Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tvrtko A. Ursulin | 4857 | 82.74% | 41 | 36.61% |
Chris Wilson | 533 | 9.08% | 28 | 25.00% |
Michał Winiarski | 113 | 1.93% | 3 | 2.68% |
Jani Nikula | 99 | 1.69% | 5 | 4.46% |
Arnd Bergmann | 98 | 1.67% | 1 | 0.89% |
Andrzej Hajda | 24 | 0.41% | 1 | 0.89% |
Andi Shyti | 22 | 0.37% | 2 | 1.79% |
Pankaj Bharadiya | 21 | 0.36% | 2 | 1.79% |
Umesh Nerlige Ramappa | 17 | 0.29% | 1 | 0.89% |
Ashutosh Dixit | 14 | 0.24% | 4 | 3.57% |
Uros Bizjak | 8 | 0.14% | 1 | 0.89% |
Oscar Mateo | 7 | 0.12% | 3 | 2.68% |
Lucas De Marchi | 6 | 0.10% | 1 | 0.89% |
Matt Roper | 6 | 0.10% | 2 | 1.79% |
Jeff McGee | 6 | 0.10% | 1 | 0.89% |
Sagar Arun Kamble | 5 | 0.09% | 1 | 0.89% |
Thomas Gleixner | 4 | 0.07% | 1 | 0.89% |
Thomas Daniel | 4 | 0.07% | 1 | 0.89% |
Jason Ekstrand | 4 | 0.07% | 1 | 0.89% |
Thomas Zimmermann | 4 | 0.07% | 1 | 0.89% |
Vincent Guittot | 3 | 0.05% | 1 | 0.89% |
Akash Goel | 3 | 0.05% | 1 | 0.89% |
Yue haibing | 2 | 0.03% | 1 | 0.89% |
Gustavo A. R. Silva | 2 | 0.03% | 1 | 0.89% |
Daniele Ceraolo Spurio | 2 | 0.03% | 1 | 0.89% |
Vinay Belgaumkar | 1 | 0.02% | 1 | 0.89% |
Matt Atwood | 1 | 0.02% | 1 | 0.89% |
Michal Wajdeczko | 1 | 0.02% | 1 | 0.89% |
Yury Norov | 1 | 0.02% | 1 | 0.89% |
Don Hiatt | 1 | 0.02% | 1 | 0.89% |
Fengguang Wu | 1 | 0.02% | 1 | 0.89% |
Total | 5870 | 112 |
/* * SPDX-License-Identifier: MIT * * Copyright © 2017-2018 Intel Corporation */ #include <linux/pm_runtime.h> #include "gt/intel_engine.h" #include "gt/intel_engine_pm.h" #include "gt/intel_engine_regs.h" #include "gt/intel_engine_user.h" #include "gt/intel_gt.h" #include "gt/intel_gt_pm.h" #include "gt/intel_gt_regs.h" #include "gt/intel_rc6.h" #include "gt/intel_rps.h" #include "i915_drv.h" #include "i915_pmu.h" /* Frequency for the sampling timer for events which need it. */ #define FREQUENCY 200 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY) #define ENGINE_SAMPLE_MASK \ (BIT(I915_SAMPLE_BUSY) | \ BIT(I915_SAMPLE_WAIT) | \ BIT(I915_SAMPLE_SEMA)) static cpumask_t i915_pmu_cpumask; static unsigned int i915_pmu_target_cpu = -1; static struct i915_pmu *event_to_pmu(struct perf_event *event) { return container_of(event->pmu, struct i915_pmu, base); } static struct drm_i915_private *pmu_to_i915(struct i915_pmu *pmu) { return container_of(pmu, struct drm_i915_private, pmu); } static u8 engine_config_sample(u64 config) { return config & I915_PMU_SAMPLE_MASK; } static u8 engine_event_sample(struct perf_event *event) { return engine_config_sample(event->attr.config); } static u8 engine_event_class(struct perf_event *event) { return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff; } static u8 engine_event_instance(struct perf_event *event) { return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff; } static bool is_engine_config(const u64 config) { return config < __I915_PMU_OTHER(0); } static unsigned int config_gt_id(const u64 config) { return config >> __I915_PMU_GT_SHIFT; } static u64 config_counter(const u64 config) { return config & ~(~0ULL << __I915_PMU_GT_SHIFT); } static unsigned int other_bit(const u64 config) { unsigned int val; switch (config_counter(config)) { case I915_PMU_ACTUAL_FREQUENCY: val = __I915_PMU_ACTUAL_FREQUENCY_ENABLED; break; case I915_PMU_REQUESTED_FREQUENCY: val = __I915_PMU_REQUESTED_FREQUENCY_ENABLED; break; case I915_PMU_RC6_RESIDENCY: val = __I915_PMU_RC6_RESIDENCY_ENABLED; break; default: /* * Events that do not require sampling, or tracking state * transitions between enabled and disabled can be ignored. */ return -1; } return I915_ENGINE_SAMPLE_COUNT + config_gt_id(config) * __I915_PMU_TRACKED_EVENT_COUNT + val; } static unsigned int config_bit(const u64 config) { if (is_engine_config(config)) return engine_config_sample(config); else return other_bit(config); } static u32 config_mask(const u64 config) { unsigned int bit = config_bit(config); if (__builtin_constant_p(config)) BUILD_BUG_ON(bit > BITS_PER_TYPE(typeof_member(struct i915_pmu, enable)) - 1); else WARN_ON_ONCE(bit > BITS_PER_TYPE(typeof_member(struct i915_pmu, enable)) - 1); return BIT(config_bit(config)); } static bool is_engine_event(struct perf_event *event) { return is_engine_config(event->attr.config); } static unsigned int event_bit(struct perf_event *event) { return config_bit(event->attr.config); } static u32 frequency_enabled_mask(void) { unsigned int i; u32 mask = 0; for (i = 0; i < I915_PMU_MAX_GT; i++) mask |= config_mask(__I915_PMU_ACTUAL_FREQUENCY(i)) | config_mask(__I915_PMU_REQUESTED_FREQUENCY(i)); return mask; } static bool pmu_needs_timer(struct i915_pmu *pmu) { struct drm_i915_private *i915 = pmu_to_i915(pmu); u32 enable; /* * Only some counters need the sampling timer. * * We start with a bitmask of all currently enabled events. */ enable = pmu->enable; /* * Mask out all the ones which do not need the timer, or in * other words keep all the ones that could need the timer. */ enable &= frequency_enabled_mask() | ENGINE_SAMPLE_MASK; /* * Also there is software busyness tracking available we do not * need the timer for I915_SAMPLE_BUSY counter. */ if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS) enable &= ~BIT(I915_SAMPLE_BUSY); /* * If some bits remain it means we need the sampling timer running. */ return enable; } static u64 __get_rc6(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; u64 val; val = intel_rc6_residency_ns(>->rc6, INTEL_RC6_RES_RC6); if (HAS_RC6p(i915)) val += intel_rc6_residency_ns(>->rc6, INTEL_RC6_RES_RC6p); if (HAS_RC6pp(i915)) val += intel_rc6_residency_ns(>->rc6, INTEL_RC6_RES_RC6pp); return val; } static inline s64 ktime_since_raw(const ktime_t kt) { return ktime_to_ns(ktime_sub(ktime_get_raw(), kt)); } static u64 read_sample(struct i915_pmu *pmu, unsigned int gt_id, int sample) { return pmu->sample[gt_id][sample].cur; } static void store_sample(struct i915_pmu *pmu, unsigned int gt_id, int sample, u64 val) { pmu->sample[gt_id][sample].cur = val; } static void add_sample_mult(struct i915_pmu *pmu, unsigned int gt_id, int sample, u32 val, u32 mul) { pmu->sample[gt_id][sample].cur += mul_u32_u32(val, mul); } static u64 get_rc6(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; const unsigned int gt_id = gt->info.id; struct i915_pmu *pmu = &i915->pmu; intel_wakeref_t wakeref; unsigned long flags; u64 val; wakeref = intel_gt_pm_get_if_awake(gt); if (wakeref) { val = __get_rc6(gt); intel_gt_pm_put_async(gt, wakeref); } spin_lock_irqsave(&pmu->lock, flags); if (wakeref) { store_sample(pmu, gt_id, __I915_SAMPLE_RC6, val); } else { /* * We think we are runtime suspended. * * Report the delta from when the device was suspended to now, * on top of the last known real value, as the approximated RC6 * counter value. */ val = ktime_since_raw(pmu->sleep_last[gt_id]); val += read_sample(pmu, gt_id, __I915_SAMPLE_RC6); } if (val < read_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED)) val = read_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED); else store_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED, val); spin_unlock_irqrestore(&pmu->lock, flags); return val; } static void init_rc6(struct i915_pmu *pmu) { struct drm_i915_private *i915 = pmu_to_i915(pmu); struct intel_gt *gt; unsigned int i; for_each_gt(gt, i915, i) { intel_wakeref_t wakeref; with_intel_runtime_pm(gt->uncore->rpm, wakeref) { u64 val = __get_rc6(gt); store_sample(pmu, i, __I915_SAMPLE_RC6, val); store_sample(pmu, i, __I915_SAMPLE_RC6_LAST_REPORTED, val); pmu->sleep_last[i] = ktime_get_raw(); } } } static void park_rc6(struct intel_gt *gt) { struct i915_pmu *pmu = >->i915->pmu; store_sample(pmu, gt->info.id, __I915_SAMPLE_RC6, __get_rc6(gt)); pmu->sleep_last[gt->info.id] = ktime_get_raw(); } static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu) { if (!pmu->timer_enabled && pmu_needs_timer(pmu)) { pmu->timer_enabled = true; pmu->timer_last = ktime_get(); hrtimer_start_range_ns(&pmu->timer, ns_to_ktime(PERIOD), 0, HRTIMER_MODE_REL_PINNED); } } void i915_pmu_gt_parked(struct intel_gt *gt) { struct i915_pmu *pmu = >->i915->pmu; if (!pmu->base.event_init) return; spin_lock_irq(&pmu->lock); park_rc6(gt); /* * Signal sampling timer to stop if only engine events are enabled and * GPU went idle. */ pmu->unparked &= ~BIT(gt->info.id); if (pmu->unparked == 0) pmu->timer_enabled = false; spin_unlock_irq(&pmu->lock); } void i915_pmu_gt_unparked(struct intel_gt *gt) { struct i915_pmu *pmu = >->i915->pmu; if (!pmu->base.event_init) return; spin_lock_irq(&pmu->lock); /* * Re-enable sampling timer when GPU goes active. */ if (pmu->unparked == 0) __i915_pmu_maybe_start_timer(pmu); pmu->unparked |= BIT(gt->info.id); spin_unlock_irq(&pmu->lock); } static void add_sample(struct i915_pmu_sample *sample, u32 val) { sample->cur += val; } static bool exclusive_mmio_access(const struct drm_i915_private *i915) { /* * We have to avoid concurrent mmio cache line access on gen7 or * risk a machine hang. For a fun history lesson dig out the old * userspace intel_gpu_top and run it on Ivybridge or Haswell! */ return GRAPHICS_VER(i915) == 7; } static void engine_sample(struct intel_engine_cs *engine, unsigned int period_ns) { struct intel_engine_pmu *pmu = &engine->pmu; bool busy; u32 val; val = ENGINE_READ_FW(engine, RING_CTL); if (val == 0) /* powerwell off => engine idle */ return; if (val & RING_WAIT) add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns); if (val & RING_WAIT_SEMAPHORE) add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns); /* No need to sample when busy stats are supported. */ if (intel_engine_supports_stats(engine)) return; /* * While waiting on a semaphore or event, MI_MODE reports the * ring as idle. However, previously using the seqno, and with * execlists sampling, we account for the ring waiting as the * engine being busy. Therefore, we record the sample as being * busy if either waiting or !idle. */ busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT); if (!busy) { val = ENGINE_READ_FW(engine, RING_MI_MODE); busy = !(val & MODE_IDLE); } if (busy) add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns); } static void engines_sample(struct intel_gt *gt, unsigned int period_ns) { struct drm_i915_private *i915 = gt->i915; struct intel_engine_cs *engine; enum intel_engine_id id; unsigned long flags; if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0) return; if (!intel_gt_pm_is_awake(gt)) return; for_each_engine(engine, gt, id) { if (!engine->pmu.enable) continue; if (!intel_engine_pm_get_if_awake(engine)) continue; if (exclusive_mmio_access(i915)) { spin_lock_irqsave(&engine->uncore->lock, flags); engine_sample(engine, period_ns); spin_unlock_irqrestore(&engine->uncore->lock, flags); } else { engine_sample(engine, period_ns); } intel_engine_pm_put_async(engine); } } static bool frequency_sampling_enabled(struct i915_pmu *pmu, unsigned int gt) { return pmu->enable & (config_mask(__I915_PMU_ACTUAL_FREQUENCY(gt)) | config_mask(__I915_PMU_REQUESTED_FREQUENCY(gt))); } static void frequency_sample(struct intel_gt *gt, unsigned int period_ns) { struct drm_i915_private *i915 = gt->i915; const unsigned int gt_id = gt->info.id; struct i915_pmu *pmu = &i915->pmu; struct intel_rps *rps = >->rps; intel_wakeref_t wakeref; if (!frequency_sampling_enabled(pmu, gt_id)) return; /* Report 0/0 (actual/requested) frequency while parked. */ wakeref = intel_gt_pm_get_if_awake(gt); if (!wakeref) return; if (pmu->enable & config_mask(__I915_PMU_ACTUAL_FREQUENCY(gt_id))) { u32 val; /* * We take a quick peek here without using forcewake * so that we don't perturb the system under observation * (forcewake => !rc6 => increased power use). We expect * that if the read fails because it is outside of the * mmio power well, then it will return 0 -- in which * case we assume the system is running at the intended * frequency. Fortunately, the read should rarely fail! */ val = intel_rps_read_actual_frequency_fw(rps); if (!val) val = intel_gpu_freq(rps, rps->cur_freq); add_sample_mult(pmu, gt_id, __I915_SAMPLE_FREQ_ACT, val, period_ns / 1000); } if (pmu->enable & config_mask(__I915_PMU_REQUESTED_FREQUENCY(gt_id))) { add_sample_mult(pmu, gt_id, __I915_SAMPLE_FREQ_REQ, intel_rps_get_requested_frequency(rps), period_ns / 1000); } intel_gt_pm_put_async(gt, wakeref); } static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer) { struct i915_pmu *pmu = container_of(hrtimer, struct i915_pmu, timer); struct drm_i915_private *i915 = pmu_to_i915(pmu); unsigned int period_ns; struct intel_gt *gt; unsigned int i; ktime_t now; if (!READ_ONCE(pmu->timer_enabled)) return HRTIMER_NORESTART; now = ktime_get(); period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last)); pmu->timer_last = now; /* * Strictly speaking the passed in period may not be 100% accurate for * all internal calculation, since some amount of time can be spent on * grabbing the forcewake. However the potential error from timer call- * back delay greatly dominates this so we keep it simple. */ for_each_gt(gt, i915, i) { if (!(pmu->unparked & BIT(i))) continue; engines_sample(gt, period_ns); frequency_sample(gt, period_ns); } hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD)); return HRTIMER_RESTART; } static void i915_pmu_event_destroy(struct perf_event *event) { struct i915_pmu *pmu = event_to_pmu(event); struct drm_i915_private *i915 = pmu_to_i915(pmu); drm_WARN_ON(&i915->drm, event->parent); drm_dev_put(&i915->drm); } static int engine_event_status(struct intel_engine_cs *engine, enum drm_i915_pmu_engine_sample sample) { switch (sample) { case I915_SAMPLE_BUSY: case I915_SAMPLE_WAIT: break; case I915_SAMPLE_SEMA: if (GRAPHICS_VER(engine->i915) < 6) return -ENODEV; break; default: return -ENOENT; } return 0; } static int config_status(struct drm_i915_private *i915, u64 config) { struct intel_gt *gt = to_gt(i915); unsigned int gt_id = config_gt_id(config); unsigned int max_gt_id = HAS_EXTRA_GT_LIST(i915) ? 1 : 0; if (gt_id > max_gt_id) return -ENOENT; switch (config_counter(config)) { case I915_PMU_ACTUAL_FREQUENCY: if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) /* Requires a mutex for sampling! */ return -ENODEV; fallthrough; case I915_PMU_REQUESTED_FREQUENCY: if (GRAPHICS_VER(i915) < 6) return -ENODEV; break; case I915_PMU_INTERRUPTS: if (gt_id) return -ENOENT; break; case I915_PMU_RC6_RESIDENCY: if (!gt->rc6.supported) return -ENODEV; break; case I915_PMU_SOFTWARE_GT_AWAKE_TIME: break; default: return -ENOENT; } return 0; } static int engine_event_init(struct perf_event *event) { struct i915_pmu *pmu = event_to_pmu(event); struct drm_i915_private *i915 = pmu_to_i915(pmu); struct intel_engine_cs *engine; engine = intel_engine_lookup_user(i915, engine_event_class(event), engine_event_instance(event)); if (!engine) return -ENODEV; return engine_event_status(engine, engine_event_sample(event)); } static int i915_pmu_event_init(struct perf_event *event) { struct i915_pmu *pmu = event_to_pmu(event); struct drm_i915_private *i915 = pmu_to_i915(pmu); int ret; if (pmu->closed) return -ENODEV; if (event->attr.type != event->pmu->type) return -ENOENT; /* unsupported modes and filters */ if (event->attr.sample_period) /* no sampling */ return -EINVAL; if (has_branch_stack(event)) return -EOPNOTSUPP; if (event->cpu < 0) return -EINVAL; /* only allow running on one cpu at a time */ if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask)) return -EINVAL; if (is_engine_event(event)) ret = engine_event_init(event); else ret = config_status(i915, event->attr.config); if (ret) return ret; if (!event->parent) { drm_dev_get(&i915->drm); event->destroy = i915_pmu_event_destroy; } return 0; } static u64 __i915_pmu_event_read(struct perf_event *event) { struct i915_pmu *pmu = event_to_pmu(event); struct drm_i915_private *i915 = pmu_to_i915(pmu); u64 val = 0; if (is_engine_event(event)) { u8 sample = engine_event_sample(event); struct intel_engine_cs *engine; engine = intel_engine_lookup_user(i915, engine_event_class(event), engine_event_instance(event)); if (drm_WARN_ON_ONCE(&i915->drm, !engine)) { /* Do nothing */ } else if (sample == I915_SAMPLE_BUSY && intel_engine_supports_stats(engine)) { ktime_t unused; val = ktime_to_ns(intel_engine_get_busy_time(engine, &unused)); } else { val = engine->pmu.sample[sample].cur; } } else { const unsigned int gt_id = config_gt_id(event->attr.config); const u64 config = config_counter(event->attr.config); switch (config) { case I915_PMU_ACTUAL_FREQUENCY: val = div_u64(read_sample(pmu, gt_id, __I915_SAMPLE_FREQ_ACT), USEC_PER_SEC /* to MHz */); break; case I915_PMU_REQUESTED_FREQUENCY: val = div_u64(read_sample(pmu, gt_id, __I915_SAMPLE_FREQ_REQ), USEC_PER_SEC /* to MHz */); break; case I915_PMU_INTERRUPTS: val = READ_ONCE(pmu->irq_count); break; case I915_PMU_RC6_RESIDENCY: val = get_rc6(i915->gt[gt_id]); break; case I915_PMU_SOFTWARE_GT_AWAKE_TIME: val = ktime_to_ns(intel_gt_get_awake_time(to_gt(i915))); break; } } return val; } static void i915_pmu_event_read(struct perf_event *event) { struct i915_pmu *pmu = event_to_pmu(event); struct hw_perf_event *hwc = &event->hw; u64 prev, new; if (pmu->closed) { event->hw.state = PERF_HES_STOPPED; return; } prev = local64_read(&hwc->prev_count); do { new = __i915_pmu_event_read(event); } while (!local64_try_cmpxchg(&hwc->prev_count, &prev, new)); local64_add(new - prev, &event->count); } static void i915_pmu_enable(struct perf_event *event) { struct i915_pmu *pmu = event_to_pmu(event); struct drm_i915_private *i915 = pmu_to_i915(pmu); const unsigned int bit = event_bit(event); unsigned long flags; if (bit == -1) goto update; spin_lock_irqsave(&pmu->lock, flags); /* * Update the bitmask of enabled events and increment * the event reference counter. */ BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS); GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); GEM_BUG_ON(pmu->enable_count[bit] == ~0); pmu->enable |= BIT(bit); pmu->enable_count[bit]++; /* * Start the sampling timer if needed and not already enabled. */ __i915_pmu_maybe_start_timer(pmu); /* * For per-engine events the bitmask and reference counting * is stored per engine. */ if (is_engine_event(event)) { u8 sample = engine_event_sample(event); struct intel_engine_cs *engine; engine = intel_engine_lookup_user(i915, engine_event_class(event), engine_event_instance(event)); BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) != I915_ENGINE_SAMPLE_COUNT); BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) != I915_ENGINE_SAMPLE_COUNT); GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0); engine->pmu.enable |= BIT(sample); engine->pmu.enable_count[sample]++; } spin_unlock_irqrestore(&pmu->lock, flags); update: /* * Store the current counter value so we can report the correct delta * for all listeners. Even when the event was already enabled and has * an existing non-zero value. */ local64_set(&event->hw.prev_count, __i915_pmu_event_read(event)); } static void i915_pmu_disable(struct perf_event *event) { struct i915_pmu *pmu = event_to_pmu(event); struct drm_i915_private *i915 = pmu_to_i915(pmu); const unsigned int bit = event_bit(event); unsigned long flags; if (bit == -1) return; spin_lock_irqsave(&pmu->lock, flags); if (is_engine_event(event)) { u8 sample = engine_event_sample(event); struct intel_engine_cs *engine; engine = intel_engine_lookup_user(i915, engine_event_class(event), engine_event_instance(event)); GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); GEM_BUG_ON(engine->pmu.enable_count[sample] == 0); /* * Decrement the reference count and clear the enabled * bitmask when the last listener on an event goes away. */ if (--engine->pmu.enable_count[sample] == 0) engine->pmu.enable &= ~BIT(sample); } GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); GEM_BUG_ON(pmu->enable_count[bit] == 0); /* * Decrement the reference count and clear the enabled * bitmask when the last listener on an event goes away. */ if (--pmu->enable_count[bit] == 0) { pmu->enable &= ~BIT(bit); pmu->timer_enabled &= pmu_needs_timer(pmu); } spin_unlock_irqrestore(&pmu->lock, flags); } static void i915_pmu_event_start(struct perf_event *event, int flags) { struct i915_pmu *pmu = event_to_pmu(event); if (pmu->closed) return; i915_pmu_enable(event); event->hw.state = 0; } static void i915_pmu_event_stop(struct perf_event *event, int flags) { struct drm_i915_private *i915 = container_of(event->pmu, typeof(*i915), pmu.base); struct i915_pmu *pmu = &i915->pmu; if (pmu->closed) goto out; if (flags & PERF_EF_UPDATE) i915_pmu_event_read(event); i915_pmu_disable(event); out: event->hw.state = PERF_HES_STOPPED; } static int i915_pmu_event_add(struct perf_event *event, int flags) { struct i915_pmu *pmu = event_to_pmu(event); if (pmu->closed) return -ENODEV; if (flags & PERF_EF_START) i915_pmu_event_start(event, flags); return 0; } static void i915_pmu_event_del(struct perf_event *event, int flags) { i915_pmu_event_stop(event, PERF_EF_UPDATE); } static int i915_pmu_event_event_idx(struct perf_event *event) { return 0; } struct i915_str_attribute { struct device_attribute attr; const char *str; }; static ssize_t i915_pmu_format_show(struct device *dev, struct device_attribute *attr, char *buf) { struct i915_str_attribute *eattr; eattr = container_of(attr, struct i915_str_attribute, attr); return sprintf(buf, "%s\n", eattr->str); } #define I915_PMU_FORMAT_ATTR(_name, _config) \ (&((struct i915_str_attribute[]) { \ { .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \ .str = _config, } \ })[0].attr.attr) static struct attribute *i915_pmu_format_attrs[] = { I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"), NULL, }; static const struct attribute_group i915_pmu_format_attr_group = { .name = "format", .attrs = i915_pmu_format_attrs, }; struct i915_ext_attribute { struct device_attribute attr; unsigned long val; }; static ssize_t i915_pmu_event_show(struct device *dev, struct device_attribute *attr, char *buf) { struct i915_ext_attribute *eattr; eattr = container_of(attr, struct i915_ext_attribute, attr); return sprintf(buf, "config=0x%lx\n", eattr->val); } static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, char *buf) { return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask); } static DEVICE_ATTR_RO(cpumask); static struct attribute *i915_cpumask_attrs[] = { &dev_attr_cpumask.attr, NULL, }; static const struct attribute_group i915_pmu_cpumask_attr_group = { .attrs = i915_cpumask_attrs, }; #define __event(__counter, __name, __unit) \ { \ .counter = (__counter), \ .name = (__name), \ .unit = (__unit), \ .global = false, \ } #define __global_event(__counter, __name, __unit) \ { \ .counter = (__counter), \ .name = (__name), \ .unit = (__unit), \ .global = true, \ } #define __engine_event(__sample, __name) \ { \ .sample = (__sample), \ .name = (__name), \ } static struct i915_ext_attribute * add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config) { sysfs_attr_init(&attr->attr.attr); attr->attr.attr.name = name; attr->attr.attr.mode = 0444; attr->attr.show = i915_pmu_event_show; attr->val = config; return ++attr; } static struct perf_pmu_events_attr * add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name, const char *str) { sysfs_attr_init(&attr->attr.attr); attr->attr.attr.name = name; attr->attr.attr.mode = 0444; attr->attr.show = perf_event_sysfs_show; attr->event_str = str; return ++attr; } static struct attribute ** create_event_attributes(struct i915_pmu *pmu) { struct drm_i915_private *i915 = pmu_to_i915(pmu); static const struct { unsigned int counter; const char *name; const char *unit; bool global; } events[] = { __event(0, "actual-frequency", "M"), __event(1, "requested-frequency", "M"), __global_event(2, "interrupts", NULL), __event(3, "rc6-residency", "ns"), __event(4, "software-gt-awake-time", "ns"), }; static const struct { enum drm_i915_pmu_engine_sample sample; char *name; } engine_events[] = { __engine_event(I915_SAMPLE_BUSY, "busy"), __engine_event(I915_SAMPLE_SEMA, "sema"), __engine_event(I915_SAMPLE_WAIT, "wait"), }; unsigned int count = 0; struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter; struct i915_ext_attribute *i915_attr = NULL, *i915_iter; struct attribute **attr = NULL, **attr_iter; struct intel_engine_cs *engine; struct intel_gt *gt; unsigned int i, j; /* Count how many counters we will be exposing. */ for_each_gt(gt, i915, j) { for (i = 0; i < ARRAY_SIZE(events); i++) { u64 config = ___I915_PMU_OTHER(j, events[i].counter); if (!config_status(i915, config)) count++; } } for_each_uabi_engine(engine, i915) { for (i = 0; i < ARRAY_SIZE(engine_events); i++) { if (!engine_event_status(engine, engine_events[i].sample)) count++; } } /* Allocate attribute objects and table. */ i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL); if (!i915_attr) goto err_alloc; pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL); if (!pmu_attr) goto err_alloc; /* Max one pointer of each attribute type plus a termination entry. */ attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL); if (!attr) goto err_alloc; i915_iter = i915_attr; pmu_iter = pmu_attr; attr_iter = attr; /* Initialize supported non-engine counters. */ for_each_gt(gt, i915, j) { for (i = 0; i < ARRAY_SIZE(events); i++) { u64 config = ___I915_PMU_OTHER(j, events[i].counter); char *str; if (config_status(i915, config)) continue; if (events[i].global || !HAS_EXTRA_GT_LIST(i915)) str = kstrdup(events[i].name, GFP_KERNEL); else str = kasprintf(GFP_KERNEL, "%s-gt%u", events[i].name, j); if (!str) goto err; *attr_iter++ = &i915_iter->attr.attr; i915_iter = add_i915_attr(i915_iter, str, config); if (events[i].unit) { if (events[i].global || !HAS_EXTRA_GT_LIST(i915)) str = kasprintf(GFP_KERNEL, "%s.unit", events[i].name); else str = kasprintf(GFP_KERNEL, "%s-gt%u.unit", events[i].name, j); if (!str) goto err; *attr_iter++ = &pmu_iter->attr.attr; pmu_iter = add_pmu_attr(pmu_iter, str, events[i].unit); } } } /* Initialize supported engine counters. */ for_each_uabi_engine(engine, i915) { for (i = 0; i < ARRAY_SIZE(engine_events); i++) { char *str; if (engine_event_status(engine, engine_events[i].sample)) continue; str = kasprintf(GFP_KERNEL, "%s-%s", engine->name, engine_events[i].name); if (!str) goto err; *attr_iter++ = &i915_iter->attr.attr; i915_iter = add_i915_attr(i915_iter, str, __I915_PMU_ENGINE(engine->uabi_class, engine->uabi_instance, engine_events[i].sample)); str = kasprintf(GFP_KERNEL, "%s-%s.unit", engine->name, engine_events[i].name); if (!str) goto err; *attr_iter++ = &pmu_iter->attr.attr; pmu_iter = add_pmu_attr(pmu_iter, str, "ns"); } } pmu->i915_attr = i915_attr; pmu->pmu_attr = pmu_attr; return attr; err:; for (attr_iter = attr; *attr_iter; attr_iter++) kfree((*attr_iter)->name); err_alloc: kfree(attr); kfree(i915_attr); kfree(pmu_attr); return NULL; } static void free_event_attributes(struct i915_pmu *pmu) { struct attribute **attr_iter = pmu->events_attr_group.attrs; for (; *attr_iter; attr_iter++) kfree((*attr_iter)->name); kfree(pmu->events_attr_group.attrs); kfree(pmu->i915_attr); kfree(pmu->pmu_attr); pmu->events_attr_group.attrs = NULL; pmu->i915_attr = NULL; pmu->pmu_attr = NULL; } static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node) { struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node); GEM_BUG_ON(!pmu->base.event_init); /* Select the first online CPU as a designated reader. */ if (cpumask_empty(&i915_pmu_cpumask)) cpumask_set_cpu(cpu, &i915_pmu_cpumask); return 0; } static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node) { struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node); unsigned int target = i915_pmu_target_cpu; GEM_BUG_ON(!pmu->base.event_init); /* * Unregistering an instance generates a CPU offline event which we must * ignore to avoid incorrectly modifying the shared i915_pmu_cpumask. */ if (pmu->closed) return 0; if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) { target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu); /* Migrate events if there is a valid target */ if (target < nr_cpu_ids) { cpumask_set_cpu(target, &i915_pmu_cpumask); i915_pmu_target_cpu = target; } } if (target < nr_cpu_ids && target != pmu->cpuhp.cpu) { perf_pmu_migrate_context(&pmu->base, cpu, target); pmu->cpuhp.cpu = target; } return 0; } static enum cpuhp_state cpuhp_slot = CPUHP_INVALID; int i915_pmu_init(void) { int ret; ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "perf/x86/intel/i915:online", i915_pmu_cpu_online, i915_pmu_cpu_offline); if (ret < 0) pr_notice("Failed to setup cpuhp state for i915 PMU! (%d)\n", ret); else cpuhp_slot = ret; return 0; } void i915_pmu_exit(void) { if (cpuhp_slot != CPUHP_INVALID) cpuhp_remove_multi_state(cpuhp_slot); } static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu) { if (cpuhp_slot == CPUHP_INVALID) return -EINVAL; return cpuhp_state_add_instance(cpuhp_slot, &pmu->cpuhp.node); } static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu) { cpuhp_state_remove_instance(cpuhp_slot, &pmu->cpuhp.node); } static bool is_igp(struct drm_i915_private *i915) { struct pci_dev *pdev = to_pci_dev(i915->drm.dev); /* IGP is 0000:00:02.0 */ return pci_domain_nr(pdev->bus) == 0 && pdev->bus->number == 0 && PCI_SLOT(pdev->devfn) == 2 && PCI_FUNC(pdev->devfn) == 0; } void i915_pmu_register(struct drm_i915_private *i915) { struct i915_pmu *pmu = &i915->pmu; const struct attribute_group *attr_groups[] = { &i915_pmu_format_attr_group, &pmu->events_attr_group, &i915_pmu_cpumask_attr_group, NULL }; int ret = -ENOMEM; if (GRAPHICS_VER(i915) <= 2) { drm_info(&i915->drm, "PMU not supported for this GPU."); return; } spin_lock_init(&pmu->lock); hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); pmu->timer.function = i915_sample; pmu->cpuhp.cpu = -1; init_rc6(pmu); if (!is_igp(i915)) { pmu->name = kasprintf(GFP_KERNEL, "i915_%s", dev_name(i915->drm.dev)); if (pmu->name) { /* tools/perf reserves colons as special. */ strreplace((char *)pmu->name, ':', '_'); } } else { pmu->name = "i915"; } if (!pmu->name) goto err; pmu->events_attr_group.name = "events"; pmu->events_attr_group.attrs = create_event_attributes(pmu); if (!pmu->events_attr_group.attrs) goto err_name; pmu->base.attr_groups = kmemdup(attr_groups, sizeof(attr_groups), GFP_KERNEL); if (!pmu->base.attr_groups) goto err_attr; pmu->base.module = THIS_MODULE; pmu->base.task_ctx_nr = perf_invalid_context; pmu->base.event_init = i915_pmu_event_init; pmu->base.add = i915_pmu_event_add; pmu->base.del = i915_pmu_event_del; pmu->base.start = i915_pmu_event_start; pmu->base.stop = i915_pmu_event_stop; pmu->base.read = i915_pmu_event_read; pmu->base.event_idx = i915_pmu_event_event_idx; ret = perf_pmu_register(&pmu->base, pmu->name, -1); if (ret) goto err_groups; ret = i915_pmu_register_cpuhp_state(pmu); if (ret) goto err_unreg; return; err_unreg: perf_pmu_unregister(&pmu->base); err_groups: kfree(pmu->base.attr_groups); err_attr: pmu->base.event_init = NULL; free_event_attributes(pmu); err_name: if (!is_igp(i915)) kfree(pmu->name); err: drm_notice(&i915->drm, "Failed to register PMU!\n"); } void i915_pmu_unregister(struct drm_i915_private *i915) { struct i915_pmu *pmu = &i915->pmu; if (!pmu->base.event_init) return; /* * "Disconnect" the PMU callbacks - since all are atomic synchronize_rcu * ensures all currently executing ones will have exited before we * proceed with unregistration. */ pmu->closed = true; synchronize_rcu(); hrtimer_cancel(&pmu->timer); i915_pmu_unregister_cpuhp_state(pmu); perf_pmu_unregister(&pmu->base); pmu->base.event_init = NULL; kfree(pmu->base.attr_groups); if (!is_igp(i915)) kfree(pmu->name); free_event_attributes(pmu); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1