Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeykumar Sankaran | 1654 | 43.49% | 1 | 3.03% |
Dmitry Eremin-Solenikov | 794 | 20.88% | 9 | 27.27% |
Abhinav Kumar | 443 | 11.65% | 4 | 12.12% |
Kalyan Thota | 418 | 10.99% | 5 | 15.15% |
Kuogee Hsieh | 184 | 4.84% | 4 | 12.12% |
Krishna Manikandan | 130 | 3.42% | 1 | 3.03% |
Sean Paul | 61 | 1.60% | 1 | 3.03% |
Marijn Suijten | 39 | 1.03% | 2 | 6.06% |
Angelo G. Del Regno | 31 | 0.82% | 1 | 3.03% |
Vinod Koul | 25 | 0.66% | 1 | 3.03% |
Jonathan Marek | 14 | 0.37% | 1 | 3.03% |
Rob Clark | 7 | 0.18% | 1 | 3.03% |
Stephen Boyd | 2 | 0.05% | 1 | 3.03% |
Thomas Gleixner | 1 | 0.03% | 1 | 3.03% |
Total | 3803 | 33 |
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved. */ #include <linux/delay.h> #include <drm/drm_managed.h> #include "dpu_hwio.h" #include "dpu_hw_ctl.h" #include "dpu_kms.h" #include "dpu_trace.h" #define CTL_LAYER(lm) \ (((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004)) #define CTL_LAYER_EXT(lm) \ (0x40 + (((lm) - LM_0) * 0x004)) #define CTL_LAYER_EXT2(lm) \ (0x70 + (((lm) - LM_0) * 0x004)) #define CTL_LAYER_EXT3(lm) \ (0xA0 + (((lm) - LM_0) * 0x004)) #define CTL_LAYER_EXT4(lm) \ (0xB8 + (((lm) - LM_0) * 0x004)) #define CTL_TOP 0x014 #define CTL_FLUSH 0x018 #define CTL_START 0x01C #define CTL_PREPARE 0x0d0 #define CTL_SW_RESET 0x030 #define CTL_LAYER_EXTN_OFFSET 0x40 #define CTL_MERGE_3D_ACTIVE 0x0E4 #define CTL_DSC_ACTIVE 0x0E8 #define CTL_WB_ACTIVE 0x0EC #define CTL_INTF_ACTIVE 0x0F4 #define CTL_CDM_ACTIVE 0x0F8 #define CTL_FETCH_PIPE_ACTIVE 0x0FC #define CTL_MERGE_3D_FLUSH 0x100 #define CTL_DSC_FLUSH 0x104 #define CTL_WB_FLUSH 0x108 #define CTL_INTF_FLUSH 0x110 #define CTL_CDM_FLUSH 0x114 #define CTL_PERIPH_FLUSH 0x128 #define CTL_INTF_MASTER 0x134 #define CTL_DSPP_n_FLUSH(n) ((0x13C) + ((n) * 4)) #define CTL_MIXER_BORDER_OUT BIT(24) #define CTL_FLUSH_MASK_CTL BIT(17) #define DPU_REG_RESET_TIMEOUT_US 2000 #define MERGE_3D_IDX 23 #define DSC_IDX 22 #define CDM_IDX 26 #define PERIPH_IDX 30 #define INTF_IDX 31 #define WB_IDX 16 #define DSPP_IDX 29 /* From DPU hw rev 7.x.x */ #define CTL_INVALID_BIT 0xffff #define CTL_DEFAULT_GROUP_ID 0xf static const u32 fetch_tbl[SSPP_MAX] = {CTL_INVALID_BIT, 16, 17, 18, 19, CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, 0, 1, 2, 3, 4, 5}; static int _mixer_stages(const struct dpu_lm_cfg *mixer, int count, enum dpu_lm lm) { int i; int stages = -EINVAL; for (i = 0; i < count; i++) { if (lm == mixer[i].id) { stages = mixer[i].sblk->maxblendstages; break; } } return stages; } static inline u32 dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl *ctx) { struct dpu_hw_blk_reg_map *c = &ctx->hw; return DPU_REG_READ(c, CTL_FLUSH); } static inline void dpu_hw_ctl_trigger_start(struct dpu_hw_ctl *ctx) { trace_dpu_hw_ctl_trigger_start(ctx->pending_flush_mask, dpu_hw_ctl_get_flush_register(ctx)); DPU_REG_WRITE(&ctx->hw, CTL_START, 0x1); } static inline bool dpu_hw_ctl_is_started(struct dpu_hw_ctl *ctx) { return !!(DPU_REG_READ(&ctx->hw, CTL_START) & BIT(0)); } static inline void dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl *ctx) { trace_dpu_hw_ctl_trigger_prepare(ctx->pending_flush_mask, dpu_hw_ctl_get_flush_register(ctx)); DPU_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1); } static inline void dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl *ctx) { trace_dpu_hw_ctl_clear_pending_flush(ctx->pending_flush_mask, dpu_hw_ctl_get_flush_register(ctx)); ctx->pending_flush_mask = 0x0; ctx->pending_intf_flush_mask = 0; ctx->pending_wb_flush_mask = 0; ctx->pending_merge_3d_flush_mask = 0; ctx->pending_dsc_flush_mask = 0; ctx->pending_cdm_flush_mask = 0; memset(ctx->pending_dspp_flush_mask, 0, sizeof(ctx->pending_dspp_flush_mask)); } static inline void dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl *ctx, u32 flushbits) { trace_dpu_hw_ctl_update_pending_flush(flushbits, ctx->pending_flush_mask); ctx->pending_flush_mask |= flushbits; } static u32 dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl *ctx) { return ctx->pending_flush_mask; } static inline void dpu_hw_ctl_trigger_flush_v1(struct dpu_hw_ctl *ctx) { int dspp; if (ctx->pending_flush_mask & BIT(MERGE_3D_IDX)) DPU_REG_WRITE(&ctx->hw, CTL_MERGE_3D_FLUSH, ctx->pending_merge_3d_flush_mask); if (ctx->pending_flush_mask & BIT(INTF_IDX)) DPU_REG_WRITE(&ctx->hw, CTL_INTF_FLUSH, ctx->pending_intf_flush_mask); if (ctx->pending_flush_mask & BIT(WB_IDX)) DPU_REG_WRITE(&ctx->hw, CTL_WB_FLUSH, ctx->pending_wb_flush_mask); if (ctx->pending_flush_mask & BIT(DSPP_IDX)) for (dspp = DSPP_0; dspp < DSPP_MAX; dspp++) { if (ctx->pending_dspp_flush_mask[dspp - DSPP_0]) DPU_REG_WRITE(&ctx->hw, CTL_DSPP_n_FLUSH(dspp - DSPP_0), ctx->pending_dspp_flush_mask[dspp - DSPP_0]); } if (ctx->pending_flush_mask & BIT(PERIPH_IDX)) DPU_REG_WRITE(&ctx->hw, CTL_PERIPH_FLUSH, ctx->pending_periph_flush_mask); if (ctx->pending_flush_mask & BIT(DSC_IDX)) DPU_REG_WRITE(&ctx->hw, CTL_DSC_FLUSH, ctx->pending_dsc_flush_mask); if (ctx->pending_flush_mask & BIT(CDM_IDX)) DPU_REG_WRITE(&ctx->hw, CTL_CDM_FLUSH, ctx->pending_cdm_flush_mask); DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask); } static inline void dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl *ctx) { trace_dpu_hw_ctl_trigger_pending_flush(ctx->pending_flush_mask, dpu_hw_ctl_get_flush_register(ctx)); DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask); } static void dpu_hw_ctl_update_pending_flush_sspp(struct dpu_hw_ctl *ctx, enum dpu_sspp sspp) { switch (sspp) { case SSPP_VIG0: ctx->pending_flush_mask |= BIT(0); break; case SSPP_VIG1: ctx->pending_flush_mask |= BIT(1); break; case SSPP_VIG2: ctx->pending_flush_mask |= BIT(2); break; case SSPP_VIG3: ctx->pending_flush_mask |= BIT(18); break; case SSPP_RGB0: ctx->pending_flush_mask |= BIT(3); break; case SSPP_RGB1: ctx->pending_flush_mask |= BIT(4); break; case SSPP_RGB2: ctx->pending_flush_mask |= BIT(5); break; case SSPP_RGB3: ctx->pending_flush_mask |= BIT(19); break; case SSPP_DMA0: ctx->pending_flush_mask |= BIT(11); break; case SSPP_DMA1: ctx->pending_flush_mask |= BIT(12); break; case SSPP_DMA2: ctx->pending_flush_mask |= BIT(24); break; case SSPP_DMA3: ctx->pending_flush_mask |= BIT(25); break; case SSPP_DMA4: ctx->pending_flush_mask |= BIT(13); break; case SSPP_DMA5: ctx->pending_flush_mask |= BIT(14); break; case SSPP_CURSOR0: ctx->pending_flush_mask |= BIT(22); break; case SSPP_CURSOR1: ctx->pending_flush_mask |= BIT(23); break; default: break; } } static void dpu_hw_ctl_update_pending_flush_mixer(struct dpu_hw_ctl *ctx, enum dpu_lm lm) { switch (lm) { case LM_0: ctx->pending_flush_mask |= BIT(6); break; case LM_1: ctx->pending_flush_mask |= BIT(7); break; case LM_2: ctx->pending_flush_mask |= BIT(8); break; case LM_3: ctx->pending_flush_mask |= BIT(9); break; case LM_4: ctx->pending_flush_mask |= BIT(10); break; case LM_5: ctx->pending_flush_mask |= BIT(20); break; default: break; } ctx->pending_flush_mask |= CTL_FLUSH_MASK_CTL; } static void dpu_hw_ctl_update_pending_flush_intf(struct dpu_hw_ctl *ctx, enum dpu_intf intf) { switch (intf) { case INTF_0: ctx->pending_flush_mask |= BIT(31); break; case INTF_1: ctx->pending_flush_mask |= BIT(30); break; case INTF_2: ctx->pending_flush_mask |= BIT(29); break; case INTF_3: ctx->pending_flush_mask |= BIT(28); break; default: break; } } static void dpu_hw_ctl_update_pending_flush_wb(struct dpu_hw_ctl *ctx, enum dpu_wb wb) { switch (wb) { case WB_0: case WB_1: case WB_2: ctx->pending_flush_mask |= BIT(WB_IDX); break; default: break; } } static void dpu_hw_ctl_update_pending_flush_cdm(struct dpu_hw_ctl *ctx, enum dpu_cdm cdm_num) { /* update pending flush only if CDM_0 is flushed */ if (cdm_num == CDM_0) ctx->pending_flush_mask |= BIT(CDM_IDX); } static void dpu_hw_ctl_update_pending_flush_wb_v1(struct dpu_hw_ctl *ctx, enum dpu_wb wb) { ctx->pending_wb_flush_mask |= BIT(wb - WB_0); ctx->pending_flush_mask |= BIT(WB_IDX); } static void dpu_hw_ctl_update_pending_flush_intf_v1(struct dpu_hw_ctl *ctx, enum dpu_intf intf) { ctx->pending_intf_flush_mask |= BIT(intf - INTF_0); ctx->pending_flush_mask |= BIT(INTF_IDX); } static void dpu_hw_ctl_update_pending_flush_periph_v1(struct dpu_hw_ctl *ctx, enum dpu_intf intf) { ctx->pending_periph_flush_mask |= BIT(intf - INTF_0); ctx->pending_flush_mask |= BIT(PERIPH_IDX); } static void dpu_hw_ctl_update_pending_flush_merge_3d_v1(struct dpu_hw_ctl *ctx, enum dpu_merge_3d merge_3d) { ctx->pending_merge_3d_flush_mask |= BIT(merge_3d - MERGE_3D_0); ctx->pending_flush_mask |= BIT(MERGE_3D_IDX); } static void dpu_hw_ctl_update_pending_flush_dsc_v1(struct dpu_hw_ctl *ctx, enum dpu_dsc dsc_num) { ctx->pending_dsc_flush_mask |= BIT(dsc_num - DSC_0); ctx->pending_flush_mask |= BIT(DSC_IDX); } static void dpu_hw_ctl_update_pending_flush_cdm_v1(struct dpu_hw_ctl *ctx, enum dpu_cdm cdm_num) { ctx->pending_cdm_flush_mask |= BIT(cdm_num - CDM_0); ctx->pending_flush_mask |= BIT(CDM_IDX); } static void dpu_hw_ctl_update_pending_flush_dspp(struct dpu_hw_ctl *ctx, enum dpu_dspp dspp, u32 dspp_sub_blk) { switch (dspp) { case DSPP_0: ctx->pending_flush_mask |= BIT(13); break; case DSPP_1: ctx->pending_flush_mask |= BIT(14); break; case DSPP_2: ctx->pending_flush_mask |= BIT(15); break; case DSPP_3: ctx->pending_flush_mask |= BIT(21); break; default: break; } } static void dpu_hw_ctl_update_pending_flush_dspp_sub_blocks( struct dpu_hw_ctl *ctx, enum dpu_dspp dspp, u32 dspp_sub_blk) { if (dspp >= DSPP_MAX) return; switch (dspp_sub_blk) { case DPU_DSPP_PCC: ctx->pending_dspp_flush_mask[dspp - DSPP_0] |= BIT(4); break; default: return; } ctx->pending_flush_mask |= BIT(DSPP_IDX); } static u32 dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl *ctx, u32 timeout_us) { struct dpu_hw_blk_reg_map *c = &ctx->hw; ktime_t timeout; u32 status; timeout = ktime_add_us(ktime_get(), timeout_us); /* * it takes around 30us to have mdp finish resetting its ctl path * poll every 50us so that reset should be completed at 1st poll */ do { status = DPU_REG_READ(c, CTL_SW_RESET); status &= 0x1; if (status) usleep_range(20, 50); } while (status && ktime_compare_safe(ktime_get(), timeout) < 0); return status; } static int dpu_hw_ctl_reset_control(struct dpu_hw_ctl *ctx) { struct dpu_hw_blk_reg_map *c = &ctx->hw; pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx); DPU_REG_WRITE(c, CTL_SW_RESET, 0x1); if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) return -EINVAL; return 0; } static int dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl *ctx) { struct dpu_hw_blk_reg_map *c = &ctx->hw; u32 status; status = DPU_REG_READ(c, CTL_SW_RESET); status &= 0x01; if (!status) return 0; pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx); if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) { pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx); return -EINVAL; } return 0; } static void dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl *ctx) { struct dpu_hw_blk_reg_map *c = &ctx->hw; int i; for (i = 0; i < ctx->mixer_count; i++) { enum dpu_lm mixer_id = ctx->mixer_hw_caps[i].id; DPU_REG_WRITE(c, CTL_LAYER(mixer_id), 0); DPU_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0); DPU_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0); DPU_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0); } DPU_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, 0); } struct ctl_blend_config { int idx, shift, ext_shift; }; static const struct ctl_blend_config ctl_blend_config[][2] = { [SSPP_NONE] = { { -1 }, { -1 } }, [SSPP_MAX] = { { -1 }, { -1 } }, [SSPP_VIG0] = { { 0, 0, 0 }, { 3, 0 } }, [SSPP_VIG1] = { { 0, 3, 2 }, { 3, 4 } }, [SSPP_VIG2] = { { 0, 6, 4 }, { 3, 8 } }, [SSPP_VIG3] = { { 0, 26, 6 }, { 3, 12 } }, [SSPP_RGB0] = { { 0, 9, 8 }, { -1 } }, [SSPP_RGB1] = { { 0, 12, 10 }, { -1 } }, [SSPP_RGB2] = { { 0, 15, 12 }, { -1 } }, [SSPP_RGB3] = { { 0, 29, 14 }, { -1 } }, [SSPP_DMA0] = { { 0, 18, 16 }, { 2, 8 } }, [SSPP_DMA1] = { { 0, 21, 18 }, { 2, 12 } }, [SSPP_DMA2] = { { 2, 0 }, { 2, 16 } }, [SSPP_DMA3] = { { 2, 4 }, { 2, 20 } }, [SSPP_DMA4] = { { 4, 0 }, { 4, 8 } }, [SSPP_DMA5] = { { 4, 4 }, { 4, 12 } }, [SSPP_CURSOR0] = { { 1, 20 }, { -1 } }, [SSPP_CURSOR1] = { { 1, 26 }, { -1 } }, }; static void dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl *ctx, enum dpu_lm lm, struct dpu_hw_stage_cfg *stage_cfg) { struct dpu_hw_blk_reg_map *c = &ctx->hw; u32 mix, ext, mix_ext; u32 mixercfg[5] = { 0 }; int i, j; int stages; int pipes_per_stage; stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm); if (stages < 0) return; if (test_bit(DPU_MIXER_SOURCESPLIT, &ctx->mixer_hw_caps->features)) pipes_per_stage = PIPES_PER_STAGE; else pipes_per_stage = 1; mixercfg[0] = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */ if (!stage_cfg) goto exit; for (i = 0; i <= stages; i++) { /* overflow to ext register if 'i + 1 > 7' */ mix = (i + 1) & 0x7; ext = i >= 7; mix_ext = (i + 1) & 0xf; for (j = 0 ; j < pipes_per_stage; j++) { enum dpu_sspp_multirect_index rect_index = stage_cfg->multirect_index[i][j]; enum dpu_sspp pipe = stage_cfg->stage[i][j]; const struct ctl_blend_config *cfg = &ctl_blend_config[pipe][rect_index == DPU_SSPP_RECT_1]; /* * CTL_LAYER has 3-bit field (and extra bits in EXT register), * all EXT registers has 4-bit fields. */ if (cfg->idx == -1) { continue; } else if (cfg->idx == 0) { mixercfg[0] |= mix << cfg->shift; mixercfg[1] |= ext << cfg->ext_shift; } else { mixercfg[cfg->idx] |= mix_ext << cfg->shift; } } } exit: DPU_REG_WRITE(c, CTL_LAYER(lm), mixercfg[0]); DPU_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg[1]); DPU_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg[2]); DPU_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg[3]); if ((test_bit(DPU_CTL_HAS_LAYER_EXT4, &ctx->caps->features))) DPU_REG_WRITE(c, CTL_LAYER_EXT4(lm), mixercfg[4]); } static void dpu_hw_ctl_intf_cfg_v1(struct dpu_hw_ctl *ctx, struct dpu_hw_intf_cfg *cfg) { struct dpu_hw_blk_reg_map *c = &ctx->hw; u32 intf_active = 0; u32 dsc_active = 0; u32 wb_active = 0; u32 mode_sel = 0; /* CTL_TOP[31:28] carries group_id to collate CTL paths * per VM. Explicitly disable it until VM support is * added in SW. Power on reset value is not disable. */ if ((test_bit(DPU_CTL_VM_CFG, &ctx->caps->features))) mode_sel = CTL_DEFAULT_GROUP_ID << 28; if (cfg->intf_mode_sel == DPU_CTL_MODE_SEL_CMD) mode_sel |= BIT(17); intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE); wb_active = DPU_REG_READ(c, CTL_WB_ACTIVE); dsc_active = DPU_REG_READ(c, CTL_DSC_ACTIVE); if (cfg->intf) intf_active |= BIT(cfg->intf - INTF_0); if (cfg->wb) wb_active |= BIT(cfg->wb - WB_0); if (cfg->dsc) dsc_active |= cfg->dsc; DPU_REG_WRITE(c, CTL_TOP, mode_sel); DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active); DPU_REG_WRITE(c, CTL_WB_ACTIVE, wb_active); DPU_REG_WRITE(c, CTL_DSC_ACTIVE, dsc_active); if (cfg->merge_3d) DPU_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, BIT(cfg->merge_3d - MERGE_3D_0)); if (cfg->cdm) DPU_REG_WRITE(c, CTL_CDM_ACTIVE, cfg->cdm); } static void dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl *ctx, struct dpu_hw_intf_cfg *cfg) { struct dpu_hw_blk_reg_map *c = &ctx->hw; u32 intf_cfg = 0; intf_cfg |= (cfg->intf & 0xF) << 4; if (cfg->mode_3d) { intf_cfg |= BIT(19); intf_cfg |= (cfg->mode_3d - 0x1) << 20; } if (cfg->wb) intf_cfg |= (cfg->wb & 0x3) + 2; switch (cfg->intf_mode_sel) { case DPU_CTL_MODE_SEL_VID: intf_cfg &= ~BIT(17); intf_cfg &= ~(0x3 << 15); break; case DPU_CTL_MODE_SEL_CMD: intf_cfg |= BIT(17); intf_cfg |= ((cfg->stream_sel & 0x3) << 15); break; default: pr_err("unknown interface type %d\n", cfg->intf_mode_sel); return; } DPU_REG_WRITE(c, CTL_TOP, intf_cfg); } static void dpu_hw_ctl_reset_intf_cfg_v1(struct dpu_hw_ctl *ctx, struct dpu_hw_intf_cfg *cfg) { struct dpu_hw_blk_reg_map *c = &ctx->hw; u32 intf_active = 0; u32 wb_active = 0; u32 merge3d_active = 0; u32 dsc_active; u32 cdm_active; /* * This API resets each portion of the CTL path namely, * clearing the sspps staged on the lm, merge_3d block, * interfaces , writeback etc to ensure clean teardown of the pipeline. * This will be used for writeback to begin with to have a * proper teardown of the writeback session but upon further * validation, this can be extended to all interfaces. */ if (cfg->merge_3d) { merge3d_active = DPU_REG_READ(c, CTL_MERGE_3D_ACTIVE); merge3d_active &= ~BIT(cfg->merge_3d - MERGE_3D_0); DPU_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge3d_active); } dpu_hw_ctl_clear_all_blendstages(ctx); if (cfg->intf) { intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE); intf_active &= ~BIT(cfg->intf - INTF_0); DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active); } if (cfg->wb) { wb_active = DPU_REG_READ(c, CTL_WB_ACTIVE); wb_active &= ~BIT(cfg->wb - WB_0); DPU_REG_WRITE(c, CTL_WB_ACTIVE, wb_active); } if (cfg->dsc) { dsc_active = DPU_REG_READ(c, CTL_DSC_ACTIVE); dsc_active &= ~cfg->dsc; DPU_REG_WRITE(c, CTL_DSC_ACTIVE, dsc_active); } if (cfg->cdm) { cdm_active = DPU_REG_READ(c, CTL_CDM_ACTIVE); cdm_active &= ~cfg->cdm; DPU_REG_WRITE(c, CTL_CDM_ACTIVE, cdm_active); } } static void dpu_hw_ctl_set_fetch_pipe_active(struct dpu_hw_ctl *ctx, unsigned long *fetch_active) { int i; u32 val = 0; if (fetch_active) { for (i = 0; i < SSPP_MAX; i++) { if (test_bit(i, fetch_active) && fetch_tbl[i] != CTL_INVALID_BIT) val |= BIT(fetch_tbl[i]); } } DPU_REG_WRITE(&ctx->hw, CTL_FETCH_PIPE_ACTIVE, val); } static void _setup_ctl_ops(struct dpu_hw_ctl_ops *ops, unsigned long cap) { if (cap & BIT(DPU_CTL_ACTIVE_CFG)) { ops->trigger_flush = dpu_hw_ctl_trigger_flush_v1; ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg_v1; ops->reset_intf_cfg = dpu_hw_ctl_reset_intf_cfg_v1; ops->update_pending_flush_intf = dpu_hw_ctl_update_pending_flush_intf_v1; ops->update_pending_flush_periph = dpu_hw_ctl_update_pending_flush_periph_v1; ops->update_pending_flush_merge_3d = dpu_hw_ctl_update_pending_flush_merge_3d_v1; ops->update_pending_flush_wb = dpu_hw_ctl_update_pending_flush_wb_v1; ops->update_pending_flush_dsc = dpu_hw_ctl_update_pending_flush_dsc_v1; ops->update_pending_flush_cdm = dpu_hw_ctl_update_pending_flush_cdm_v1; } else { ops->trigger_flush = dpu_hw_ctl_trigger_flush; ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg; ops->update_pending_flush_intf = dpu_hw_ctl_update_pending_flush_intf; ops->update_pending_flush_wb = dpu_hw_ctl_update_pending_flush_wb; ops->update_pending_flush_cdm = dpu_hw_ctl_update_pending_flush_cdm; } ops->clear_pending_flush = dpu_hw_ctl_clear_pending_flush; ops->update_pending_flush = dpu_hw_ctl_update_pending_flush; ops->get_pending_flush = dpu_hw_ctl_get_pending_flush; ops->get_flush_register = dpu_hw_ctl_get_flush_register; ops->trigger_start = dpu_hw_ctl_trigger_start; ops->is_started = dpu_hw_ctl_is_started; ops->trigger_pending = dpu_hw_ctl_trigger_pending; ops->reset = dpu_hw_ctl_reset_control; ops->wait_reset_status = dpu_hw_ctl_wait_reset_status; ops->clear_all_blendstages = dpu_hw_ctl_clear_all_blendstages; ops->setup_blendstage = dpu_hw_ctl_setup_blendstage; ops->update_pending_flush_sspp = dpu_hw_ctl_update_pending_flush_sspp; ops->update_pending_flush_mixer = dpu_hw_ctl_update_pending_flush_mixer; if (cap & BIT(DPU_CTL_DSPP_SUB_BLOCK_FLUSH)) ops->update_pending_flush_dspp = dpu_hw_ctl_update_pending_flush_dspp_sub_blocks; else ops->update_pending_flush_dspp = dpu_hw_ctl_update_pending_flush_dspp; if (cap & BIT(DPU_CTL_FETCH_ACTIVE)) ops->set_active_pipes = dpu_hw_ctl_set_fetch_pipe_active; }; struct dpu_hw_ctl *dpu_hw_ctl_init(struct drm_device *dev, const struct dpu_ctl_cfg *cfg, void __iomem *addr, u32 mixer_count, const struct dpu_lm_cfg *mixer) { struct dpu_hw_ctl *c; c = drmm_kzalloc(dev, sizeof(*c), GFP_KERNEL); if (!c) return ERR_PTR(-ENOMEM); c->hw.blk_addr = addr + cfg->base; c->hw.log_mask = DPU_DBG_MASK_CTL; c->caps = cfg; _setup_ctl_ops(&c->ops, c->caps->features); c->idx = cfg->id; c->mixer_count = mixer_count; c->mixer_hw_caps = mixer; return c; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1