Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jani Nikula | 2126 | 70.49% | 17 | 23.94% |
José Roberto de Souza | 231 | 7.66% | 5 | 7.04% |
Ville Syrjälä | 178 | 5.90% | 15 | 21.13% |
Daniel Vetter | 156 | 5.17% | 3 | 4.23% |
Radhakrishna Sripada | 46 | 1.53% | 2 | 2.82% |
Kumar, Mahesh | 43 | 1.43% | 3 | 4.23% |
Eugeni Dodonov | 39 | 1.29% | 1 | 1.41% |
Lucas De Marchi | 36 | 1.19% | 4 | 5.63% |
Jesse Barnes | 35 | 1.16% | 2 | 2.82% |
James Ausmus | 24 | 0.80% | 1 | 1.41% |
Clint Taylor | 22 | 0.73% | 1 | 1.41% |
Stanislav Lisovskiy | 17 | 0.56% | 2 | 2.82% |
Imre Deak | 15 | 0.50% | 4 | 5.63% |
Wambui Karuga | 9 | 0.30% | 2 | 2.82% |
Matt Roper | 9 | 0.30% | 3 | 4.23% |
Maarten Lankhorst | 8 | 0.27% | 1 | 1.41% |
Tvrtko A. Ursulin | 7 | 0.23% | 1 | 1.41% |
Chris Wilson | 6 | 0.20% | 2 | 2.82% |
Ashutosh Dixit | 6 | 0.20% | 1 | 1.41% |
Michal Wajdeczko | 3 | 0.10% | 1 | 1.41% |
Total | 3016 | 71 |
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/string_helpers.h> #include "i915_drv.h" #include "i915_reg.h" #include "intel_dram.h" #include "intel_mchbar_regs.h" #include "intel_pcode.h" #include "vlv_sideband.h" struct dram_dimm_info { u16 size; u8 width, ranks; }; struct dram_channel_info { struct dram_dimm_info dimm_l, dimm_s; u8 ranks; bool is_16gb_dimm; }; #define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type static const char *intel_dram_type_str(enum intel_dram_type type) { static const char * const str[] = { DRAM_TYPE_STR(UNKNOWN), DRAM_TYPE_STR(DDR3), DRAM_TYPE_STR(DDR4), DRAM_TYPE_STR(LPDDR3), DRAM_TYPE_STR(LPDDR4), }; if (type >= ARRAY_SIZE(str)) type = INTEL_DRAM_UNKNOWN; return str[type]; } #undef DRAM_TYPE_STR static void pnv_detect_mem_freq(struct drm_i915_private *dev_priv) { u32 tmp; tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG); switch (tmp & CLKCFG_FSB_MASK) { case CLKCFG_FSB_533: dev_priv->fsb_freq = 533; /* 133*4 */ break; case CLKCFG_FSB_800: dev_priv->fsb_freq = 800; /* 200*4 */ break; case CLKCFG_FSB_667: dev_priv->fsb_freq = 667; /* 167*4 */ break; case CLKCFG_FSB_400: dev_priv->fsb_freq = 400; /* 100*4 */ break; } switch (tmp & CLKCFG_MEM_MASK) { case CLKCFG_MEM_533: dev_priv->mem_freq = 533; break; case CLKCFG_MEM_667: dev_priv->mem_freq = 667; break; case CLKCFG_MEM_800: dev_priv->mem_freq = 800; break; } /* detect pineview DDR3 setting */ tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL); dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0; } static void ilk_detect_mem_freq(struct drm_i915_private *dev_priv) { u16 ddrpll, csipll; ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1); switch (ddrpll & 0xff) { case 0xc: dev_priv->mem_freq = 800; break; case 0x10: dev_priv->mem_freq = 1066; break; case 0x14: dev_priv->mem_freq = 1333; break; case 0x18: dev_priv->mem_freq = 1600; break; default: drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n", ddrpll & 0xff); dev_priv->mem_freq = 0; break; } csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0); switch (csipll & 0x3ff) { case 0x00c: dev_priv->fsb_freq = 3200; break; case 0x00e: dev_priv->fsb_freq = 3733; break; case 0x010: dev_priv->fsb_freq = 4266; break; case 0x012: dev_priv->fsb_freq = 4800; break; case 0x014: dev_priv->fsb_freq = 5333; break; case 0x016: dev_priv->fsb_freq = 5866; break; case 0x018: dev_priv->fsb_freq = 6400; break; default: drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n", csipll & 0x3ff); dev_priv->fsb_freq = 0; break; } } static void chv_detect_mem_freq(struct drm_i915_private *i915) { u32 val; vlv_iosf_sb_get(i915, BIT(VLV_IOSF_SB_CCK)); val = vlv_cck_read(i915, CCK_FUSE_REG); vlv_iosf_sb_put(i915, BIT(VLV_IOSF_SB_CCK)); switch ((val >> 2) & 0x7) { case 3: i915->mem_freq = 2000; break; default: i915->mem_freq = 1600; break; } } static void vlv_detect_mem_freq(struct drm_i915_private *i915) { u32 val; vlv_iosf_sb_get(i915, BIT(VLV_IOSF_SB_PUNIT)); val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_iosf_sb_put(i915, BIT(VLV_IOSF_SB_PUNIT)); switch ((val >> 6) & 3) { case 0: case 1: i915->mem_freq = 800; break; case 2: i915->mem_freq = 1066; break; case 3: i915->mem_freq = 1333; break; } } static void detect_mem_freq(struct drm_i915_private *i915) { if (IS_PINEVIEW(i915)) pnv_detect_mem_freq(i915); else if (GRAPHICS_VER(i915) == 5) ilk_detect_mem_freq(i915); else if (IS_CHERRYVIEW(i915)) chv_detect_mem_freq(i915); else if (IS_VALLEYVIEW(i915)) vlv_detect_mem_freq(i915); if (i915->mem_freq) drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq); } static int intel_dimm_num_devices(const struct dram_dimm_info *dimm) { return dimm->ranks * 64 / (dimm->width ?: 1); } /* Returns total Gb for the whole DIMM */ static int skl_get_dimm_size(u16 val) { return (val & SKL_DRAM_SIZE_MASK) * 8; } static int skl_get_dimm_width(u16 val) { if (skl_get_dimm_size(val) == 0) return 0; switch (val & SKL_DRAM_WIDTH_MASK) { case SKL_DRAM_WIDTH_X8: case SKL_DRAM_WIDTH_X16: case SKL_DRAM_WIDTH_X32: val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT; return 8 << val; default: MISSING_CASE(val); return 0; } } static int skl_get_dimm_ranks(u16 val) { if (skl_get_dimm_size(val) == 0) return 0; val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT; return val + 1; } /* Returns total Gb for the whole DIMM */ static int icl_get_dimm_size(u16 val) { return (val & ICL_DRAM_SIZE_MASK) * 8 / 2; } static int icl_get_dimm_width(u16 val) { if (icl_get_dimm_size(val) == 0) return 0; switch (val & ICL_DRAM_WIDTH_MASK) { case ICL_DRAM_WIDTH_X8: case ICL_DRAM_WIDTH_X16: case ICL_DRAM_WIDTH_X32: val = (val & ICL_DRAM_WIDTH_MASK) >> ICL_DRAM_WIDTH_SHIFT; return 8 << val; default: MISSING_CASE(val); return 0; } } static int icl_get_dimm_ranks(u16 val) { if (icl_get_dimm_size(val) == 0) return 0; val = (val & ICL_DRAM_RANK_MASK) >> ICL_DRAM_RANK_SHIFT; return val + 1; } static bool skl_is_16gb_dimm(const struct dram_dimm_info *dimm) { /* Convert total Gb to Gb per DRAM device */ return dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16; } static void skl_dram_get_dimm_info(struct drm_i915_private *i915, struct dram_dimm_info *dimm, int channel, char dimm_name, u16 val) { if (GRAPHICS_VER(i915) >= 11) { dimm->size = icl_get_dimm_size(val); dimm->width = icl_get_dimm_width(val); dimm->ranks = icl_get_dimm_ranks(val); } else { dimm->size = skl_get_dimm_size(val); dimm->width = skl_get_dimm_width(val); dimm->ranks = skl_get_dimm_ranks(val); } drm_dbg_kms(&i915->drm, "CH%u DIMM %c size: %u Gb, width: X%u, ranks: %u, 16Gb DIMMs: %s\n", channel, dimm_name, dimm->size, dimm->width, dimm->ranks, str_yes_no(skl_is_16gb_dimm(dimm))); } static int skl_dram_get_channel_info(struct drm_i915_private *i915, struct dram_channel_info *ch, int channel, u32 val) { skl_dram_get_dimm_info(i915, &ch->dimm_l, channel, 'L', val & 0xffff); skl_dram_get_dimm_info(i915, &ch->dimm_s, channel, 'S', val >> 16); if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) { drm_dbg_kms(&i915->drm, "CH%u not populated\n", channel); return -EINVAL; } if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2) ch->ranks = 2; else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1) ch->ranks = 2; else ch->ranks = 1; ch->is_16gb_dimm = skl_is_16gb_dimm(&ch->dimm_l) || skl_is_16gb_dimm(&ch->dimm_s); drm_dbg_kms(&i915->drm, "CH%u ranks: %u, 16Gb DIMMs: %s\n", channel, ch->ranks, str_yes_no(ch->is_16gb_dimm)); return 0; } static bool intel_is_dram_symmetric(const struct dram_channel_info *ch0, const struct dram_channel_info *ch1) { return !memcmp(ch0, ch1, sizeof(*ch0)) && (ch0->dimm_s.size == 0 || !memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l))); } static int skl_dram_get_channels_info(struct drm_i915_private *i915) { struct dram_info *dram_info = &i915->dram_info; struct dram_channel_info ch0 = {}, ch1 = {}; u32 val; int ret; val = intel_uncore_read(&i915->uncore, SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN); ret = skl_dram_get_channel_info(i915, &ch0, 0, val); if (ret == 0) dram_info->num_channels++; val = intel_uncore_read(&i915->uncore, SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN); ret = skl_dram_get_channel_info(i915, &ch1, 1, val); if (ret == 0) dram_info->num_channels++; if (dram_info->num_channels == 0) { drm_info(&i915->drm, "Number of memory channels is zero\n"); return -EINVAL; } if (ch0.ranks == 0 && ch1.ranks == 0) { drm_info(&i915->drm, "couldn't get memory rank information\n"); return -EINVAL; } dram_info->wm_lv_0_adjust_needed = ch0.is_16gb_dimm || ch1.is_16gb_dimm; dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1); drm_dbg_kms(&i915->drm, "Memory configuration is symmetric? %s\n", str_yes_no(dram_info->symmetric_memory)); return 0; } static enum intel_dram_type skl_get_dram_type(struct drm_i915_private *i915) { u32 val; val = intel_uncore_read(&i915->uncore, SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN); switch (val & SKL_DRAM_DDR_TYPE_MASK) { case SKL_DRAM_DDR_TYPE_DDR3: return INTEL_DRAM_DDR3; case SKL_DRAM_DDR_TYPE_DDR4: return INTEL_DRAM_DDR4; case SKL_DRAM_DDR_TYPE_LPDDR3: return INTEL_DRAM_LPDDR3; case SKL_DRAM_DDR_TYPE_LPDDR4: return INTEL_DRAM_LPDDR4; default: MISSING_CASE(val); return INTEL_DRAM_UNKNOWN; } } static int skl_get_dram_info(struct drm_i915_private *i915) { struct dram_info *dram_info = &i915->dram_info; int ret; dram_info->type = skl_get_dram_type(i915); drm_dbg_kms(&i915->drm, "DRAM type: %s\n", intel_dram_type_str(dram_info->type)); ret = skl_dram_get_channels_info(i915); if (ret) return ret; return 0; } /* Returns Gb per DRAM device */ static int bxt_get_dimm_size(u32 val) { switch (val & BXT_DRAM_SIZE_MASK) { case BXT_DRAM_SIZE_4GBIT: return 4; case BXT_DRAM_SIZE_6GBIT: return 6; case BXT_DRAM_SIZE_8GBIT: return 8; case BXT_DRAM_SIZE_12GBIT: return 12; case BXT_DRAM_SIZE_16GBIT: return 16; default: MISSING_CASE(val); return 0; } } static int bxt_get_dimm_width(u32 val) { if (!bxt_get_dimm_size(val)) return 0; val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT; return 8 << val; } static int bxt_get_dimm_ranks(u32 val) { if (!bxt_get_dimm_size(val)) return 0; switch (val & BXT_DRAM_RANK_MASK) { case BXT_DRAM_RANK_SINGLE: return 1; case BXT_DRAM_RANK_DUAL: return 2; default: MISSING_CASE(val); return 0; } } static enum intel_dram_type bxt_get_dimm_type(u32 val) { if (!bxt_get_dimm_size(val)) return INTEL_DRAM_UNKNOWN; switch (val & BXT_DRAM_TYPE_MASK) { case BXT_DRAM_TYPE_DDR3: return INTEL_DRAM_DDR3; case BXT_DRAM_TYPE_LPDDR3: return INTEL_DRAM_LPDDR3; case BXT_DRAM_TYPE_DDR4: return INTEL_DRAM_DDR4; case BXT_DRAM_TYPE_LPDDR4: return INTEL_DRAM_LPDDR4; default: MISSING_CASE(val); return INTEL_DRAM_UNKNOWN; } } static void bxt_get_dimm_info(struct dram_dimm_info *dimm, u32 val) { dimm->width = bxt_get_dimm_width(val); dimm->ranks = bxt_get_dimm_ranks(val); /* * Size in register is Gb per DRAM device. Convert to total * Gb to match the way we report this for non-LP platforms. */ dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm); } static int bxt_get_dram_info(struct drm_i915_private *i915) { struct dram_info *dram_info = &i915->dram_info; u32 val; u8 valid_ranks = 0; int i; /* * Now read each DUNIT8/9/10/11 to check the rank of each dimms. */ for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) { struct dram_dimm_info dimm; enum intel_dram_type type; val = intel_uncore_read(&i915->uncore, BXT_D_CR_DRP0_DUNIT(i)); if (val == 0xFFFFFFFF) continue; dram_info->num_channels++; bxt_get_dimm_info(&dimm, val); type = bxt_get_dimm_type(val); drm_WARN_ON(&i915->drm, type != INTEL_DRAM_UNKNOWN && dram_info->type != INTEL_DRAM_UNKNOWN && dram_info->type != type); drm_dbg_kms(&i915->drm, "CH%u DIMM size: %u Gb, width: X%u, ranks: %u, type: %s\n", i - BXT_D_CR_DRP0_DUNIT_START, dimm.size, dimm.width, dimm.ranks, intel_dram_type_str(type)); if (valid_ranks == 0) valid_ranks = dimm.ranks; if (type != INTEL_DRAM_UNKNOWN) dram_info->type = type; } if (dram_info->type == INTEL_DRAM_UNKNOWN || valid_ranks == 0) { drm_info(&i915->drm, "couldn't get memory information\n"); return -EINVAL; } return 0; } static int icl_pcode_read_mem_global_info(struct drm_i915_private *dev_priv) { struct dram_info *dram_info = &dev_priv->dram_info; u32 val = 0; int ret; ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO | ICL_PCODE_MEM_SS_READ_GLOBAL_INFO, &val, NULL); if (ret) return ret; if (GRAPHICS_VER(dev_priv) == 12) { switch (val & 0xf) { case 0: dram_info->type = INTEL_DRAM_DDR4; break; case 1: dram_info->type = INTEL_DRAM_DDR5; break; case 2: dram_info->type = INTEL_DRAM_LPDDR5; break; case 3: dram_info->type = INTEL_DRAM_LPDDR4; break; case 4: dram_info->type = INTEL_DRAM_DDR3; break; case 5: dram_info->type = INTEL_DRAM_LPDDR3; break; default: MISSING_CASE(val & 0xf); return -EINVAL; } } else { switch (val & 0xf) { case 0: dram_info->type = INTEL_DRAM_DDR4; break; case 1: dram_info->type = INTEL_DRAM_DDR3; break; case 2: dram_info->type = INTEL_DRAM_LPDDR3; break; case 3: dram_info->type = INTEL_DRAM_LPDDR4; break; default: MISSING_CASE(val & 0xf); return -EINVAL; } } dram_info->num_channels = (val & 0xf0) >> 4; dram_info->num_qgv_points = (val & 0xf00) >> 8; dram_info->num_psf_gv_points = (val & 0x3000) >> 12; return 0; } static int gen11_get_dram_info(struct drm_i915_private *i915) { int ret = skl_get_dram_info(i915); if (ret) return ret; return icl_pcode_read_mem_global_info(i915); } static int gen12_get_dram_info(struct drm_i915_private *i915) { i915->dram_info.wm_lv_0_adjust_needed = false; return icl_pcode_read_mem_global_info(i915); } static int xelpdp_get_dram_info(struct drm_i915_private *i915) { u32 val = intel_uncore_read(&i915->uncore, MTL_MEM_SS_INFO_GLOBAL); struct dram_info *dram_info = &i915->dram_info; switch (REG_FIELD_GET(MTL_DDR_TYPE_MASK, val)) { case 0: dram_info->type = INTEL_DRAM_DDR4; break; case 1: dram_info->type = INTEL_DRAM_DDR5; break; case 2: dram_info->type = INTEL_DRAM_LPDDR5; break; case 3: dram_info->type = INTEL_DRAM_LPDDR4; break; case 4: dram_info->type = INTEL_DRAM_DDR3; break; case 5: dram_info->type = INTEL_DRAM_LPDDR3; break; default: MISSING_CASE(val); return -EINVAL; } dram_info->num_channels = REG_FIELD_GET(MTL_N_OF_POPULATED_CH_MASK, val); dram_info->num_qgv_points = REG_FIELD_GET(MTL_N_OF_ENABLED_QGV_POINTS_MASK, val); /* PSF GV points not supported in D14+ */ return 0; } void intel_dram_detect(struct drm_i915_private *i915) { struct dram_info *dram_info = &i915->dram_info; int ret; detect_mem_freq(i915); if (GRAPHICS_VER(i915) < 9 || IS_DG2(i915) || !HAS_DISPLAY(i915)) return; /* * Assume level 0 watermark latency adjustment is needed until proven * otherwise, this w/a is not needed by bxt/glk. */ dram_info->wm_lv_0_adjust_needed = !IS_GEN9_LP(i915); if (DISPLAY_VER(i915) >= 14) ret = xelpdp_get_dram_info(i915); else if (GRAPHICS_VER(i915) >= 12) ret = gen12_get_dram_info(i915); else if (GRAPHICS_VER(i915) >= 11) ret = gen11_get_dram_info(i915); else if (IS_GEN9_LP(i915)) ret = bxt_get_dram_info(i915); else ret = skl_get_dram_info(i915); if (ret) return; drm_dbg_kms(&i915->drm, "Num qgv points %u\n", dram_info->num_qgv_points); drm_dbg_kms(&i915->drm, "DRAM channels: %u\n", dram_info->num_channels); drm_dbg_kms(&i915->drm, "Watermark level 0 adjustment needed: %s\n", str_yes_no(dram_info->wm_lv_0_adjust_needed)); } static u32 gen9_edram_size_mb(struct drm_i915_private *i915, u32 cap) { static const u8 ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 }; static const u8 sets[4] = { 1, 1, 2, 2 }; return EDRAM_NUM_BANKS(cap) * ways[EDRAM_WAYS_IDX(cap)] * sets[EDRAM_SETS_IDX(cap)]; } void intel_dram_edram_detect(struct drm_i915_private *i915) { u32 edram_cap = 0; if (!(IS_HASWELL(i915) || IS_BROADWELL(i915) || GRAPHICS_VER(i915) >= 9)) return; edram_cap = intel_uncore_read_fw(&i915->uncore, HSW_EDRAM_CAP); /* NB: We can't write IDICR yet because we don't have gt funcs set up */ if (!(edram_cap & EDRAM_ENABLED)) return; /* * The needed capability bits for size calculation are not there with * pre gen9 so return 128MB always. */ if (GRAPHICS_VER(i915) < 9) i915->edram_size_mb = 128; else i915->edram_size_mb = gen9_edram_size_mb(i915, edram_cap); drm_info(&i915->drm, "Found %uMB of eDRAM\n", i915->edram_size_mb); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1