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL); MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL); MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL); MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL); MMIO_RING_GM(RING_START, D_ALL, NULL, NULL); /* RING MODE */ #define RING_REG(base) _MMIO((base) + 0x29c) MMIO_RING_DFH(RING_REG, D_ALL, F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL, ring_mode_mmio_write); #undef RING_REG MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS, mmio_read_from_hw, NULL); MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS, mmio_read_from_hw, NULL); MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(HSW_HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); /* display */ MMIO_DH(TRANSCONF(TRANSCODER_A), D_ALL, NULL, pipeconf_mmio_write); MMIO_DH(TRANSCONF(TRANSCODER_B), D_ALL, NULL, pipeconf_mmio_write); MMIO_DH(TRANSCONF(TRANSCODER_C), D_ALL, NULL, pipeconf_mmio_write); MMIO_DH(TRANSCONF(TRANSCODER_EDP), D_ALL, NULL, pipeconf_mmio_write); MMIO_DH(DSPSURF(PIPE_A), D_ALL, NULL, pri_surf_mmio_write); MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL, reg50080_mmio_write); MMIO_DH(DSPSURF(PIPE_B), D_ALL, NULL, pri_surf_mmio_write); MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL, reg50080_mmio_write); MMIO_DH(DSPSURF(PIPE_C), D_ALL, NULL, pri_surf_mmio_write); MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL, reg50080_mmio_write); MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write); MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL, reg50080_mmio_write); MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write); MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL, reg50080_mmio_write); MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write); MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL, reg50080_mmio_write); MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read, gmbus_mmio_write); MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL); MMIO_F(_MMIO(_PCH_DPB_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL, dp_aux_ch_ctl_mmio_write); MMIO_F(_MMIO(_PCH_DPC_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL, dp_aux_ch_ctl_mmio_write); MMIO_F(_MMIO(_PCH_DPD_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL, dp_aux_ch_ctl_mmio_write); MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write); MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write); MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write); MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write); MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write); MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write); MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status); MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status); MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status); MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status); MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status); MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status); MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write); MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL); MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL); MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL); MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL); MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL); MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL); MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0, PORTA_HOTPLUG_STATUS_MASK | PORTB_HOTPLUG_STATUS_MASK | PORTC_HOTPLUG_STATUS_MASK | PORTD_HOTPLUG_STATUS_MASK, NULL, NULL); MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write); MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write); MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL); MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL); MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write); MMIO_F(_MMIO(_DPA_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_ALL, NULL, dp_aux_ch_ctl_mmio_write); MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write); MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write); MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write); MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write); MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write); MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write); MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write); MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write); MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write); MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write); MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write); MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write); MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write); MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write); MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL); MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL); MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL); MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL); MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL); MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL); MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write); MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL); MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL); MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL); MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write); MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write); MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write); MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write); MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write); MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write); MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write); MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write); MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write); MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL); MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL); MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write); MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write); MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL); MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL); MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write); MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write); MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL); return 0; } static int init_bdw_mmio_info(struct intel_gvt *gvt) { int ret; MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL, intel_vgpu_reg_master_irq_handler); MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0, mmio_read_from_hw, NULL); #define RING_REG(base) _MMIO((base) + 0xd0) MMIO_RING_F(RING_REG, 4, F_RO, 0, ~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL, ring_reset_ctl_write); #undef RING_REG #define RING_REG(base) _MMIO((base) + 0x230) MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write); #undef RING_REG #define RING_REG(base) _MMIO((base) + 0x234) MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL); #undef RING_REG #define RING_REG(base) _MMIO((base) + 0x244) MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); #undef RING_REG #define RING_REG(base) _MMIO((base) + 0x370) MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL); #undef RING_REG #define RING_REG(base) _MMIO((base) + 0x3a0) MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL); #undef RING_REG MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write); #define RING_REG(base) _MMIO((base) + 0x270) MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL); #undef RING_REG MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write); MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL); MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0, D_BDW_PLUS, NULL, force_nonpriv_write); MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); return 0; } static int init_skl_mmio_info(struct intel_gvt *gvt) { int ret; MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write); MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL); MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write); MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL); MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write); MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL); MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL, dp_aux_ch_ctl_mmio_write); MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL, dp_aux_ch_ctl_mmio_write); MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL, dp_aux_ch_ctl_mmio_write); MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write); MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write); MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL); MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write); MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write); MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL); MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write); MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write); MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL); MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL); MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL); MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL); MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL); MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL); MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL); MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL); MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS, NULL, NULL); MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS, NULL, NULL); MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); /* TRTT */ MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE, NULL, gen9_trtte_write); MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE, NULL, gen9_trtt_chicken_write); MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write); #define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4) MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, csfe_chicken1_mmio_write); #undef CSFE_CHICKEN1_REG MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); return 0; } static int init_bxt_mmio_info(struct intel_gvt *gvt) { int ret; MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write); MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT, NULL, bxt_phy_ctl_family_write); MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT, NULL, bxt_phy_ctl_family_write); MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT, NULL, bxt_port_pll_enable_write); MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT, NULL, bxt_port_pll_enable_write); MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL, bxt_port_pll_enable_write); MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT, NULL, bxt_pcs_dw12_grp_write); MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH0, 0), D_BXT, bxt_port_tx_dw3_read, NULL); MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT, NULL, bxt_pcs_dw12_grp_write); MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH1, 0), D_BXT, bxt_port_tx_dw3_read, NULL); MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT, NULL, bxt_pcs_dw12_grp_write); MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY1, DPIO_CH0, 0), D_BXT, bxt_port_tx_dw3_read, NULL); MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write); MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL); MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS, 0, 0, D_BXT, NULL, NULL); MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS, 0, 0, D_BXT, NULL, NULL); MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS, 0, 0, D_BXT, NULL, NULL); MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS, 0, 0, D_BXT, NULL, NULL); MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL); MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write); return 0; } static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt, unsigned int offset) { struct gvt_mmio_block *block = gvt->mmio.mmio_block; int num = gvt->mmio.num_mmio_block; int i; for (i = 0; i < num; i++, block++) { if (offset >= i915_mmio_reg_offset(block->offset) && offset < i915_mmio_reg_offset(block->offset) + block->size) return block; } return NULL; } /** * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device * @gvt: GVT device * * This function is called at the driver unloading stage, to clean up the MMIO * information table of GVT device * */ void intel_gvt_clean_mmio_info(struct intel_gvt *gvt) { struct hlist_node *tmp; struct intel_gvt_mmio_info *e; int i; hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node) kfree(e); kfree(gvt->mmio.mmio_block); gvt->mmio.mmio_block = NULL; gvt->mmio.num_mmio_block = 0; vfree(gvt->mmio.mmio_attribute); gvt->mmio.mmio_attribute = NULL; } static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset, u32 size) { struct intel_gvt *gvt = iter->data; struct intel_gvt_mmio_info *info, *p; u32 start, end, i; if (WARN_ON(!IS_ALIGNED(offset, 4))) return -EINVAL; start = offset; end = offset + size; for (i = start; i < end; i += 4) { p = intel_gvt_find_mmio_info(gvt, i); if (p) { WARN(1, "dup mmio definition offset %x\n", i); /* We return -EEXIST here to make GVT-g load fail. * So duplicated MMIO can be found as soon as * possible. */ return -EEXIST; } info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->offset = i; info->read = intel_vgpu_default_mmio_read; info->write = intel_vgpu_default_mmio_write; INIT_HLIST_NODE(&info->node); hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset); gvt->mmio.num_tracked_mmio++; } return 0; } static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter, u32 offset, u32 size) { struct intel_gvt *gvt = iter->data; struct gvt_mmio_block *block = gvt->mmio.mmio_block; void *ret; ret = krealloc(block, (gvt->mmio.num_mmio_block + 1) * sizeof(*block), GFP_KERNEL); if (!ret) return -ENOMEM; gvt->mmio.mmio_block = block = ret; block += gvt->mmio.num_mmio_block; memset(block, 0, sizeof(*block)); block->offset = _MMIO(offset); block->size = size; gvt->mmio.num_mmio_block++; return 0; } static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset, u32 size) { if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0))) return handle_mmio(iter, offset, size); else return handle_mmio_block(iter, offset, size); } static int init_mmio_info(struct intel_gvt *gvt) { struct intel_gvt_mmio_table_iter iter = { .i915 = gvt->gt->i915, .data = gvt, .handle_mmio_cb = handle_mmio_cb, }; return intel_gvt_iterate_mmio_table(&iter); } static int init_mmio_block_handlers(struct intel_gvt *gvt) { struct gvt_mmio_block *block; block = find_mmio_block(gvt, VGT_PVINFO_PAGE); if (!block) { WARN(1, "fail to assign handlers to mmio block %x\n", i915_mmio_reg_offset(gvt->mmio.mmio_block->offset)); return -ENODEV; } block->read = pvinfo_mmio_read; block->write = pvinfo_mmio_write; return 0; } /** * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device * @gvt: GVT device * * This function is called at the initialization stage, to setup the MMIO * information table for GVT device * * Returns: * zero on success, negative if failed. */ int intel_gvt_setup_mmio_info(struct intel_gvt *gvt) { struct intel_gvt_device_info *info = &gvt->device_info; struct drm_i915_private *i915 = gvt->gt->i915; int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute); int ret; gvt->mmio.mmio_attribute = vzalloc(size); if (!gvt->mmio.mmio_attribute) return -ENOMEM; ret = init_mmio_info(gvt); if (ret) goto err; ret = init_mmio_block_handlers(gvt); if (ret) goto err; ret = init_generic_mmio_info(gvt); if (ret) goto err; if (IS_BROADWELL(i915)) { ret = init_bdw_mmio_info(gvt); if (ret) goto err; } else if (IS_SKYLAKE(i915) || IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) { ret = init_bdw_mmio_info(gvt); if (ret) goto err; ret = init_skl_mmio_info(gvt); if (ret) goto err; } else if (IS_BROXTON(i915)) { ret = init_bdw_mmio_info(gvt); if (ret) goto err; ret = init_skl_mmio_info(gvt); if (ret) goto err; ret = init_bxt_mmio_info(gvt); if (ret) goto err; } return 0; err: intel_gvt_clean_mmio_info(gvt); return ret; } /** * intel_gvt_for_each_tracked_mmio - iterate each tracked mmio * @gvt: a GVT device * @handler: the handler * @data: private data given to handler * * Returns: * Zero on success, negative error code if failed. */ int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt, int (*handler)(struct intel_gvt *gvt, u32 offset, void *data), void *data) { struct gvt_mmio_block *block = gvt->mmio.mmio_block; struct intel_gvt_mmio_info *e; int i, j, ret; hash_for_each(gvt->mmio.mmio_info_table, i, e, node) { ret = handler(gvt, e->offset, data); if (ret) return ret; } for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) { /* pvinfo data doesn't come from hw mmio */ if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE) continue; for (j = 0; j < block->size; j += 4) { ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data); if (ret) return ret; } } return 0; } /** * intel_vgpu_default_mmio_read - default MMIO read handler * @vgpu: a vGPU * @offset: access offset * @p_data: data return buffer * @bytes: access data length * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { read_vreg(vgpu, offset, p_data, bytes); return 0; } /** * intel_vgpu_default_mmio_write() - default MMIO write handler * @vgpu: a vGPU * @offset: access offset * @p_data: write data buffer * @bytes: access data length * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); return 0; } /** * intel_vgpu_mask_mmio_write - write mask register * @vgpu: a vGPU * @offset: access offset * @p_data: write data buffer * @bytes: access data length * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 mask, old_vreg; old_vreg = vgpu_vreg(vgpu, offset); write_vreg(vgpu, offset, p_data, bytes); mask = vgpu_vreg(vgpu, offset) >> 16; vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) | (vgpu_vreg(vgpu, offset) & mask); return 0; } /** * intel_gvt_in_force_nonpriv_whitelist - if a mmio is in whitelist to be * force-nopriv register * * @gvt: a GVT device * @offset: register offset * * Returns: * True if the register is in force-nonpriv whitelist; * False if outside; */ bool intel_gvt_in_force_nonpriv_whitelist(struct intel_gvt *gvt, unsigned int offset) { return in_whitelist(offset); } /** * intel_vgpu_mmio_reg_rw - emulate tracked mmio registers * @vgpu: a vGPU * @offset: register offset * @pdata: data buffer * @bytes: data length * @is_read: read or write * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset, void *pdata, unsigned int bytes, bool is_read) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_mmio_info *mmio_info; struct gvt_mmio_block *mmio_block; gvt_mmio_func func; int ret; if (drm_WARN_ON(&i915->drm, bytes > 8)) return -EINVAL; /* * Handle special MMIO blocks. */ mmio_block = find_mmio_block(gvt, offset); if (mmio_block) { func = is_read ? mmio_block->read : mmio_block->write; if (func) return func(vgpu, offset, pdata, bytes); goto default_rw; } /* * Normal tracked MMIOs. */ mmio_info = intel_gvt_find_mmio_info(gvt, offset); if (!mmio_info) { gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes); goto default_rw; } if (is_read) return mmio_info->read(vgpu, offset, pdata, bytes); else { u64 ro_mask = mmio_info->ro_mask; u32 old_vreg = 0; u64 data = 0; if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) { old_vreg = vgpu_vreg(vgpu, offset); } if (likely(!ro_mask)) ret = mmio_info->write(vgpu, offset, pdata, bytes); else if (!~ro_mask) { gvt_vgpu_err("try to write RO reg %x\n", offset); return 0; } else { /* keep the RO bits in the virtual register */ memcpy(&data, pdata, bytes); data &= ~ro_mask; data |= vgpu_vreg(vgpu, offset) & ro_mask; ret = mmio_info->write(vgpu, offset, &data, bytes); } /* higher 16bits of mode ctl regs are mask bits for change */ if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) { u32 mask = vgpu_vreg(vgpu, offset) >> 16; vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) | (vgpu_vreg(vgpu, offset) & mask); } } return ret; default_rw: return is_read ? intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) : intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes); } void intel_gvt_restore_fence(struct intel_gvt *gvt) { struct intel_vgpu *vgpu; int i, id; idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { mmio_hw_access_pre(gvt->gt); for (i = 0; i < vgpu_fence_sz(vgpu); i++) intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i))); mmio_hw_access_post(gvt->gt); } } static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data) { struct intel_vgpu *vgpu = data; struct drm_i915_private *dev_priv = gvt->gt->i915; if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE) intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset)); return 0; } void intel_gvt_restore_mmio(struct intel_gvt *gvt) { struct intel_vgpu *vgpu; int id; idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { mmio_hw_access_pre(gvt->gt); intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu); mmio_hw_access_post(gvt->gt); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1