Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 298 | 25.78% | 5 | 9.26% |
Imre Deak | 290 | 25.09% | 16 | 29.63% |
Daniele Ceraolo Spurio | 212 | 18.34% | 6 | 11.11% |
Daniel Vetter | 81 | 7.01% | 3 | 5.56% |
Andrzej Hajda | 63 | 5.45% | 1 | 1.85% |
Pankaj Bharadiya | 60 | 5.19% | 1 | 1.85% |
Anshuman Gupta | 42 | 3.63% | 3 | 5.56% |
Sakari Ailus | 17 | 1.47% | 1 | 1.85% |
Jani Nikula | 17 | 1.47% | 2 | 3.70% |
Daniel Stone | 16 | 1.38% | 1 | 1.85% |
David Weinehall | 16 | 1.38% | 2 | 3.70% |
Paulo Zanoni | 11 | 0.95% | 2 | 3.70% |
Suketu Shah | 9 | 0.78% | 1 | 1.85% |
Tilak Tangudu | 5 | 0.43% | 1 | 1.85% |
Thomas Zimmermann | 4 | 0.35% | 1 | 1.85% |
Dave Airlie | 3 | 0.26% | 1 | 1.85% |
Michal Wajdeczko | 3 | 0.26% | 1 | 1.85% |
Tomeu Vizoso | 2 | 0.17% | 1 | 1.85% |
Rodrigo Vivi | 2 | 0.17% | 1 | 1.85% |
Janusz Krzysztofik | 2 | 0.17% | 1 | 1.85% |
Rafael J. Wysocki | 1 | 0.09% | 1 | 1.85% |
Maarten Lankhorst | 1 | 0.09% | 1 | 1.85% |
Luciano Coelho | 1 | 0.09% | 1 | 1.85% |
Total | 1156 | 54 |
/* * Copyright © 2012-2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eugeni Dodonov <eugeni.dodonov@intel.com> * Daniel Vetter <daniel.vetter@ffwll.ch> * */ #include <linux/pm_runtime.h> #include <drm/drm_print.h> #include "i915_drv.h" #include "i915_trace.h" /** * DOC: runtime pm * * The i915 driver supports dynamic enabling and disabling of entire hardware * blocks at runtime. This is especially important on the display side where * software is supposed to control many power gates manually on recent hardware, * since on the GT side a lot of the power management is done by the hardware. * But even there some manual control at the device level is required. * * Since i915 supports a diverse set of platforms with a unified codebase and * hardware engineers just love to shuffle functionality around between power * domains there's a sizeable amount of indirection required. This file provides * generic functions to the driver for grabbing and releasing references for * abstract power domains. It then maps those to the actual power wells * present for a given platform. */ static struct drm_i915_private *rpm_to_i915(struct intel_runtime_pm *rpm) { return container_of(rpm, struct drm_i915_private, runtime_pm); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm) { ref_tracker_dir_init(&rpm->debug, INTEL_REFTRACK_DEAD_COUNT, dev_name(rpm->kdev)); } static intel_wakeref_t track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm) { if (!rpm->available || rpm->no_wakeref_tracking) return -1; return intel_ref_tracker_alloc(&rpm->debug); } static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm, intel_wakeref_t wakeref) { if (!rpm->available || rpm->no_wakeref_tracking) return; intel_ref_tracker_free(&rpm->debug, wakeref); } static void untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm) { ref_tracker_dir_exit(&rpm->debug); } static noinline void __intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm) { unsigned long flags; if (!atomic_dec_and_lock_irqsave(&rpm->wakeref_count, &rpm->debug.lock, flags)) return; ref_tracker_dir_print_locked(&rpm->debug, INTEL_REFTRACK_PRINT_LIMIT); spin_unlock_irqrestore(&rpm->debug.lock, flags); } void print_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm, struct drm_printer *p) { intel_ref_tracker_show(&rpm->debug, p); } #else static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm) { } static intel_wakeref_t track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm) { return -1; } static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm, intel_wakeref_t wakeref) { } static void __intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm) { atomic_dec(&rpm->wakeref_count); } static void untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm) { } #endif static void intel_runtime_pm_acquire(struct intel_runtime_pm *rpm, bool wakelock) { if (wakelock) { atomic_add(1 + INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count); assert_rpm_wakelock_held(rpm); } else { atomic_inc(&rpm->wakeref_count); assert_rpm_raw_wakeref_held(rpm); } } static void intel_runtime_pm_release(struct intel_runtime_pm *rpm, int wakelock) { if (wakelock) { assert_rpm_wakelock_held(rpm); atomic_sub(INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count); } else { assert_rpm_raw_wakeref_held(rpm); } __intel_wakeref_dec_and_check_tracking(rpm); } static intel_wakeref_t __intel_runtime_pm_get(struct intel_runtime_pm *rpm, bool wakelock) { struct drm_i915_private *i915 = rpm_to_i915(rpm); int ret; ret = pm_runtime_get_sync(rpm->kdev); drm_WARN_ONCE(&i915->drm, ret < 0, "pm_runtime_get_sync() failed: %d\n", ret); intel_runtime_pm_acquire(rpm, wakelock); return track_intel_runtime_pm_wakeref(rpm); } /** * intel_runtime_pm_get_raw - grab a raw runtime pm reference * @rpm: the intel_runtime_pm structure * * This is the unlocked version of intel_display_power_is_enabled() and should * only be used from error capture and recovery code where deadlocks are * possible. * This function grabs a device-level runtime pm reference (mostly used for * asynchronous PM management from display code) and ensures that it is powered * up. Raw references are not considered during wakelock assert checks. * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put_raw() to release the reference again. * * Returns: the wakeref cookie to pass to intel_runtime_pm_put_raw(), evaluates * as True if the wakeref was acquired, or False otherwise. */ intel_wakeref_t intel_runtime_pm_get_raw(struct intel_runtime_pm *rpm) { return __intel_runtime_pm_get(rpm, false); } /** * intel_runtime_pm_get - grab a runtime pm reference * @rpm: the intel_runtime_pm structure * * This function grabs a device-level runtime pm reference (mostly used for GEM * code to ensure the GTT or GT is on) and ensures that it is powered up. * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put() to release the reference again. * * Returns: the wakeref cookie to pass to intel_runtime_pm_put() */ intel_wakeref_t intel_runtime_pm_get(struct intel_runtime_pm *rpm) { return __intel_runtime_pm_get(rpm, true); } /** * __intel_runtime_pm_get_if_active - grab a runtime pm reference if device is active * @rpm: the intel_runtime_pm structure * @ignore_usecount: get a ref even if dev->power.usage_count is 0 * * This function grabs a device-level runtime pm reference if the device is * already active and ensures that it is powered up. It is illegal to try * and access the HW should intel_runtime_pm_get_if_active() report failure. * * If @ignore_usecount is true, a reference will be acquired even if there is no * user requiring the device to be powered up (dev->power.usage_count == 0). * If the function returns false in this case then it's guaranteed that the * device's runtime suspend hook has been called already or that it will be * called (and hence it's also guaranteed that the device's runtime resume * hook will be called eventually). * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put() to release the reference again. * * Returns: the wakeref cookie to pass to intel_runtime_pm_put(), evaluates * as True if the wakeref was acquired, or False otherwise. */ static intel_wakeref_t __intel_runtime_pm_get_if_active(struct intel_runtime_pm *rpm, bool ignore_usecount) { if (IS_ENABLED(CONFIG_PM)) { /* * In cases runtime PM is disabled by the RPM core and we get * an -EINVAL return value we are not supposed to call this * function, since the power state is undefined. This applies * atm to the late/early system suspend/resume handlers. */ if ((ignore_usecount && pm_runtime_get_if_active(rpm->kdev) <= 0) || (!ignore_usecount && pm_runtime_get_if_in_use(rpm->kdev) <= 0)) return 0; } intel_runtime_pm_acquire(rpm, true); return track_intel_runtime_pm_wakeref(rpm); } intel_wakeref_t intel_runtime_pm_get_if_in_use(struct intel_runtime_pm *rpm) { return __intel_runtime_pm_get_if_active(rpm, false); } intel_wakeref_t intel_runtime_pm_get_if_active(struct intel_runtime_pm *rpm) { return __intel_runtime_pm_get_if_active(rpm, true); } /** * intel_runtime_pm_get_noresume - grab a runtime pm reference * @rpm: the intel_runtime_pm structure * * This function grabs a device-level runtime pm reference. * * It will _not_ resume the device but instead only get an extra wakeref. * Therefore it is only valid to call this functions from contexts where * the device is known to be active and with another wakeref previously hold. * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put() to release the reference again. * * Returns: the wakeref cookie to pass to intel_runtime_pm_put() */ intel_wakeref_t intel_runtime_pm_get_noresume(struct intel_runtime_pm *rpm) { assert_rpm_raw_wakeref_held(rpm); pm_runtime_get_noresume(rpm->kdev); intel_runtime_pm_acquire(rpm, true); return track_intel_runtime_pm_wakeref(rpm); } static void __intel_runtime_pm_put(struct intel_runtime_pm *rpm, intel_wakeref_t wref, bool wakelock) { struct device *kdev = rpm->kdev; untrack_intel_runtime_pm_wakeref(rpm, wref); intel_runtime_pm_release(rpm, wakelock); pm_runtime_mark_last_busy(kdev); pm_runtime_put_autosuspend(kdev); } /** * intel_runtime_pm_put_raw - release a raw runtime pm reference * @rpm: the intel_runtime_pm structure * @wref: wakeref acquired for the reference that is being released * * This function drops the device-level runtime pm reference obtained by * intel_runtime_pm_get_raw() and might power down the corresponding * hardware block right away if this is the last reference. */ void intel_runtime_pm_put_raw(struct intel_runtime_pm *rpm, intel_wakeref_t wref) { __intel_runtime_pm_put(rpm, wref, false); } /** * intel_runtime_pm_put_unchecked - release an unchecked runtime pm reference * @rpm: the intel_runtime_pm structure * * This function drops the device-level runtime pm reference obtained by * intel_runtime_pm_get() and might power down the corresponding * hardware block right away if this is the last reference. * * This function exists only for historical reasons and should be avoided in * new code, as the correctness of its use cannot be checked. Always use * intel_runtime_pm_put() instead. */ void intel_runtime_pm_put_unchecked(struct intel_runtime_pm *rpm) { __intel_runtime_pm_put(rpm, -1, true); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) /** * intel_runtime_pm_put - release a runtime pm reference * @rpm: the intel_runtime_pm structure * @wref: wakeref acquired for the reference that is being released * * This function drops the device-level runtime pm reference obtained by * intel_runtime_pm_get() and might power down the corresponding * hardware block right away if this is the last reference. */ void intel_runtime_pm_put(struct intel_runtime_pm *rpm, intel_wakeref_t wref) { __intel_runtime_pm_put(rpm, wref, true); } #endif /** * intel_runtime_pm_enable - enable runtime pm * @rpm: the intel_runtime_pm structure * * This function enables runtime pm at the end of the driver load sequence. * * Note that this function does currently not enable runtime pm for the * subordinate display power domains. That is done by * intel_power_domains_enable(). */ void intel_runtime_pm_enable(struct intel_runtime_pm *rpm) { struct drm_i915_private *i915 = rpm_to_i915(rpm); struct device *kdev = rpm->kdev; /* * Disable the system suspend direct complete optimization, which can * leave the device suspended skipping the driver's suspend handlers * if the device was already runtime suspended. This is needed due to * the difference in our runtime and system suspend sequence and * becaue the HDA driver may require us to enable the audio power * domain during system suspend. */ dev_pm_set_driver_flags(kdev, DPM_FLAG_NO_DIRECT_COMPLETE); pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */ pm_runtime_mark_last_busy(kdev); /* * Take a permanent reference to disable the RPM functionality and drop * it only when unloading the driver. Use the low level get/put helpers, * so the driver's own RPM reference tracking asserts also work on * platforms without RPM support. */ if (!rpm->available) { int ret; pm_runtime_dont_use_autosuspend(kdev); ret = pm_runtime_get_sync(kdev); drm_WARN(&i915->drm, ret < 0, "pm_runtime_get_sync() failed: %d\n", ret); } else { pm_runtime_use_autosuspend(kdev); } /* * FIXME: Temp hammer to keep autosupend disable on lmem supported platforms. * As per PCIe specs 5.3.1.4.1, all iomem read write request over a PCIe * function will be unsupported in case PCIe endpoint function is in D3. * Let's keep i915 autosuspend control 'on' till we fix all known issue * with lmem access in D3. */ if (!IS_DGFX(i915)) pm_runtime_allow(kdev); /* * The core calls the driver load handler with an RPM reference held. * We drop that here and will reacquire it during unloading in * intel_power_domains_fini(). */ pm_runtime_put_autosuspend(kdev); } void intel_runtime_pm_disable(struct intel_runtime_pm *rpm) { struct drm_i915_private *i915 = rpm_to_i915(rpm); struct device *kdev = rpm->kdev; /* Transfer rpm ownership back to core */ drm_WARN(&i915->drm, pm_runtime_get_sync(kdev) < 0, "Failed to pass rpm ownership back to core\n"); pm_runtime_dont_use_autosuspend(kdev); if (!rpm->available) pm_runtime_put(kdev); } void intel_runtime_pm_driver_release(struct intel_runtime_pm *rpm) { struct drm_i915_private *i915 = rpm_to_i915(rpm); int count = atomic_read(&rpm->wakeref_count); intel_wakeref_auto_fini(&rpm->userfault_wakeref); drm_WARN(&i915->drm, count, "i915 raw-wakerefs=%d wakelocks=%d on cleanup\n", intel_rpm_raw_wakeref_count(count), intel_rpm_wakelock_count(count)); } void intel_runtime_pm_driver_last_release(struct intel_runtime_pm *rpm) { intel_runtime_pm_driver_release(rpm); untrack_all_intel_runtime_pm_wakerefs(rpm); } void intel_runtime_pm_init_early(struct intel_runtime_pm *rpm) { struct drm_i915_private *i915 = rpm_to_i915(rpm); struct pci_dev *pdev = to_pci_dev(i915->drm.dev); struct device *kdev = &pdev->dev; rpm->kdev = kdev; rpm->available = HAS_RUNTIME_PM(i915); atomic_set(&rpm->wakeref_count, 0); init_intel_runtime_pm_wakeref(rpm); INIT_LIST_HEAD(&rpm->lmem_userfault_list); spin_lock_init(&rpm->lmem_userfault_lock); intel_wakeref_auto_init(&rpm->userfault_wakeref, i915); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1