Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 1590 | 80.26% | 60 | 72.29% |
Matthew Brost | 253 | 12.77% | 8 | 9.64% |
Tvrtko A. Ursulin | 98 | 4.95% | 2 | 2.41% |
Eric Anholt | 7 | 0.35% | 2 | 2.41% |
Michał Winiarski | 6 | 0.30% | 1 | 1.20% |
Daniele Ceraolo Spurio | 5 | 0.25% | 2 | 2.41% |
Mika Kuoppala | 5 | 0.25% | 2 | 2.41% |
Jesse Barnes | 5 | 0.25% | 1 | 1.20% |
Daniel Vetter | 4 | 0.20% | 2 | 2.41% |
Ben Widawsky | 4 | 0.20% | 1 | 1.20% |
Oscar Mateo | 3 | 0.15% | 1 | 1.20% |
Zhi Wang | 1 | 0.05% | 1 | 1.20% |
Total | 1981 | 83 |
/* * SPDX-License-Identifier: MIT * * Copyright © 2018 Intel Corporation */ #include <linux/mutex.h> #include "i915_drv.h" #include "i915_request.h" #include "i915_scheduler.h" static struct kmem_cache *slab_dependencies; static struct kmem_cache *slab_priorities; static DEFINE_SPINLOCK(schedule_lock); static const struct i915_request * node_to_request(const struct i915_sched_node *node) { return container_of(node, const struct i915_request, sched); } static inline bool node_started(const struct i915_sched_node *node) { return i915_request_started(node_to_request(node)); } static inline bool node_signaled(const struct i915_sched_node *node) { return i915_request_completed(node_to_request(node)); } static inline struct i915_priolist *to_priolist(struct rb_node *rb) { return rb_entry(rb, struct i915_priolist, node); } static void assert_priolists(struct i915_sched_engine * const sched_engine) { struct rb_node *rb; long last_prio; if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) return; GEM_BUG_ON(rb_first_cached(&sched_engine->queue) != rb_first(&sched_engine->queue.rb_root)); last_prio = INT_MAX; for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { const struct i915_priolist *p = to_priolist(rb); GEM_BUG_ON(p->priority > last_prio); last_prio = p->priority; } } struct list_head * i915_sched_lookup_priolist(struct i915_sched_engine *sched_engine, int prio) { struct i915_priolist *p; struct rb_node **parent, *rb; bool first = true; lockdep_assert_held(&sched_engine->lock); assert_priolists(sched_engine); if (unlikely(sched_engine->no_priolist)) prio = I915_PRIORITY_NORMAL; find_priolist: /* most positive priority is scheduled first, equal priorities fifo */ rb = NULL; parent = &sched_engine->queue.rb_root.rb_node; while (*parent) { rb = *parent; p = to_priolist(rb); if (prio > p->priority) { parent = &rb->rb_left; } else if (prio < p->priority) { parent = &rb->rb_right; first = false; } else { return &p->requests; } } if (prio == I915_PRIORITY_NORMAL) { p = &sched_engine->default_priolist; } else { p = kmem_cache_alloc(slab_priorities, GFP_ATOMIC); /* Convert an allocation failure to a priority bump */ if (unlikely(!p)) { prio = I915_PRIORITY_NORMAL; /* recurses just once */ /* To maintain ordering with all rendering, after an * allocation failure we have to disable all scheduling. * Requests will then be executed in fifo, and schedule * will ensure that dependencies are emitted in fifo. * There will be still some reordering with existing * requests, so if userspace lied about their * dependencies that reordering may be visible. */ sched_engine->no_priolist = true; goto find_priolist; } } p->priority = prio; INIT_LIST_HEAD(&p->requests); rb_link_node(&p->node, rb, parent); rb_insert_color_cached(&p->node, &sched_engine->queue, first); return &p->requests; } void __i915_priolist_free(struct i915_priolist *p) { kmem_cache_free(slab_priorities, p); } struct sched_cache { struct list_head *priolist; }; static struct i915_sched_engine * lock_sched_engine(struct i915_sched_node *node, struct i915_sched_engine *locked, struct sched_cache *cache) { const struct i915_request *rq = node_to_request(node); struct i915_sched_engine *sched_engine; GEM_BUG_ON(!locked); /* * Virtual engines complicate acquiring the engine timeline lock, * as their rq->engine pointer is not stable until under that * engine lock. The simple ploy we use is to take the lock then * check that the rq still belongs to the newly locked engine. */ while (locked != (sched_engine = READ_ONCE(rq->engine)->sched_engine)) { spin_unlock(&locked->lock); memset(cache, 0, sizeof(*cache)); spin_lock(&sched_engine->lock); locked = sched_engine; } GEM_BUG_ON(locked != sched_engine); return locked; } static void __i915_schedule(struct i915_sched_node *node, const struct i915_sched_attr *attr) { const int prio = max(attr->priority, node->attr.priority); struct i915_sched_engine *sched_engine; struct i915_dependency *dep, *p; struct i915_dependency stack; struct sched_cache cache; LIST_HEAD(dfs); /* Needed in order to use the temporary link inside i915_dependency */ lockdep_assert_held(&schedule_lock); GEM_BUG_ON(prio == I915_PRIORITY_INVALID); if (node_signaled(node)) return; stack.signaler = node; list_add(&stack.dfs_link, &dfs); /* * Recursively bump all dependent priorities to match the new request. * * A naive approach would be to use recursion: * static void update_priorities(struct i915_sched_node *node, prio) { * list_for_each_entry(dep, &node->signalers_list, signal_link) * update_priorities(dep->signal, prio) * queue_request(node); * } * but that may have unlimited recursion depth and so runs a very * real risk of overunning the kernel stack. Instead, we build * a flat list of all dependencies starting with the current request. * As we walk the list of dependencies, we add all of its dependencies * to the end of the list (this may include an already visited * request) and continue to walk onwards onto the new dependencies. The * end result is a topological list of requests in reverse order, the * last element in the list is the request we must execute first. */ list_for_each_entry(dep, &dfs, dfs_link) { struct i915_sched_node *node = dep->signaler; /* If we are already flying, we know we have no signalers */ if (node_started(node)) continue; /* * Within an engine, there can be no cycle, but we may * refer to the same dependency chain multiple times * (redundant dependencies are not eliminated) and across * engines. */ list_for_each_entry(p, &node->signalers_list, signal_link) { GEM_BUG_ON(p == dep); /* no cycles! */ if (node_signaled(p->signaler)) continue; if (prio > READ_ONCE(p->signaler->attr.priority)) list_move_tail(&p->dfs_link, &dfs); } } /* * If we didn't need to bump any existing priorities, and we haven't * yet submitted this request (i.e. there is no potential race with * execlists_submit_request()), we can set our own priority and skip * acquiring the engine locks. */ if (node->attr.priority == I915_PRIORITY_INVALID) { GEM_BUG_ON(!list_empty(&node->link)); node->attr = *attr; if (stack.dfs_link.next == stack.dfs_link.prev) return; __list_del_entry(&stack.dfs_link); } memset(&cache, 0, sizeof(cache)); sched_engine = node_to_request(node)->engine->sched_engine; spin_lock(&sched_engine->lock); /* Fifo and depth-first replacement ensure our deps execute before us */ sched_engine = lock_sched_engine(node, sched_engine, &cache); list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) { struct i915_request *from = container_of(dep->signaler, struct i915_request, sched); INIT_LIST_HEAD(&dep->dfs_link); node = dep->signaler; sched_engine = lock_sched_engine(node, sched_engine, &cache); lockdep_assert_held(&sched_engine->lock); /* Recheck after acquiring the engine->timeline.lock */ if (prio <= node->attr.priority || node_signaled(node)) continue; GEM_BUG_ON(node_to_request(node)->engine->sched_engine != sched_engine); /* Must be called before changing the nodes priority */ if (sched_engine->bump_inflight_request_prio) sched_engine->bump_inflight_request_prio(from, prio); WRITE_ONCE(node->attr.priority, prio); /* * Once the request is ready, it will be placed into the * priority lists and then onto the HW runlist. Before the * request is ready, it does not contribute to our preemption * decisions and we can safely ignore it, as it will, and * any preemption required, be dealt with upon submission. * See engine->submit_request() */ if (list_empty(&node->link)) continue; if (i915_request_in_priority_queue(node_to_request(node))) { if (!cache.priolist) cache.priolist = i915_sched_lookup_priolist(sched_engine, prio); list_move_tail(&node->link, cache.priolist); } /* Defer (tasklet) submission until after all of our updates. */ if (sched_engine->kick_backend) sched_engine->kick_backend(node_to_request(node), prio); } spin_unlock(&sched_engine->lock); } void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr) { spin_lock_irq(&schedule_lock); __i915_schedule(&rq->sched, attr); spin_unlock_irq(&schedule_lock); } void i915_sched_node_init(struct i915_sched_node *node) { INIT_LIST_HEAD(&node->signalers_list); INIT_LIST_HEAD(&node->waiters_list); INIT_LIST_HEAD(&node->link); i915_sched_node_reinit(node); } void i915_sched_node_reinit(struct i915_sched_node *node) { node->attr.priority = I915_PRIORITY_INVALID; node->semaphores = 0; node->flags = 0; GEM_BUG_ON(!list_empty(&node->signalers_list)); GEM_BUG_ON(!list_empty(&node->waiters_list)); GEM_BUG_ON(!list_empty(&node->link)); } static struct i915_dependency * i915_dependency_alloc(void) { return kmem_cache_alloc(slab_dependencies, GFP_KERNEL); } static void i915_dependency_free(struct i915_dependency *dep) { kmem_cache_free(slab_dependencies, dep); } bool __i915_sched_node_add_dependency(struct i915_sched_node *node, struct i915_sched_node *signal, struct i915_dependency *dep, unsigned long flags) { bool ret = false; spin_lock_irq(&schedule_lock); if (!node_signaled(signal)) { INIT_LIST_HEAD(&dep->dfs_link); dep->signaler = signal; dep->waiter = node; dep->flags = flags; /* All set, now publish. Beware the lockless walkers. */ list_add_rcu(&dep->signal_link, &node->signalers_list); list_add_rcu(&dep->wait_link, &signal->waiters_list); /* Propagate the chains */ node->flags |= signal->flags; ret = true; } spin_unlock_irq(&schedule_lock); return ret; } int i915_sched_node_add_dependency(struct i915_sched_node *node, struct i915_sched_node *signal, unsigned long flags) { struct i915_dependency *dep; dep = i915_dependency_alloc(); if (!dep) return -ENOMEM; if (!__i915_sched_node_add_dependency(node, signal, dep, flags | I915_DEPENDENCY_ALLOC)) i915_dependency_free(dep); return 0; } void i915_sched_node_fini(struct i915_sched_node *node) { struct i915_dependency *dep, *tmp; spin_lock_irq(&schedule_lock); /* * Everyone we depended upon (the fences we wait to be signaled) * should retire before us and remove themselves from our list. * However, retirement is run independently on each timeline and * so we may be called out-of-order. */ list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { GEM_BUG_ON(!list_empty(&dep->dfs_link)); list_del_rcu(&dep->wait_link); if (dep->flags & I915_DEPENDENCY_ALLOC) i915_dependency_free(dep); } INIT_LIST_HEAD(&node->signalers_list); /* Remove ourselves from everyone who depends upon us */ list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { GEM_BUG_ON(dep->signaler != node); GEM_BUG_ON(!list_empty(&dep->dfs_link)); list_del_rcu(&dep->signal_link); if (dep->flags & I915_DEPENDENCY_ALLOC) i915_dependency_free(dep); } INIT_LIST_HEAD(&node->waiters_list); spin_unlock_irq(&schedule_lock); } void i915_request_show_with_schedule(struct drm_printer *m, const struct i915_request *rq, const char *prefix, int indent) { struct i915_dependency *dep; i915_request_show(m, rq, prefix, indent); if (i915_request_completed(rq)) return; rcu_read_lock(); for_each_signaler(dep, rq) { const struct i915_request *signaler = node_to_request(dep->signaler); /* Dependencies along the same timeline are expected. */ if (signaler->timeline == rq->timeline) continue; if (__i915_request_is_complete(signaler)) continue; i915_request_show(m, signaler, prefix, indent + 2); } rcu_read_unlock(); } static void default_destroy(struct kref *kref) { struct i915_sched_engine *sched_engine = container_of(kref, typeof(*sched_engine), ref); tasklet_kill(&sched_engine->tasklet); /* flush the callback */ kfree(sched_engine); } static bool default_disabled(struct i915_sched_engine *sched_engine) { return false; } struct i915_sched_engine * i915_sched_engine_create(unsigned int subclass) { struct i915_sched_engine *sched_engine; sched_engine = kzalloc(sizeof(*sched_engine), GFP_KERNEL); if (!sched_engine) return NULL; kref_init(&sched_engine->ref); sched_engine->queue = RB_ROOT_CACHED; sched_engine->queue_priority_hint = INT_MIN; sched_engine->destroy = default_destroy; sched_engine->disabled = default_disabled; INIT_LIST_HEAD(&sched_engine->requests); INIT_LIST_HEAD(&sched_engine->hold); spin_lock_init(&sched_engine->lock); lockdep_set_subclass(&sched_engine->lock, subclass); /* * Due to an interesting quirk in lockdep's internal debug tracking, * after setting a subclass we must ensure the lock is used. Otherwise, * nr_unused_locks is incremented once too often. */ #ifdef CONFIG_DEBUG_LOCK_ALLOC local_irq_disable(); lock_map_acquire(&sched_engine->lock.dep_map); lock_map_release(&sched_engine->lock.dep_map); local_irq_enable(); #endif return sched_engine; } void i915_scheduler_module_exit(void) { kmem_cache_destroy(slab_dependencies); kmem_cache_destroy(slab_priorities); } int __init i915_scheduler_module_init(void) { slab_dependencies = KMEM_CACHE(i915_dependency, SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU); if (!slab_dependencies) return -ENOMEM; slab_priorities = KMEM_CACHE(i915_priolist, 0); if (!slab_priorities) goto err_priorities; return 0; err_priorities: kmem_cache_destroy(slab_priorities); return -ENOMEM; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1