Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sui Jingfeng | 4586 | 99.93% | 1 | 50.00% |
Dave Airlie | 3 | 0.07% | 1 | 50.00% |
Total | 4589 | 2 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2023 Loongson Technology Corporation Limited */ #include <linux/debugfs.h> #include <linux/delay.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_debugfs.h> #include <drm/drm_vblank.h> #include "lsdc_drv.h" /* * After the CRTC soft reset, the vblank counter would be reset to zero. * But the address and other settings in the CRTC register remain the same * as before. */ static void lsdc_crtc0_soft_reset(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; u32 val; val = lsdc_rreg32(ldev, LSDC_CRTC0_CFG_REG); val &= CFG_VALID_BITS_MASK; /* Soft reset bit, active low */ val &= ~CFG_RESET_N; val &= ~CFG_PIX_FMT_MASK; lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, val); udelay(1); val |= CFG_RESET_N | LSDC_PF_XRGB8888 | CFG_OUTPUT_ENABLE; lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, val); /* Wait about a vblank time */ mdelay(20); } static void lsdc_crtc1_soft_reset(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; u32 val; val = lsdc_rreg32(ldev, LSDC_CRTC1_CFG_REG); val &= CFG_VALID_BITS_MASK; /* Soft reset bit, active low */ val &= ~CFG_RESET_N; val &= ~CFG_PIX_FMT_MASK; lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, val); udelay(1); val |= CFG_RESET_N | LSDC_PF_XRGB8888 | CFG_OUTPUT_ENABLE; lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, val); /* Wait about a vblank time */ msleep(20); } static void lsdc_crtc0_enable(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; u32 val; val = lsdc_rreg32(ldev, LSDC_CRTC0_CFG_REG); /* * This may happen in extremely rare cases, but a soft reset can * bring it back to normal. We add a warning here, hoping to catch * something if it happens. */ if (val & CRTC_ANCHORED) { drm_warn(&ldev->base, "%s stall\n", lcrtc->base.name); return lsdc_crtc0_soft_reset(lcrtc); } lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, val | CFG_OUTPUT_ENABLE); } static void lsdc_crtc0_disable(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_ureg32_clr(ldev, LSDC_CRTC0_CFG_REG, CFG_OUTPUT_ENABLE); udelay(9); } static void lsdc_crtc1_enable(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; u32 val; /* * This may happen in extremely rare cases, but a soft reset can * bring it back to normal. We add a warning here, hoping to catch * something if it happens. */ val = lsdc_rreg32(ldev, LSDC_CRTC1_CFG_REG); if (val & CRTC_ANCHORED) { drm_warn(&ldev->base, "%s stall\n", lcrtc->base.name); return lsdc_crtc1_soft_reset(lcrtc); } lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, val | CFG_OUTPUT_ENABLE); } static void lsdc_crtc1_disable(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_ureg32_clr(ldev, LSDC_CRTC1_CFG_REG, CFG_OUTPUT_ENABLE); udelay(9); } /* All Loongson display controllers have hardware scanout position recoders */ static void lsdc_crtc0_scan_pos(struct lsdc_crtc *lcrtc, int *hpos, int *vpos) { struct lsdc_device *ldev = lcrtc->ldev; u32 val; val = lsdc_rreg32(ldev, LSDC_CRTC0_SCAN_POS_REG); *hpos = val >> 16; *vpos = val & 0xffff; } static void lsdc_crtc1_scan_pos(struct lsdc_crtc *lcrtc, int *hpos, int *vpos) { struct lsdc_device *ldev = lcrtc->ldev; u32 val; val = lsdc_rreg32(ldev, LSDC_CRTC1_SCAN_POS_REG); *hpos = val >> 16; *vpos = val & 0xffff; } static void lsdc_crtc0_enable_vblank(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_ureg32_set(ldev, LSDC_INT_REG, INT_CRTC0_VSYNC_EN); } static void lsdc_crtc0_disable_vblank(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_ureg32_clr(ldev, LSDC_INT_REG, INT_CRTC0_VSYNC_EN); } static void lsdc_crtc1_enable_vblank(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_ureg32_set(ldev, LSDC_INT_REG, INT_CRTC1_VSYNC_EN); } static void lsdc_crtc1_disable_vblank(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_ureg32_clr(ldev, LSDC_INT_REG, INT_CRTC1_VSYNC_EN); } static void lsdc_crtc0_flip(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_ureg32_set(ldev, LSDC_CRTC0_CFG_REG, CFG_PAGE_FLIP); } static void lsdc_crtc1_flip(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_ureg32_set(ldev, LSDC_CRTC1_CFG_REG, CFG_PAGE_FLIP); } /* * CRTC0 clone from CRTC1 or CRTC1 clone from CRTC0 using hardware logic * This may be useful for custom cloning (TWIN) applications. Saving the * bandwidth compared with the clone (mirroring) display mode provided by * drm core. */ static void lsdc_crtc0_clone(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_ureg32_set(ldev, LSDC_CRTC0_CFG_REG, CFG_HW_CLONE); } static void lsdc_crtc1_clone(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_ureg32_set(ldev, LSDC_CRTC1_CFG_REG, CFG_HW_CLONE); } static void lsdc_crtc0_set_mode(struct lsdc_crtc *lcrtc, const struct drm_display_mode *mode) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_wreg32(ldev, LSDC_CRTC0_HDISPLAY_REG, (mode->crtc_htotal << 16) | mode->crtc_hdisplay); lsdc_wreg32(ldev, LSDC_CRTC0_VDISPLAY_REG, (mode->crtc_vtotal << 16) | mode->crtc_vdisplay); lsdc_wreg32(ldev, LSDC_CRTC0_HSYNC_REG, (mode->crtc_hsync_end << 16) | mode->crtc_hsync_start | HSYNC_EN); lsdc_wreg32(ldev, LSDC_CRTC0_VSYNC_REG, (mode->crtc_vsync_end << 16) | mode->crtc_vsync_start | VSYNC_EN); } static void lsdc_crtc1_set_mode(struct lsdc_crtc *lcrtc, const struct drm_display_mode *mode) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_wreg32(ldev, LSDC_CRTC1_HDISPLAY_REG, (mode->crtc_htotal << 16) | mode->crtc_hdisplay); lsdc_wreg32(ldev, LSDC_CRTC1_VDISPLAY_REG, (mode->crtc_vtotal << 16) | mode->crtc_vdisplay); lsdc_wreg32(ldev, LSDC_CRTC1_HSYNC_REG, (mode->crtc_hsync_end << 16) | mode->crtc_hsync_start | HSYNC_EN); lsdc_wreg32(ldev, LSDC_CRTC1_VSYNC_REG, (mode->crtc_vsync_end << 16) | mode->crtc_vsync_start | VSYNC_EN); } /* * This is required for S3 support. * After resuming from suspend, LSDC_CRTCx_CFG_REG (x = 0 or 1) is filled * with garbage value, which causes the CRTC hang there. * * This function provides minimal settings for the affected registers. * This overrides the firmware's settings on startup, making the CRTC work * on our own, similar to the functional of GPU POST (Power On Self Test). * Only touch CRTC hardware-related parts. */ static void lsdc_crtc0_reset(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, CFG_RESET_N | LSDC_PF_XRGB8888); } static void lsdc_crtc1_reset(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, CFG_RESET_N | LSDC_PF_XRGB8888); } static const struct lsdc_crtc_hw_ops ls7a1000_crtc_hw_ops[2] = { { .enable = lsdc_crtc0_enable, .disable = lsdc_crtc0_disable, .enable_vblank = lsdc_crtc0_enable_vblank, .disable_vblank = lsdc_crtc0_disable_vblank, .flip = lsdc_crtc0_flip, .clone = lsdc_crtc0_clone, .set_mode = lsdc_crtc0_set_mode, .get_scan_pos = lsdc_crtc0_scan_pos, .soft_reset = lsdc_crtc0_soft_reset, .reset = lsdc_crtc0_reset, }, { .enable = lsdc_crtc1_enable, .disable = lsdc_crtc1_disable, .enable_vblank = lsdc_crtc1_enable_vblank, .disable_vblank = lsdc_crtc1_disable_vblank, .flip = lsdc_crtc1_flip, .clone = lsdc_crtc1_clone, .set_mode = lsdc_crtc1_set_mode, .get_scan_pos = lsdc_crtc1_scan_pos, .soft_reset = lsdc_crtc1_soft_reset, .reset = lsdc_crtc1_reset, }, }; /* * The 32-bit hardware vblank counter has been available since LS7A2000 * and LS2K2000. The counter increases even though the CRTC is disabled, * it will be reset only if the CRTC is being soft reset. * Those registers are also readable for ls7a1000, but its value does not * change. */ static u32 lsdc_crtc0_get_vblank_count(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; return lsdc_rreg32(ldev, LSDC_CRTC0_VSYNC_COUNTER_REG); } static u32 lsdc_crtc1_get_vblank_count(struct lsdc_crtc *lcrtc) { struct lsdc_device *ldev = lcrtc->ldev; return lsdc_rreg32(ldev, LSDC_CRTC1_VSYNC_COUNTER_REG); } /* * The DMA step bit fields are available since LS7A2000/LS2K2000, for * supporting odd resolutions. But a large DMA step save the bandwidth. * The larger, the better. Behavior of writing those bits on LS7A1000 * or LS2K1000 is underfined. */ static void lsdc_crtc0_set_dma_step(struct lsdc_crtc *lcrtc, enum lsdc_dma_steps dma_step) { struct lsdc_device *ldev = lcrtc->ldev; u32 val = lsdc_rreg32(ldev, LSDC_CRTC0_CFG_REG); val &= ~CFG_DMA_STEP_MASK; val |= dma_step << CFG_DMA_STEP_SHIFT; lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, val); } static void lsdc_crtc1_set_dma_step(struct lsdc_crtc *lcrtc, enum lsdc_dma_steps dma_step) { struct lsdc_device *ldev = lcrtc->ldev; u32 val = lsdc_rreg32(ldev, LSDC_CRTC1_CFG_REG); val &= ~CFG_DMA_STEP_MASK; val |= dma_step << CFG_DMA_STEP_SHIFT; lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, val); } static const struct lsdc_crtc_hw_ops ls7a2000_crtc_hw_ops[2] = { { .enable = lsdc_crtc0_enable, .disable = lsdc_crtc0_disable, .enable_vblank = lsdc_crtc0_enable_vblank, .disable_vblank = lsdc_crtc0_disable_vblank, .flip = lsdc_crtc0_flip, .clone = lsdc_crtc0_clone, .set_mode = lsdc_crtc0_set_mode, .soft_reset = lsdc_crtc0_soft_reset, .get_scan_pos = lsdc_crtc0_scan_pos, .set_dma_step = lsdc_crtc0_set_dma_step, .get_vblank_counter = lsdc_crtc0_get_vblank_count, .reset = lsdc_crtc0_reset, }, { .enable = lsdc_crtc1_enable, .disable = lsdc_crtc1_disable, .enable_vblank = lsdc_crtc1_enable_vblank, .disable_vblank = lsdc_crtc1_disable_vblank, .flip = lsdc_crtc1_flip, .clone = lsdc_crtc1_clone, .set_mode = lsdc_crtc1_set_mode, .get_scan_pos = lsdc_crtc1_scan_pos, .soft_reset = lsdc_crtc1_soft_reset, .set_dma_step = lsdc_crtc1_set_dma_step, .get_vblank_counter = lsdc_crtc1_get_vblank_count, .reset = lsdc_crtc1_reset, }, }; static void lsdc_crtc_reset(struct drm_crtc *crtc) { struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc); const struct lsdc_crtc_hw_ops *ops = lcrtc->hw_ops; struct lsdc_crtc_state *priv_crtc_state; if (crtc->state) crtc->funcs->atomic_destroy_state(crtc, crtc->state); priv_crtc_state = kzalloc(sizeof(*priv_crtc_state), GFP_KERNEL); if (!priv_crtc_state) __drm_atomic_helper_crtc_reset(crtc, NULL); else __drm_atomic_helper_crtc_reset(crtc, &priv_crtc_state->base); /* Reset the CRTC hardware, this is required for S3 support */ ops->reset(lcrtc); } static void lsdc_crtc_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct lsdc_crtc_state *priv_state = to_lsdc_crtc_state(state); __drm_atomic_helper_crtc_destroy_state(&priv_state->base); kfree(priv_state); } static struct drm_crtc_state * lsdc_crtc_atomic_duplicate_state(struct drm_crtc *crtc) { struct lsdc_crtc_state *new_priv_state; struct lsdc_crtc_state *old_priv_state; new_priv_state = kzalloc(sizeof(*new_priv_state), GFP_KERNEL); if (!new_priv_state) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &new_priv_state->base); old_priv_state = to_lsdc_crtc_state(crtc->state); memcpy(&new_priv_state->pparms, &old_priv_state->pparms, sizeof(new_priv_state->pparms)); return &new_priv_state->base; } static u32 lsdc_crtc_get_vblank_counter(struct drm_crtc *crtc) { struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc); /* 32-bit hardware vblank counter */ return lcrtc->hw_ops->get_vblank_counter(lcrtc); } static int lsdc_crtc_enable_vblank(struct drm_crtc *crtc) { struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc); if (!lcrtc->has_vblank) return -EINVAL; lcrtc->hw_ops->enable_vblank(lcrtc); return 0; } static void lsdc_crtc_disable_vblank(struct drm_crtc *crtc) { struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc); if (!lcrtc->has_vblank) return; lcrtc->hw_ops->disable_vblank(lcrtc); } /* * CRTC related debugfs * Primary planes and cursor planes belong to the CRTC as well. * For the sake of convenience, plane-related registers are also add here. */ #define REG_DEF(reg) { \ .name = __stringify_1(LSDC_##reg##_REG), \ .offset = LSDC_##reg##_REG, \ } static const struct lsdc_reg32 lsdc_crtc_regs_array[2][21] = { [0] = { REG_DEF(CRTC0_CFG), REG_DEF(CRTC0_FB_ORIGIN), REG_DEF(CRTC0_DVO_CONF), REG_DEF(CRTC0_HDISPLAY), REG_DEF(CRTC0_HSYNC), REG_DEF(CRTC0_VDISPLAY), REG_DEF(CRTC0_VSYNC), REG_DEF(CRTC0_GAMMA_INDEX), REG_DEF(CRTC0_GAMMA_DATA), REG_DEF(CRTC0_SYNC_DEVIATION), REG_DEF(CRTC0_VSYNC_COUNTER), REG_DEF(CRTC0_SCAN_POS), REG_DEF(CRTC0_STRIDE), REG_DEF(CRTC0_FB1_ADDR_HI), REG_DEF(CRTC0_FB1_ADDR_LO), REG_DEF(CRTC0_FB0_ADDR_HI), REG_DEF(CRTC0_FB0_ADDR_LO), REG_DEF(CURSOR0_CFG), REG_DEF(CURSOR0_POSITION), REG_DEF(CURSOR0_BG_COLOR), REG_DEF(CURSOR0_FG_COLOR), }, [1] = { REG_DEF(CRTC1_CFG), REG_DEF(CRTC1_FB_ORIGIN), REG_DEF(CRTC1_DVO_CONF), REG_DEF(CRTC1_HDISPLAY), REG_DEF(CRTC1_HSYNC), REG_DEF(CRTC1_VDISPLAY), REG_DEF(CRTC1_VSYNC), REG_DEF(CRTC1_GAMMA_INDEX), REG_DEF(CRTC1_GAMMA_DATA), REG_DEF(CRTC1_SYNC_DEVIATION), REG_DEF(CRTC1_VSYNC_COUNTER), REG_DEF(CRTC1_SCAN_POS), REG_DEF(CRTC1_STRIDE), REG_DEF(CRTC1_FB1_ADDR_HI), REG_DEF(CRTC1_FB1_ADDR_LO), REG_DEF(CRTC1_FB0_ADDR_HI), REG_DEF(CRTC1_FB0_ADDR_LO), REG_DEF(CURSOR1_CFG), REG_DEF(CURSOR1_POSITION), REG_DEF(CURSOR1_BG_COLOR), REG_DEF(CURSOR1_FG_COLOR), }, }; static int lsdc_crtc_show_regs(struct seq_file *m, void *arg) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct lsdc_crtc *lcrtc = (struct lsdc_crtc *)node->info_ent->data; struct lsdc_device *ldev = lcrtc->ldev; unsigned int i; for (i = 0; i < lcrtc->nreg; i++) { const struct lsdc_reg32 *preg = &lcrtc->preg[i]; u32 offset = preg->offset; seq_printf(m, "%s (0x%04x): 0x%08x\n", preg->name, offset, lsdc_rreg32(ldev, offset)); } return 0; } static int lsdc_crtc_show_scan_position(struct seq_file *m, void *arg) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct lsdc_crtc *lcrtc = (struct lsdc_crtc *)node->info_ent->data; int x, y; lcrtc->hw_ops->get_scan_pos(lcrtc, &x, &y); seq_printf(m, "Scanout position: x: %08u, y: %08u\n", x, y); return 0; } static int lsdc_crtc_show_vblank_counter(struct seq_file *m, void *arg) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct lsdc_crtc *lcrtc = (struct lsdc_crtc *)node->info_ent->data; if (lcrtc->hw_ops->get_vblank_counter) seq_printf(m, "%s vblank counter: %08u\n\n", lcrtc->base.name, lcrtc->hw_ops->get_vblank_counter(lcrtc)); return 0; } static int lsdc_pixpll_show_clock(struct seq_file *m, void *arg) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct lsdc_crtc *lcrtc = (struct lsdc_crtc *)node->info_ent->data; struct lsdc_pixpll *pixpll = &lcrtc->pixpll; const struct lsdc_pixpll_funcs *funcs = pixpll->funcs; struct drm_crtc *crtc = &lcrtc->base; struct drm_display_mode *mode = &crtc->state->mode; struct drm_printer printer = drm_seq_file_printer(m); unsigned int out_khz; out_khz = funcs->get_rate(pixpll); seq_printf(m, "%s: %dx%d@%d\n", crtc->name, mode->hdisplay, mode->vdisplay, drm_mode_vrefresh(mode)); seq_printf(m, "Pixel clock required: %d kHz\n", mode->clock); seq_printf(m, "Actual frequency output: %u kHz\n", out_khz); seq_printf(m, "Diff: %d kHz\n", out_khz - mode->clock); funcs->print(pixpll, &printer); return 0; } static struct drm_info_list lsdc_crtc_debugfs_list[2][4] = { [0] = { { "regs", lsdc_crtc_show_regs, 0, NULL }, { "pixclk", lsdc_pixpll_show_clock, 0, NULL }, { "scanpos", lsdc_crtc_show_scan_position, 0, NULL }, { "vblanks", lsdc_crtc_show_vblank_counter, 0, NULL }, }, [1] = { { "regs", lsdc_crtc_show_regs, 0, NULL }, { "pixclk", lsdc_pixpll_show_clock, 0, NULL }, { "scanpos", lsdc_crtc_show_scan_position, 0, NULL }, { "vblanks", lsdc_crtc_show_vblank_counter, 0, NULL }, }, }; /* operate manually */ static int lsdc_crtc_man_op_show(struct seq_file *m, void *data) { seq_puts(m, "soft_reset: soft reset this CRTC\n"); seq_puts(m, "enable: enable this CRTC\n"); seq_puts(m, "disable: disable this CRTC\n"); seq_puts(m, "flip: trigger the page flip\n"); seq_puts(m, "clone: clone the another crtc with hardware logic\n"); return 0; } static int lsdc_crtc_man_op_open(struct inode *inode, struct file *file) { struct drm_crtc *crtc = inode->i_private; return single_open(file, lsdc_crtc_man_op_show, crtc); } static ssize_t lsdc_crtc_man_op_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct lsdc_crtc *lcrtc = m->private; const struct lsdc_crtc_hw_ops *ops = lcrtc->hw_ops; char buf[16]; if (len > sizeof(buf) - 1) return -EINVAL; if (copy_from_user(buf, ubuf, len)) return -EFAULT; buf[len] = '\0'; if (sysfs_streq(buf, "soft_reset")) ops->soft_reset(lcrtc); else if (sysfs_streq(buf, "enable")) ops->enable(lcrtc); else if (sysfs_streq(buf, "disable")) ops->disable(lcrtc); else if (sysfs_streq(buf, "flip")) ops->flip(lcrtc); else if (sysfs_streq(buf, "clone")) ops->clone(lcrtc); return len; } static const struct file_operations lsdc_crtc_man_op_fops = { .owner = THIS_MODULE, .open = lsdc_crtc_man_op_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = lsdc_crtc_man_op_write, }; static int lsdc_crtc_late_register(struct drm_crtc *crtc) { struct lsdc_display_pipe *dispipe = crtc_to_display_pipe(crtc); struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc); struct drm_minor *minor = crtc->dev->primary; unsigned int index = dispipe->index; unsigned int i; lcrtc->preg = lsdc_crtc_regs_array[index]; lcrtc->nreg = ARRAY_SIZE(lsdc_crtc_regs_array[index]); lcrtc->p_info_list = lsdc_crtc_debugfs_list[index]; lcrtc->n_info_list = ARRAY_SIZE(lsdc_crtc_debugfs_list[index]); for (i = 0; i < lcrtc->n_info_list; ++i) lcrtc->p_info_list[i].data = lcrtc; drm_debugfs_create_files(lcrtc->p_info_list, lcrtc->n_info_list, crtc->debugfs_entry, minor); /* Manual operations supported */ debugfs_create_file("ops", 0644, crtc->debugfs_entry, lcrtc, &lsdc_crtc_man_op_fops); return 0; } static void lsdc_crtc_atomic_print_state(struct drm_printer *p, const struct drm_crtc_state *state) { const struct lsdc_crtc_state *priv_state; const struct lsdc_pixpll_parms *pparms; priv_state = container_of_const(state, struct lsdc_crtc_state, base); pparms = &priv_state->pparms; drm_printf(p, "\tInput clock divider = %u\n", pparms->div_ref); drm_printf(p, "\tMedium clock multiplier = %u\n", pparms->loopc); drm_printf(p, "\tOutput clock divider = %u\n", pparms->div_out); } static const struct drm_crtc_funcs ls7a1000_crtc_funcs = { .reset = lsdc_crtc_reset, .destroy = drm_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = lsdc_crtc_atomic_duplicate_state, .atomic_destroy_state = lsdc_crtc_atomic_destroy_state, .late_register = lsdc_crtc_late_register, .enable_vblank = lsdc_crtc_enable_vblank, .disable_vblank = lsdc_crtc_disable_vblank, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, .atomic_print_state = lsdc_crtc_atomic_print_state, }; static const struct drm_crtc_funcs ls7a2000_crtc_funcs = { .reset = lsdc_crtc_reset, .destroy = drm_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = lsdc_crtc_atomic_duplicate_state, .atomic_destroy_state = lsdc_crtc_atomic_destroy_state, .late_register = lsdc_crtc_late_register, .get_vblank_counter = lsdc_crtc_get_vblank_counter, .enable_vblank = lsdc_crtc_enable_vblank, .disable_vblank = lsdc_crtc_disable_vblank, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, .atomic_print_state = lsdc_crtc_atomic_print_state, }; static enum drm_mode_status lsdc_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { struct drm_device *ddev = crtc->dev; struct lsdc_device *ldev = to_lsdc(ddev); const struct lsdc_desc *descp = ldev->descp; unsigned int pitch; if (mode->hdisplay > descp->max_width) return MODE_BAD_HVALUE; if (mode->vdisplay > descp->max_height) return MODE_BAD_VVALUE; if (mode->clock > descp->max_pixel_clk) { drm_dbg_kms(ddev, "mode %dx%d, pixel clock=%d is too high\n", mode->hdisplay, mode->vdisplay, mode->clock); return MODE_CLOCK_HIGH; } /* 4 for DRM_FORMAT_XRGB8888 */ pitch = mode->hdisplay * 4; if (pitch % descp->pitch_align) { drm_dbg_kms(ddev, "align to %u bytes is required: %u\n", descp->pitch_align, pitch); return MODE_BAD_WIDTH; } return MODE_OK; } static int lsdc_pixpll_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc); struct lsdc_pixpll *pixpll = &lcrtc->pixpll; const struct lsdc_pixpll_funcs *pfuncs = pixpll->funcs; struct lsdc_crtc_state *priv_state = to_lsdc_crtc_state(state); unsigned int clock = state->mode.clock; int ret; ret = pfuncs->compute(pixpll, clock, &priv_state->pparms); if (ret) { drm_warn(crtc->dev, "Failed to find PLL params for %ukHz\n", clock); return -EINVAL; } return 0; } static int lsdc_crtc_helper_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); if (!crtc_state->enable) return 0; return lsdc_pixpll_atomic_check(crtc, crtc_state); } static void lsdc_crtc_mode_set_nofb(struct drm_crtc *crtc) { struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc); const struct lsdc_crtc_hw_ops *crtc_hw_ops = lcrtc->hw_ops; struct lsdc_pixpll *pixpll = &lcrtc->pixpll; const struct lsdc_pixpll_funcs *pixpll_funcs = pixpll->funcs; struct drm_crtc_state *state = crtc->state; struct drm_display_mode *mode = &state->mode; struct lsdc_crtc_state *priv_state = to_lsdc_crtc_state(state); pixpll_funcs->update(pixpll, &priv_state->pparms); if (crtc_hw_ops->set_dma_step) { unsigned int width_in_bytes = mode->hdisplay * 4; enum lsdc_dma_steps dma_step; /* * Using DMA step as large as possible, for improving * hardware DMA efficiency. */ if (width_in_bytes % 256 == 0) dma_step = LSDC_DMA_STEP_256_BYTES; else if (width_in_bytes % 128 == 0) dma_step = LSDC_DMA_STEP_128_BYTES; else if (width_in_bytes % 64 == 0) dma_step = LSDC_DMA_STEP_64_BYTES; else /* width_in_bytes % 32 == 0 */ dma_step = LSDC_DMA_STEP_32_BYTES; crtc_hw_ops->set_dma_step(lcrtc, dma_step); } crtc_hw_ops->set_mode(lcrtc, mode); } static void lsdc_crtc_send_vblank(struct drm_crtc *crtc) { struct drm_device *ddev = crtc->dev; unsigned long flags; if (!crtc->state || !crtc->state->event) return; drm_dbg(ddev, "Send vblank manually\n"); spin_lock_irqsave(&ddev->event_lock, flags); drm_crtc_send_vblank_event(crtc, crtc->state->event); crtc->state->event = NULL; spin_unlock_irqrestore(&ddev->event_lock, flags); } static void lsdc_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc); if (lcrtc->has_vblank) drm_crtc_vblank_on(crtc); lcrtc->hw_ops->enable(lcrtc); } static void lsdc_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc); if (lcrtc->has_vblank) drm_crtc_vblank_off(crtc); lcrtc->hw_ops->disable(lcrtc); /* * Make sure we issue a vblank event after disabling the CRTC if * someone was waiting it. */ lsdc_crtc_send_vblank(crtc); } static void lsdc_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { spin_lock_irq(&crtc->dev->event_lock); if (crtc->state->event) { if (drm_crtc_vblank_get(crtc) == 0) drm_crtc_arm_vblank_event(crtc, crtc->state->event); else drm_crtc_send_vblank_event(crtc, crtc->state->event); crtc->state->event = NULL; } spin_unlock_irq(&crtc->dev->event_lock); } static bool lsdc_crtc_get_scanout_position(struct drm_crtc *crtc, bool in_vblank_irq, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode) { struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc); const struct lsdc_crtc_hw_ops *ops = lcrtc->hw_ops; int vsw, vbp, vactive_start, vactive_end, vfp_end; int x, y; vsw = mode->crtc_vsync_end - mode->crtc_vsync_start; vbp = mode->crtc_vtotal - mode->crtc_vsync_end; vactive_start = vsw + vbp + 1; vactive_end = vactive_start + mode->crtc_vdisplay; /* last scan line before VSYNC */ vfp_end = mode->crtc_vtotal; if (stime) *stime = ktime_get(); ops->get_scan_pos(lcrtc, &x, &y); if (y > vactive_end) y = y - vfp_end - vactive_start; else y -= vactive_start; *vpos = y; *hpos = 0; if (etime) *etime = ktime_get(); return true; } static const struct drm_crtc_helper_funcs lsdc_crtc_helper_funcs = { .mode_valid = lsdc_crtc_mode_valid, .mode_set_nofb = lsdc_crtc_mode_set_nofb, .atomic_enable = lsdc_crtc_atomic_enable, .atomic_disable = lsdc_crtc_atomic_disable, .atomic_check = lsdc_crtc_helper_atomic_check, .atomic_flush = lsdc_crtc_atomic_flush, .get_scanout_position = lsdc_crtc_get_scanout_position, }; int ls7a1000_crtc_init(struct drm_device *ddev, struct drm_crtc *crtc, struct drm_plane *primary, struct drm_plane *cursor, unsigned int index, bool has_vblank) { struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc); int ret; ret = lsdc_pixpll_init(&lcrtc->pixpll, ddev, index); if (ret) { drm_err(ddev, "pixel pll init failed: %d\n", ret); return ret; } lcrtc->ldev = to_lsdc(ddev); lcrtc->has_vblank = has_vblank; lcrtc->hw_ops = &ls7a1000_crtc_hw_ops[index]; ret = drm_crtc_init_with_planes(ddev, crtc, primary, cursor, &ls7a1000_crtc_funcs, "LS-CRTC-%d", index); if (ret) { drm_err(ddev, "crtc init with planes failed: %d\n", ret); return ret; } drm_crtc_helper_add(crtc, &lsdc_crtc_helper_funcs); ret = drm_mode_crtc_set_gamma_size(crtc, 256); if (ret) return ret; drm_crtc_enable_color_mgmt(crtc, 0, false, 256); return 0; } int ls7a2000_crtc_init(struct drm_device *ddev, struct drm_crtc *crtc, struct drm_plane *primary, struct drm_plane *cursor, unsigned int index, bool has_vblank) { struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc); int ret; ret = lsdc_pixpll_init(&lcrtc->pixpll, ddev, index); if (ret) { drm_err(ddev, "crtc init with pll failed: %d\n", ret); return ret; } lcrtc->ldev = to_lsdc(ddev); lcrtc->has_vblank = has_vblank; lcrtc->hw_ops = &ls7a2000_crtc_hw_ops[index]; ret = drm_crtc_init_with_planes(ddev, crtc, primary, cursor, &ls7a2000_crtc_funcs, "LS-CRTC-%u", index); if (ret) { drm_err(ddev, "crtc init with planes failed: %d\n", ret); return ret; } drm_crtc_helper_add(crtc, &lsdc_crtc_helper_funcs); ret = drm_mode_crtc_set_gamma_size(crtc, 256); if (ret) return ret; drm_crtc_enable_color_mgmt(crtc, 0, false, 256); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1