Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sarah Walker | 2223 | 99.11% | 5 | 71.43% |
Donald Robson | 20 | 0.89% | 2 | 28.57% |
Total | 2243 | 7 |
// SPDX-License-Identifier: GPL-2.0-only OR MIT /* Copyright (c) 2023 Imagination Technologies Ltd. */ #include "pvr_device.h" #include "pvr_fw.h" #include "pvr_fw_info.h" #include "pvr_fw_meta.h" #include "pvr_gem.h" #include "pvr_rogue_cr_defs.h" #include "pvr_rogue_meta.h" #include "pvr_vm.h" #include <linux/compiler.h> #include <linux/delay.h> #include <linux/firmware.h> #include <linux/ktime.h> #include <linux/types.h> #define ROGUE_FW_HEAP_META_SHIFT 25 /* 32 MB */ #define POLL_TIMEOUT_USEC 1000000 /** * pvr_meta_cr_read32() - Read a META register via the Slave Port * @pvr_dev: Device pointer. * @reg_addr: Address of register to read. * @reg_value_out: Pointer to location to store register value. * * Returns: * * 0 on success, or * * Any error returned by pvr_cr_poll_reg32(). */ int pvr_meta_cr_read32(struct pvr_device *pvr_dev, u32 reg_addr, u32 *reg_value_out) { int err; /* Wait for Slave Port to be Ready. */ err = pvr_cr_poll_reg32(pvr_dev, ROGUE_CR_META_SP_MSLVCTRL1, ROGUE_CR_META_SP_MSLVCTRL1_READY_EN | ROGUE_CR_META_SP_MSLVCTRL1_GBLPORT_IDLE_EN, ROGUE_CR_META_SP_MSLVCTRL1_READY_EN | ROGUE_CR_META_SP_MSLVCTRL1_GBLPORT_IDLE_EN, POLL_TIMEOUT_USEC); if (err) return err; /* Issue a Read. */ pvr_cr_write32(pvr_dev, ROGUE_CR_META_SP_MSLVCTRL0, reg_addr | ROGUE_CR_META_SP_MSLVCTRL0_RD_EN); (void)pvr_cr_read32(pvr_dev, ROGUE_CR_META_SP_MSLVCTRL0); /* Fence write. */ /* Wait for Slave Port to be Ready. */ err = pvr_cr_poll_reg32(pvr_dev, ROGUE_CR_META_SP_MSLVCTRL1, ROGUE_CR_META_SP_MSLVCTRL1_READY_EN | ROGUE_CR_META_SP_MSLVCTRL1_GBLPORT_IDLE_EN, ROGUE_CR_META_SP_MSLVCTRL1_READY_EN | ROGUE_CR_META_SP_MSLVCTRL1_GBLPORT_IDLE_EN, POLL_TIMEOUT_USEC); if (err) return err; *reg_value_out = pvr_cr_read32(pvr_dev, ROGUE_CR_META_SP_MSLVDATAX); return 0; } static int pvr_meta_wrapper_init(struct pvr_device *pvr_dev) { u64 garten_config; /* Configure META to Master boot. */ pvr_cr_write64(pvr_dev, ROGUE_CR_META_BOOT, ROGUE_CR_META_BOOT_MODE_EN); /* Set Garten IDLE to META idle and Set the Garten Wrapper BIF Fence address. */ /* Garten IDLE bit controlled by META. */ garten_config = ROGUE_CR_MTS_GARTEN_WRAPPER_CONFIG_IDLE_CTRL_META; /* The fence addr is set during the fw init sequence. */ /* Set PC = 0 for fences. */ garten_config &= ROGUE_CR_MTS_GARTEN_WRAPPER_CONFIG_FENCE_PC_BASE_CLRMSK; garten_config |= (u64)MMU_CONTEXT_MAPPING_FWPRIV << ROGUE_CR_MTS_GARTEN_WRAPPER_CONFIG_FENCE_PC_BASE_SHIFT; /* Set SLC DM=META. */ garten_config |= ((u64)ROGUE_FW_SEGMMU_META_BIFDM_ID) << ROGUE_CR_MTS_GARTEN_WRAPPER_CONFIG_FENCE_DM_SHIFT; pvr_cr_write64(pvr_dev, ROGUE_CR_MTS_GARTEN_WRAPPER_CONFIG, garten_config); return 0; } static __always_inline void add_boot_arg(u32 **boot_conf, u32 param, u32 data) { *(*boot_conf)++ = param; *(*boot_conf)++ = data; } static int meta_ldr_cmd_loadmem(struct drm_device *drm_dev, const u8 *fw, struct rogue_meta_ldr_l1_data_blk *l1_data, u32 coremem_size, u8 *fw_code_ptr, u8 *fw_data_ptr, u8 *fw_core_code_ptr, u8 *fw_core_data_ptr, const u32 fw_size) { struct rogue_meta_ldr_l2_data_blk *l2_block = (struct rogue_meta_ldr_l2_data_blk *)(fw + l1_data->cmd_data[1]); struct pvr_device *pvr_dev = to_pvr_device(drm_dev); u32 offset = l1_data->cmd_data[0]; u32 data_size; void *write_addr; int err; /* Verify header is within bounds. */ if (((u8 *)l2_block - fw) >= fw_size || ((u8 *)(l2_block + 1) - fw) >= fw_size) return -EINVAL; data_size = l2_block->length - 6 /* L2 Tag length and checksum */; /* Verify data is within bounds. */ if (((u8 *)l2_block->block_data - fw) >= fw_size || ((((u8 *)l2_block->block_data) + data_size) - fw) >= fw_size) return -EINVAL; if (!ROGUE_META_IS_COREMEM_CODE(offset, coremem_size) && !ROGUE_META_IS_COREMEM_DATA(offset, coremem_size)) { /* Global range is aliased to local range */ offset &= ~META_MEM_GLOBAL_RANGE_BIT; } err = pvr_fw_find_mmu_segment(pvr_dev, offset, data_size, fw_code_ptr, fw_data_ptr, fw_core_code_ptr, fw_core_data_ptr, &write_addr); if (err) { drm_err(drm_dev, "Addr 0x%x (size: %d) not found in any firmware segment", offset, data_size); return err; } memcpy(write_addr, l2_block->block_data, data_size); return 0; } static int meta_ldr_cmd_zeromem(struct drm_device *drm_dev, struct rogue_meta_ldr_l1_data_blk *l1_data, u32 coremem_size, u8 *fw_code_ptr, u8 *fw_data_ptr, u8 *fw_core_code_ptr, u8 *fw_core_data_ptr) { struct pvr_device *pvr_dev = to_pvr_device(drm_dev); u32 offset = l1_data->cmd_data[0]; u32 byte_count = l1_data->cmd_data[1]; void *write_addr; int err; if (ROGUE_META_IS_COREMEM_DATA(offset, coremem_size)) { /* cannot zero coremem directly */ return 0; } /* Global range is aliased to local range */ offset &= ~META_MEM_GLOBAL_RANGE_BIT; err = pvr_fw_find_mmu_segment(pvr_dev, offset, byte_count, fw_code_ptr, fw_data_ptr, fw_core_code_ptr, fw_core_data_ptr, &write_addr); if (err) { drm_err(drm_dev, "Addr 0x%x (size: %d) not found in any firmware segment", offset, byte_count); return err; } memset(write_addr, 0, byte_count); return 0; } static int meta_ldr_cmd_config(struct drm_device *drm_dev, const u8 *fw, struct rogue_meta_ldr_l1_data_blk *l1_data, const u32 fw_size, u32 **boot_conf_ptr) { struct rogue_meta_ldr_l2_data_blk *l2_block = (struct rogue_meta_ldr_l2_data_blk *)(fw + l1_data->cmd_data[0]); struct rogue_meta_ldr_cfg_blk *config_command; u32 l2_block_size; u32 curr_block_size = 0; u32 *boot_conf = boot_conf_ptr ? *boot_conf_ptr : NULL; /* Verify block header is within bounds. */ if (((u8 *)l2_block - fw) >= fw_size || ((u8 *)(l2_block + 1) - fw) >= fw_size) return -EINVAL; l2_block_size = l2_block->length - 6 /* L2 Tag length and checksum */; config_command = (struct rogue_meta_ldr_cfg_blk *)l2_block->block_data; if (((u8 *)config_command - fw) >= fw_size || ((((u8 *)config_command) + l2_block_size) - fw) >= fw_size) return -EINVAL; while (l2_block_size >= 12) { if (config_command->type != ROGUE_META_LDR_CFG_WRITE) return -EINVAL; /* * Only write to bootloader if we got a valid pointer to the FW * code allocation. */ if (boot_conf) { u32 register_offset = config_command->block_data[0]; u32 register_value = config_command->block_data[1]; /* Do register write */ add_boot_arg(&boot_conf, register_offset, register_value); } curr_block_size = 12; l2_block_size -= curr_block_size; config_command = (struct rogue_meta_ldr_cfg_blk *)((uintptr_t)config_command + curr_block_size); } if (boot_conf_ptr) *boot_conf_ptr = boot_conf; return 0; } /** * process_ldr_command_stream() - Process LDR firmware image and populate * firmware sections * @pvr_dev: Device pointer. * @fw: Pointer to firmware image. * @fw_code_ptr: Pointer to FW code section. * @fw_data_ptr: Pointer to FW data section. * @fw_core_code_ptr: Pointer to FW coremem code section. * @fw_core_data_ptr: Pointer to FW coremem data section. * @boot_conf_ptr: Pointer to boot config argument pointer. * * Returns : * * 0 on success, or * * -EINVAL on any error in LDR command stream. */ static int process_ldr_command_stream(struct pvr_device *pvr_dev, const u8 *fw, u8 *fw_code_ptr, u8 *fw_data_ptr, u8 *fw_core_code_ptr, u8 *fw_core_data_ptr, u32 **boot_conf_ptr) { struct drm_device *drm_dev = from_pvr_device(pvr_dev); struct rogue_meta_ldr_block_hdr *ldr_header = (struct rogue_meta_ldr_block_hdr *)fw; struct rogue_meta_ldr_l1_data_blk *l1_data = (struct rogue_meta_ldr_l1_data_blk *)(fw + ldr_header->sl_data); const u32 fw_size = pvr_dev->fw_dev.firmware->size; int err; u32 *boot_conf = boot_conf_ptr ? *boot_conf_ptr : NULL; u32 coremem_size; err = PVR_FEATURE_VALUE(pvr_dev, meta_coremem_size, &coremem_size); if (err) return err; coremem_size *= SZ_1K; while (l1_data) { /* Verify block header is within bounds. */ if (((u8 *)l1_data - fw) >= fw_size || ((u8 *)(l1_data + 1) - fw) >= fw_size) return -EINVAL; if (ROGUE_META_LDR_BLK_IS_COMMENT(l1_data->cmd)) { /* Don't process comment blocks */ goto next_block; } switch (l1_data->cmd & ROGUE_META_LDR_CMD_MASK) case ROGUE_META_LDR_CMD_LOADMEM: { err = meta_ldr_cmd_loadmem(drm_dev, fw, l1_data, coremem_size, fw_code_ptr, fw_data_ptr, fw_core_code_ptr, fw_core_data_ptr, fw_size); if (err) return err; break; case ROGUE_META_LDR_CMD_START_THREADS: /* Don't process this block */ break; case ROGUE_META_LDR_CMD_ZEROMEM: err = meta_ldr_cmd_zeromem(drm_dev, l1_data, coremem_size, fw_code_ptr, fw_data_ptr, fw_core_code_ptr, fw_core_data_ptr); if (err) return err; break; case ROGUE_META_LDR_CMD_CONFIG: err = meta_ldr_cmd_config(drm_dev, fw, l1_data, fw_size, &boot_conf); if (err) return err; break; default: return -EINVAL; } next_block: if (l1_data->next == 0xFFFFFFFF) break; l1_data = (struct rogue_meta_ldr_l1_data_blk *)(fw + l1_data->next); } if (boot_conf_ptr) *boot_conf_ptr = boot_conf; return 0; } static void configure_seg_id(u64 seg_out_addr, u32 seg_base, u32 seg_limit, u32 seg_id, u32 **boot_conf_ptr) { u32 seg_out_addr0 = seg_out_addr & 0x00000000FFFFFFFFUL; u32 seg_out_addr1 = (seg_out_addr >> 32) & 0x00000000FFFFFFFFUL; u32 *boot_conf = *boot_conf_ptr; /* META segments have a minimum size. */ u32 limit_off = max(seg_limit, ROGUE_FW_SEGMMU_ALIGN); /* The limit is an offset, therefore off = size - 1. */ limit_off -= 1; seg_base |= ROGUE_FW_SEGMMU_ALLTHRS_WRITEABLE; add_boot_arg(&boot_conf, META_CR_MMCU_SEGMENT_N_BASE(seg_id), seg_base); add_boot_arg(&boot_conf, META_CR_MMCU_SEGMENT_N_LIMIT(seg_id), limit_off); add_boot_arg(&boot_conf, META_CR_MMCU_SEGMENT_N_OUTA0(seg_id), seg_out_addr0); add_boot_arg(&boot_conf, META_CR_MMCU_SEGMENT_N_OUTA1(seg_id), seg_out_addr1); *boot_conf_ptr = boot_conf; } static u64 get_fw_obj_gpu_addr(struct pvr_fw_object *fw_obj) { struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(fw_obj->gem)->dev); struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; return fw_obj->fw_addr_offset + fw_dev->fw_heap_info.gpu_addr; } static void configure_seg_mmu(struct pvr_device *pvr_dev, u32 **boot_conf_ptr) { const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; u64 seg_out_addr_top; u32 i; seg_out_addr_top = ROGUE_FW_SEGMMU_OUTADDR_TOP_SLC(MMU_CONTEXT_MAPPING_FWPRIV, ROGUE_FW_SEGMMU_META_BIFDM_ID); for (i = 0; i < num_layout_entries; i++) { /* * FW code is using the bootloader segment which is already * configured on boot. FW coremem code and data don't use the * segment MMU. Only the FW data segment needs to be configured. */ if (layout_entries[i].type == FW_DATA) { u32 seg_id = ROGUE_FW_SEGMMU_DATA_ID; u64 seg_out_addr = get_fw_obj_gpu_addr(pvr_dev->fw_dev.mem.data_obj); seg_out_addr += layout_entries[i].alloc_offset; seg_out_addr |= seg_out_addr_top; /* Write the sequence to the bootldr. */ configure_seg_id(seg_out_addr, layout_entries[i].base_addr, layout_entries[i].alloc_size, seg_id, boot_conf_ptr); break; } } } static void configure_meta_caches(u32 **boot_conf_ptr) { u32 *boot_conf = *boot_conf_ptr; u32 d_cache_t0, i_cache_t0; u32 d_cache_t1, i_cache_t1; u32 d_cache_t2, i_cache_t2; u32 d_cache_t3, i_cache_t3; /* Initialise I/Dcache settings */ d_cache_t0 = META_CR_SYSC_DCPARTX_CACHED_WRITE_ENABLE; d_cache_t1 = META_CR_SYSC_DCPARTX_CACHED_WRITE_ENABLE; d_cache_t2 = META_CR_SYSC_DCPARTX_CACHED_WRITE_ENABLE; d_cache_t3 = META_CR_SYSC_DCPARTX_CACHED_WRITE_ENABLE; i_cache_t0 = 0; i_cache_t1 = 0; i_cache_t2 = 0; i_cache_t3 = 0; d_cache_t0 |= META_CR_SYSC_XCPARTX_LOCAL_ADDR_FULL_CACHE; i_cache_t0 |= META_CR_SYSC_XCPARTX_LOCAL_ADDR_FULL_CACHE; /* Local region MMU enhanced bypass: WIN-3 mode for code and data caches */ add_boot_arg(&boot_conf, META_CR_MMCU_LOCAL_EBCTRL, META_CR_MMCU_LOCAL_EBCTRL_ICWIN | META_CR_MMCU_LOCAL_EBCTRL_DCWIN); /* Data cache partitioning thread 0 to 3 */ add_boot_arg(&boot_conf, META_CR_SYSC_DCPART(0), d_cache_t0); add_boot_arg(&boot_conf, META_CR_SYSC_DCPART(1), d_cache_t1); add_boot_arg(&boot_conf, META_CR_SYSC_DCPART(2), d_cache_t2); add_boot_arg(&boot_conf, META_CR_SYSC_DCPART(3), d_cache_t3); /* Enable data cache hits */ add_boot_arg(&boot_conf, META_CR_MMCU_DCACHE_CTRL, META_CR_MMCU_XCACHE_CTRL_CACHE_HITS_EN); /* Instruction cache partitioning thread 0 to 3 */ add_boot_arg(&boot_conf, META_CR_SYSC_ICPART(0), i_cache_t0); add_boot_arg(&boot_conf, META_CR_SYSC_ICPART(1), i_cache_t1); add_boot_arg(&boot_conf, META_CR_SYSC_ICPART(2), i_cache_t2); add_boot_arg(&boot_conf, META_CR_SYSC_ICPART(3), i_cache_t3); /* Enable instruction cache hits */ add_boot_arg(&boot_conf, META_CR_MMCU_ICACHE_CTRL, META_CR_MMCU_XCACHE_CTRL_CACHE_HITS_EN); add_boot_arg(&boot_conf, 0x040000C0, 0); *boot_conf_ptr = boot_conf; } static int pvr_meta_fw_process(struct pvr_device *pvr_dev, const u8 *fw, u8 *fw_code_ptr, u8 *fw_data_ptr, u8 *fw_core_code_ptr, u8 *fw_core_data_ptr, u32 core_code_alloc_size) { struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; u32 *boot_conf; int err; boot_conf = ((u32 *)fw_code_ptr) + ROGUE_FW_BOOTLDR_CONF_OFFSET; /* Slave port and JTAG accesses are privileged. */ add_boot_arg(&boot_conf, META_CR_SYSC_JTAG_THREAD, META_CR_SYSC_JTAG_THREAD_PRIV_EN); configure_seg_mmu(pvr_dev, &boot_conf); /* Populate FW sections from LDR image. */ err = process_ldr_command_stream(pvr_dev, fw, fw_code_ptr, fw_data_ptr, fw_core_code_ptr, fw_core_data_ptr, &boot_conf); if (err) return err; configure_meta_caches(&boot_conf); /* End argument list. */ add_boot_arg(&boot_conf, 0, 0); if (fw_dev->mem.core_code_obj) { u32 core_code_fw_addr; pvr_fw_object_get_fw_addr(fw_dev->mem.core_code_obj, &core_code_fw_addr); add_boot_arg(&boot_conf, core_code_fw_addr, core_code_alloc_size); } else { add_boot_arg(&boot_conf, 0, 0); } /* None of the cores supported by this driver have META DMA. */ add_boot_arg(&boot_conf, 0, 0); return 0; } static int pvr_meta_init(struct pvr_device *pvr_dev) { pvr_fw_heap_info_init(pvr_dev, ROGUE_FW_HEAP_META_SHIFT, 0); return 0; } static u32 pvr_meta_get_fw_addr_with_offset(struct pvr_fw_object *fw_obj, u32 offset) { u32 fw_addr = fw_obj->fw_addr_offset + offset + ROGUE_FW_SEGMMU_DATA_BASE_ADDRESS; /* META cacheability is determined by address. */ if (fw_obj->gem->flags & PVR_BO_FW_FLAGS_DEVICE_UNCACHED) fw_addr |= ROGUE_FW_SEGMMU_DATA_META_UNCACHED | ROGUE_FW_SEGMMU_DATA_VIVT_SLC_UNCACHED; return fw_addr; } static int pvr_meta_vm_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj) { struct pvr_gem_object *pvr_obj = fw_obj->gem; return pvr_vm_map(pvr_dev->kernel_vm_ctx, pvr_obj, 0, fw_obj->fw_mm_node.start, pvr_gem_object_size(pvr_obj)); } static void pvr_meta_vm_unmap(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj) { pvr_vm_unmap(pvr_dev->kernel_vm_ctx, fw_obj->fw_mm_node.start, fw_obj->fw_mm_node.size); } static bool pvr_meta_has_fixed_data_addr(void) { return false; } const struct pvr_fw_defs pvr_fw_defs_meta = { .init = pvr_meta_init, .fw_process = pvr_meta_fw_process, .vm_map = pvr_meta_vm_map, .vm_unmap = pvr_meta_vm_unmap, .get_fw_addr_with_offset = pvr_meta_get_fw_addr_with_offset, .wrapper_init = pvr_meta_wrapper_init, .has_fixed_data_addr = pvr_meta_has_fixed_data_addr, .irq = { .enable_reg = ROGUE_CR_META_SP_MSLVIRQENABLE, .status_reg = ROGUE_CR_META_SP_MSLVIRQSTATUS, .clear_reg = ROGUE_CR_META_SP_MSLVIRQSTATUS, .event_mask = ROGUE_CR_META_SP_MSLVIRQSTATUS_TRIGVECT2_EN, .clear_mask = ROGUE_CR_META_SP_MSLVIRQSTATUS_TRIGVECT2_CLRMSK, }, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1