Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anitha Chrisanthus | 2642 | 95.07% | 3 | 23.08% |
Thomas Zimmermann | 72 | 2.59% | 2 | 15.38% |
Edmund Dea | 51 | 1.84% | 3 | 23.08% |
Javier Martinez Canillas | 4 | 0.14% | 1 | 7.69% |
Zhen Lei | 4 | 0.14% | 1 | 7.69% |
Danilo Krummrich | 3 | 0.11% | 1 | 7.69% |
Uwe Kleine-König | 2 | 0.07% | 1 | 7.69% |
Laurent Pinchart | 1 | 0.04% | 1 | 7.69% |
Total | 2779 | 13 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright © 2018-2020 Intel Corporation */ #include <linux/clk.h> #include <linux/module.h> #include <linux/of_graph.h> #include <linux/of_platform.h> #include <linux/of_reserved_mem.h> #include <linux/mfd/syscon.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_drv.h> #include <drm/drm_fbdev_dma.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_gem_framebuffer_helper.h> #include <drm/drm_module.h> #include <drm/drm_probe_helper.h> #include <drm/drm_vblank.h> #include "kmb_drv.h" #include "kmb_dsi.h" #include "kmb_regs.h" static int kmb_display_clk_enable(struct kmb_drm_private *kmb) { int ret = 0; ret = clk_prepare_enable(kmb->kmb_clk.clk_lcd); if (ret) { drm_err(&kmb->drm, "Failed to enable LCD clock: %d\n", ret); return ret; } DRM_INFO("SUCCESS : enabled LCD clocks\n"); return 0; } static int kmb_initialize_clocks(struct kmb_drm_private *kmb, struct device *dev) { int ret = 0; struct regmap *msscam; kmb->kmb_clk.clk_lcd = devm_clk_get(dev, "clk_lcd"); if (IS_ERR(kmb->kmb_clk.clk_lcd)) { drm_err(&kmb->drm, "clk_get() failed clk_lcd\n"); return PTR_ERR(kmb->kmb_clk.clk_lcd); } kmb->kmb_clk.clk_pll0 = devm_clk_get(dev, "clk_pll0"); if (IS_ERR(kmb->kmb_clk.clk_pll0)) { drm_err(&kmb->drm, "clk_get() failed clk_pll0 "); return PTR_ERR(kmb->kmb_clk.clk_pll0); } kmb->sys_clk_mhz = clk_get_rate(kmb->kmb_clk.clk_pll0) / 1000000; drm_info(&kmb->drm, "system clk = %d Mhz", kmb->sys_clk_mhz); ret = kmb_dsi_clk_init(kmb->kmb_dsi); /* Set LCD clock to 200 Mhz */ clk_set_rate(kmb->kmb_clk.clk_lcd, KMB_LCD_DEFAULT_CLK); if (clk_get_rate(kmb->kmb_clk.clk_lcd) != KMB_LCD_DEFAULT_CLK) { drm_err(&kmb->drm, "failed to set to clk_lcd to %d\n", KMB_LCD_DEFAULT_CLK); return -1; } drm_dbg(&kmb->drm, "clk_lcd = %ld\n", clk_get_rate(kmb->kmb_clk.clk_lcd)); ret = kmb_display_clk_enable(kmb); if (ret) return ret; msscam = syscon_regmap_lookup_by_compatible("intel,keembay-msscam"); if (IS_ERR(msscam)) { drm_err(&kmb->drm, "failed to get msscam syscon"); return -1; } /* Enable MSS_CAM_CLK_CTRL for MIPI TX and LCD */ regmap_update_bits(msscam, MSS_CAM_CLK_CTRL, 0x1fff, 0x1fff); regmap_update_bits(msscam, MSS_CAM_RSTN_CTRL, 0xffffffff, 0xffffffff); return 0; } static void kmb_display_clk_disable(struct kmb_drm_private *kmb) { clk_disable_unprepare(kmb->kmb_clk.clk_lcd); } static void __iomem *kmb_map_mmio(struct drm_device *drm, struct platform_device *pdev, char *name) { struct resource *res; void __iomem *mem; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); if (!res) { drm_err(drm, "failed to get resource for %s", name); return ERR_PTR(-ENOMEM); } mem = devm_ioremap_resource(drm->dev, res); if (IS_ERR(mem)) drm_err(drm, "failed to ioremap %s registers", name); return mem; } static int kmb_hw_init(struct drm_device *drm, unsigned long flags) { struct kmb_drm_private *kmb = to_kmb(drm); struct platform_device *pdev = to_platform_device(drm->dev); int irq_lcd; int ret = 0; /* Map LCD MMIO registers */ kmb->lcd_mmio = kmb_map_mmio(drm, pdev, "lcd"); if (IS_ERR(kmb->lcd_mmio)) { drm_err(&kmb->drm, "failed to map LCD registers\n"); return -ENOMEM; } /* Map MIPI MMIO registers */ ret = kmb_dsi_map_mmio(kmb->kmb_dsi); if (ret) return ret; /* Enable display clocks */ kmb_initialize_clocks(kmb, &pdev->dev); /* Register irqs here - section 17.3 in databook * lists LCD at 79 and 82 for MIPI under MSS CPU - * firmware has redirected 79 to A53 IRQ 33 */ /* Allocate LCD interrupt resources */ irq_lcd = platform_get_irq(pdev, 0); if (irq_lcd < 0) { ret = irq_lcd; drm_err(&kmb->drm, "irq_lcd not found"); goto setup_fail; } /* Get the optional framebuffer memory resource */ ret = of_reserved_mem_device_init(drm->dev); if (ret && ret != -ENODEV) return ret; spin_lock_init(&kmb->irq_lock); kmb->irq_lcd = irq_lcd; return 0; setup_fail: of_reserved_mem_device_release(drm->dev); return ret; } static const struct drm_mode_config_funcs kmb_mode_config_funcs = { .fb_create = drm_gem_fb_create, .atomic_check = drm_atomic_helper_check, .atomic_commit = drm_atomic_helper_commit, }; static int kmb_setup_mode_config(struct drm_device *drm) { int ret; struct kmb_drm_private *kmb = to_kmb(drm); ret = drmm_mode_config_init(drm); if (ret) return ret; drm->mode_config.min_width = KMB_FB_MIN_WIDTH; drm->mode_config.min_height = KMB_FB_MIN_HEIGHT; drm->mode_config.max_width = KMB_FB_MAX_WIDTH; drm->mode_config.max_height = KMB_FB_MAX_HEIGHT; drm->mode_config.preferred_depth = 24; drm->mode_config.funcs = &kmb_mode_config_funcs; ret = kmb_setup_crtc(drm); if (ret < 0) { drm_err(drm, "failed to create crtc\n"); return ret; } ret = kmb_dsi_encoder_init(drm, kmb->kmb_dsi); /* Set the CRTC's port so that the encoder component can find it */ kmb->crtc.port = of_graph_get_port_by_id(drm->dev->of_node, 0); ret = drm_vblank_init(drm, drm->mode_config.num_crtc); if (ret < 0) { drm_err(drm, "failed to initialize vblank\n"); pm_runtime_disable(drm->dev); return ret; } drm_mode_config_reset(drm); return 0; } static irqreturn_t handle_lcd_irq(struct drm_device *dev) { unsigned long status, val, val1; int plane_id, dma0_state, dma1_state; struct kmb_drm_private *kmb = to_kmb(dev); u32 ctrl = 0; status = kmb_read_lcd(kmb, LCD_INT_STATUS); spin_lock(&kmb->irq_lock); if (status & LCD_INT_EOF) { kmb_write_lcd(kmb, LCD_INT_CLEAR, LCD_INT_EOF); /* When disabling/enabling LCD layers, the change takes effect * immediately and does not wait for EOF (end of frame). * When kmb_plane_atomic_disable is called, mark the plane as * disabled but actually disable the plane when EOF irq is * being handled. */ for (plane_id = LAYER_0; plane_id < KMB_MAX_PLANES; plane_id++) { if (kmb->plane_status[plane_id].disable) { kmb_clr_bitmask_lcd(kmb, LCD_LAYERn_DMA_CFG (plane_id), LCD_DMA_LAYER_ENABLE); kmb_clr_bitmask_lcd(kmb, LCD_CONTROL, kmb->plane_status[plane_id].ctrl); ctrl = kmb_read_lcd(kmb, LCD_CONTROL); if (!(ctrl & (LCD_CTRL_VL1_ENABLE | LCD_CTRL_VL2_ENABLE | LCD_CTRL_GL1_ENABLE | LCD_CTRL_GL2_ENABLE))) { /* If no LCD layers are using DMA, * then disable DMA pipelined AXI read * transactions. */ kmb_clr_bitmask_lcd(kmb, LCD_CONTROL, LCD_CTRL_PIPELINE_DMA); } kmb->plane_status[plane_id].disable = false; } } if (kmb->kmb_under_flow) { /* DMA Recovery after underflow */ dma0_state = (kmb->layer_no == 0) ? LCD_VIDEO0_DMA0_STATE : LCD_VIDEO1_DMA0_STATE; dma1_state = (kmb->layer_no == 0) ? LCD_VIDEO0_DMA1_STATE : LCD_VIDEO1_DMA1_STATE; do { kmb_write_lcd(kmb, LCD_FIFO_FLUSH, 1); val = kmb_read_lcd(kmb, dma0_state) & LCD_DMA_STATE_ACTIVE; val1 = kmb_read_lcd(kmb, dma1_state) & LCD_DMA_STATE_ACTIVE; } while ((val || val1)); /* disable dma */ kmb_clr_bitmask_lcd(kmb, LCD_LAYERn_DMA_CFG(kmb->layer_no), LCD_DMA_LAYER_ENABLE); kmb_write_lcd(kmb, LCD_FIFO_FLUSH, 1); kmb->kmb_flush_done = 1; kmb->kmb_under_flow = 0; } } if (status & LCD_INT_LINE_CMP) { /* clear line compare interrupt */ kmb_write_lcd(kmb, LCD_INT_CLEAR, LCD_INT_LINE_CMP); } if (status & LCD_INT_VERT_COMP) { /* Read VSTATUS */ val = kmb_read_lcd(kmb, LCD_VSTATUS); val = (val & LCD_VSTATUS_VERTICAL_STATUS_MASK); switch (val) { case LCD_VSTATUS_COMPARE_VSYNC: /* Clear vertical compare interrupt */ kmb_write_lcd(kmb, LCD_INT_CLEAR, LCD_INT_VERT_COMP); if (kmb->kmb_flush_done) { kmb_set_bitmask_lcd(kmb, LCD_LAYERn_DMA_CFG (kmb->layer_no), LCD_DMA_LAYER_ENABLE); kmb->kmb_flush_done = 0; } drm_crtc_handle_vblank(&kmb->crtc); break; case LCD_VSTATUS_COMPARE_BACKPORCH: case LCD_VSTATUS_COMPARE_ACTIVE: case LCD_VSTATUS_COMPARE_FRONT_PORCH: kmb_write_lcd(kmb, LCD_INT_CLEAR, LCD_INT_VERT_COMP); break; } } if (status & LCD_INT_DMA_ERR) { val = (status & LCD_INT_DMA_ERR & kmb_read_lcd(kmb, LCD_INT_ENABLE)); /* LAYER0 - VL0 */ if (val & (LAYER0_DMA_FIFO_UNDERFLOW | LAYER0_DMA_CB_FIFO_UNDERFLOW | LAYER0_DMA_CR_FIFO_UNDERFLOW)) { kmb->kmb_under_flow++; drm_info(&kmb->drm, "!LAYER0:VL0 DMA UNDERFLOW val = 0x%lx,under_flow=%d", val, kmb->kmb_under_flow); /* disable underflow interrupt */ kmb_clr_bitmask_lcd(kmb, LCD_INT_ENABLE, LAYER0_DMA_FIFO_UNDERFLOW | LAYER0_DMA_CB_FIFO_UNDERFLOW | LAYER0_DMA_CR_FIFO_UNDERFLOW); kmb_set_bitmask_lcd(kmb, LCD_INT_CLEAR, LAYER0_DMA_CB_FIFO_UNDERFLOW | LAYER0_DMA_FIFO_UNDERFLOW | LAYER0_DMA_CR_FIFO_UNDERFLOW); /* disable auto restart mode */ kmb_clr_bitmask_lcd(kmb, LCD_LAYERn_DMA_CFG(0), LCD_DMA_LAYER_CONT_PING_PONG_UPDATE); kmb->layer_no = 0; } if (val & LAYER0_DMA_FIFO_OVERFLOW) drm_dbg(&kmb->drm, "LAYER0:VL0 DMA OVERFLOW val = 0x%lx", val); if (val & LAYER0_DMA_CB_FIFO_OVERFLOW) drm_dbg(&kmb->drm, "LAYER0:VL0 DMA CB OVERFLOW val = 0x%lx", val); if (val & LAYER0_DMA_CR_FIFO_OVERFLOW) drm_dbg(&kmb->drm, "LAYER0:VL0 DMA CR OVERFLOW val = 0x%lx", val); /* LAYER1 - VL1 */ if (val & (LAYER1_DMA_FIFO_UNDERFLOW | LAYER1_DMA_CB_FIFO_UNDERFLOW | LAYER1_DMA_CR_FIFO_UNDERFLOW)) { kmb->kmb_under_flow++; drm_info(&kmb->drm, "!LAYER1:VL1 DMA UNDERFLOW val = 0x%lx, under_flow=%d", val, kmb->kmb_under_flow); /* disable underflow interrupt */ kmb_clr_bitmask_lcd(kmb, LCD_INT_ENABLE, LAYER1_DMA_FIFO_UNDERFLOW | LAYER1_DMA_CB_FIFO_UNDERFLOW | LAYER1_DMA_CR_FIFO_UNDERFLOW); kmb_set_bitmask_lcd(kmb, LCD_INT_CLEAR, LAYER1_DMA_CB_FIFO_UNDERFLOW | LAYER1_DMA_FIFO_UNDERFLOW | LAYER1_DMA_CR_FIFO_UNDERFLOW); /* disable auto restart mode */ kmb_clr_bitmask_lcd(kmb, LCD_LAYERn_DMA_CFG(1), LCD_DMA_LAYER_CONT_PING_PONG_UPDATE); kmb->layer_no = 1; } /* LAYER1 - VL1 */ if (val & LAYER1_DMA_FIFO_OVERFLOW) drm_dbg(&kmb->drm, "LAYER1:VL1 DMA OVERFLOW val = 0x%lx", val); if (val & LAYER1_DMA_CB_FIFO_OVERFLOW) drm_dbg(&kmb->drm, "LAYER1:VL1 DMA CB OVERFLOW val = 0x%lx", val); if (val & LAYER1_DMA_CR_FIFO_OVERFLOW) drm_dbg(&kmb->drm, "LAYER1:VL1 DMA CR OVERFLOW val = 0x%lx", val); /* LAYER2 - GL0 */ if (val & LAYER2_DMA_FIFO_UNDERFLOW) drm_dbg(&kmb->drm, "LAYER2:GL0 DMA UNDERFLOW val = 0x%lx", val); if (val & LAYER2_DMA_FIFO_OVERFLOW) drm_dbg(&kmb->drm, "LAYER2:GL0 DMA OVERFLOW val = 0x%lx", val); /* LAYER3 - GL1 */ if (val & LAYER3_DMA_FIFO_UNDERFLOW) drm_dbg(&kmb->drm, "LAYER3:GL1 DMA UNDERFLOW val = 0x%lx", val); if (val & LAYER3_DMA_FIFO_OVERFLOW) drm_dbg(&kmb->drm, "LAYER3:GL1 DMA OVERFLOW val = 0x%lx", val); } spin_unlock(&kmb->irq_lock); if (status & LCD_INT_LAYER) { /* Clear layer interrupts */ kmb_write_lcd(kmb, LCD_INT_CLEAR, LCD_INT_LAYER); } /* Clear all interrupts */ kmb_set_bitmask_lcd(kmb, LCD_INT_CLEAR, 1); return IRQ_HANDLED; } /* IRQ handler */ static irqreturn_t kmb_isr(int irq, void *arg) { struct drm_device *dev = (struct drm_device *)arg; handle_lcd_irq(dev); return IRQ_HANDLED; } static void kmb_irq_reset(struct drm_device *drm) { kmb_write_lcd(to_kmb(drm), LCD_INT_CLEAR, 0xFFFF); kmb_write_lcd(to_kmb(drm), LCD_INT_ENABLE, 0); } static int kmb_irq_install(struct drm_device *drm, unsigned int irq) { if (irq == IRQ_NOTCONNECTED) return -ENOTCONN; kmb_irq_reset(drm); return request_irq(irq, kmb_isr, 0, drm->driver->name, drm); } static void kmb_irq_uninstall(struct drm_device *drm) { struct kmb_drm_private *kmb = to_kmb(drm); kmb_irq_reset(drm); free_irq(kmb->irq_lcd, drm); } DEFINE_DRM_GEM_DMA_FOPS(fops); static const struct drm_driver kmb_driver = { .driver_features = DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC, /* GEM Operations */ .fops = &fops, DRM_GEM_DMA_DRIVER_OPS_VMAP, .name = "kmb-drm", .desc = "KEEMBAY DISPLAY DRIVER", .date = DRIVER_DATE, .major = DRIVER_MAJOR, .minor = DRIVER_MINOR, }; static void kmb_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct drm_device *drm = dev_get_drvdata(dev); struct kmb_drm_private *kmb = to_kmb(drm); drm_dev_unregister(drm); drm_kms_helper_poll_fini(drm); of_node_put(kmb->crtc.port); kmb->crtc.port = NULL; pm_runtime_get_sync(drm->dev); kmb_irq_uninstall(drm); pm_runtime_put_sync(drm->dev); pm_runtime_disable(drm->dev); of_reserved_mem_device_release(drm->dev); /* Release clks */ kmb_display_clk_disable(kmb); dev_set_drvdata(dev, NULL); /* Unregister DSI host */ kmb_dsi_host_unregister(kmb->kmb_dsi); drm_atomic_helper_shutdown(drm); } static int kmb_probe(struct platform_device *pdev) { struct device *dev = get_device(&pdev->dev); struct kmb_drm_private *kmb; int ret = 0; struct device_node *dsi_in; struct device_node *dsi_node; struct platform_device *dsi_pdev; /* The bridge (ADV 7535) will return -EPROBE_DEFER until it * has a mipi_dsi_host to register its device to. So, we * first register the DSI host during probe time, and then return * -EPROBE_DEFER until the bridge is loaded. Probe will be called again * and then the rest of the driver initialization can proceed * afterwards and the bridge can be successfully attached. */ dsi_in = of_graph_get_endpoint_by_regs(dev->of_node, 0, 0); if (!dsi_in) { DRM_ERROR("Failed to get dsi_in node info from DT"); return -EINVAL; } dsi_node = of_graph_get_remote_port_parent(dsi_in); if (!dsi_node) { of_node_put(dsi_in); DRM_ERROR("Failed to get dsi node from DT\n"); return -EINVAL; } dsi_pdev = of_find_device_by_node(dsi_node); if (!dsi_pdev) { of_node_put(dsi_in); of_node_put(dsi_node); DRM_ERROR("Failed to get dsi platform device\n"); return -EINVAL; } of_node_put(dsi_in); of_node_put(dsi_node); ret = kmb_dsi_host_bridge_init(get_device(&dsi_pdev->dev)); if (ret == -EPROBE_DEFER) { return -EPROBE_DEFER; } else if (ret) { DRM_ERROR("probe failed to initialize DSI host bridge\n"); return ret; } /* Create DRM device */ kmb = devm_drm_dev_alloc(dev, &kmb_driver, struct kmb_drm_private, drm); if (IS_ERR(kmb)) return PTR_ERR(kmb); dev_set_drvdata(dev, &kmb->drm); /* Initialize MIPI DSI */ kmb->kmb_dsi = kmb_dsi_init(dsi_pdev); if (IS_ERR(kmb->kmb_dsi)) { drm_err(&kmb->drm, "failed to initialize DSI\n"); ret = PTR_ERR(kmb->kmb_dsi); goto err_free1; } kmb->kmb_dsi->dev = &dsi_pdev->dev; kmb->kmb_dsi->pdev = dsi_pdev; ret = kmb_hw_init(&kmb->drm, 0); if (ret) goto err_free1; ret = kmb_setup_mode_config(&kmb->drm); if (ret) goto err_free; ret = kmb_irq_install(&kmb->drm, kmb->irq_lcd); if (ret < 0) { drm_err(&kmb->drm, "failed to install IRQ handler\n"); goto err_irq; } drm_kms_helper_poll_init(&kmb->drm); /* Register graphics device with the kernel */ ret = drm_dev_register(&kmb->drm, 0); if (ret) goto err_register; drm_fbdev_dma_setup(&kmb->drm, 0); return 0; err_register: drm_kms_helper_poll_fini(&kmb->drm); err_irq: pm_runtime_disable(kmb->drm.dev); err_free: drm_crtc_cleanup(&kmb->crtc); drm_mode_config_cleanup(&kmb->drm); err_free1: dev_set_drvdata(dev, NULL); kmb_dsi_host_unregister(kmb->kmb_dsi); return ret; } static const struct of_device_id kmb_of_match[] = { {.compatible = "intel,keembay-display"}, {}, }; MODULE_DEVICE_TABLE(of, kmb_of_match); static int __maybe_unused kmb_pm_suspend(struct device *dev) { struct drm_device *drm = dev_get_drvdata(dev); struct kmb_drm_private *kmb = to_kmb(drm); drm_kms_helper_poll_disable(drm); kmb->state = drm_atomic_helper_suspend(drm); if (IS_ERR(kmb->state)) { drm_kms_helper_poll_enable(drm); return PTR_ERR(kmb->state); } return 0; } static int __maybe_unused kmb_pm_resume(struct device *dev) { struct drm_device *drm = dev_get_drvdata(dev); struct kmb_drm_private *kmb = drm ? to_kmb(drm) : NULL; if (!kmb) return 0; drm_atomic_helper_resume(drm, kmb->state); drm_kms_helper_poll_enable(drm); return 0; } static SIMPLE_DEV_PM_OPS(kmb_pm_ops, kmb_pm_suspend, kmb_pm_resume); static struct platform_driver kmb_platform_driver = { .probe = kmb_probe, .remove_new = kmb_remove, .driver = { .name = "kmb-drm", .pm = &kmb_pm_ops, .of_match_table = kmb_of_match, }, }; drm_module_platform_driver(kmb_platform_driver); MODULE_AUTHOR("Intel Corporation"); MODULE_DESCRIPTION("Keembay Display driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1