Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hai Li | 6471 | 59.81% | 10 | 7.19% |
Archit Taneja | 1454 | 13.44% | 24 | 17.27% |
Sibi Sankar | 575 | 5.31% | 2 | 1.44% |
Vinod Koul | 469 | 4.33% | 4 | 2.88% |
Dmitry Eremin-Solenikov | 453 | 4.19% | 22 | 15.83% |
Abhinav Kumar | 352 | 3.25% | 8 | 5.76% |
Jessica Zhang | 226 | 2.09% | 8 | 5.76% |
Rob Clark | 159 | 1.47% | 13 | 9.35% |
Sean Paul | 111 | 1.03% | 4 | 2.88% |
Marijn Suijten | 83 | 0.77% | 8 | 5.76% |
Rajendra Nayak | 63 | 0.58% | 1 | 0.72% |
Vladimir Lypak | 62 | 0.57% | 1 | 0.72% |
Doug Anderson | 60 | 0.55% | 2 | 1.44% |
Jonathan Marek | 59 | 0.55% | 2 | 1.44% |
Chandan Uddaraju | 51 | 0.47% | 1 | 0.72% |
Jiasheng Jiang | 37 | 0.34% | 2 | 1.44% |
Harigovindan P | 17 | 0.16% | 1 | 0.72% |
Konrad Dybcio | 17 | 0.16% | 2 | 1.44% |
Sam Ravnborg | 10 | 0.09% | 1 | 0.72% |
Jordan Crouse | 10 | 0.09% | 2 | 1.44% |
Marek Vašut | 9 | 0.08% | 1 | 0.72% |
Uwe Kleine-König | 9 | 0.08% | 1 | 0.72% |
Jeffrey Hugo | 8 | 0.07% | 1 | 0.72% |
Mamta Shukla | 8 | 0.07% | 1 | 0.72% |
Philip Chen | 7 | 0.06% | 1 | 0.72% |
Yangtao Li | 5 | 0.05% | 1 | 0.72% |
Dan Carpenter | 4 | 0.04% | 1 | 0.72% |
Laurent Pinchart | 4 | 0.04% | 1 | 0.72% |
Wei Yongjun | 4 | 0.04% | 1 | 0.72% |
Nicolas Boichat | 4 | 0.04% | 1 | 0.72% |
Björn Andersson | 3 | 0.03% | 1 | 0.72% |
Daniel Mack | 3 | 0.03% | 1 | 0.72% |
Brian Norris | 3 | 0.03% | 1 | 0.72% |
Stephane Viau | 2 | 0.02% | 1 | 0.72% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.72% |
Stefan Agner | 1 | 0.01% | 1 | 0.72% |
Nicholas Mc Guire | 1 | 0.01% | 1 | 0.72% |
Viresh Kumar | 1 | 0.01% | 1 | 0.72% |
Rob Herring | 1 | 0.01% | 1 | 0.72% |
Fabian Frederick | 1 | 0.01% | 1 | 0.72% |
Rikard Falkeborn | 1 | 0.01% | 1 | 0.72% |
Total | 10820 | 139 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/of_graph.h> #include <linux/of_irq.h> #include <linux/pinctrl/consumer.h> #include <linux/pm_opp.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/spinlock.h> #include <video/mipi_display.h> #include <drm/display/drm_dsc_helper.h> #include <drm/drm_of.h> #include "dsi.h" #include "dsi.xml.h" #include "sfpb.xml.h" #include "dsi_cfg.h" #include "msm_dsc_helper.h" #include "msm_kms.h" #include "msm_gem.h" #include "phy/dsi_phy.h" #define DSI_RESET_TOGGLE_DELAY_MS 20 static int dsi_populate_dsc_params(struct msm_dsi_host *msm_host, struct drm_dsc_config *dsc); static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor) { u32 ver; if (!major || !minor) return -EINVAL; /* * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0 * makes all other registers 4-byte shifted down. * * In order to identify between DSI6G(v3) and beyond, and DSIv2 and * older, we read the DSI_VERSION register without any shift(offset * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In * the case of DSI6G, this has to be zero (the offset points to a * scratch register which we never touch) */ ver = readl(base + REG_DSI_VERSION); if (ver) { /* older dsi host, there is no register shift */ ver = FIELD(ver, DSI_VERSION_MAJOR); if (ver <= MSM_DSI_VER_MAJOR_V2) { /* old versions */ *major = ver; *minor = 0; return 0; } else { return -EINVAL; } } else { /* * newer host, offset 0 has 6G_HW_VERSION, the rest of the * registers are shifted down, read DSI_VERSION again with * the shifted offset */ ver = readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION); ver = FIELD(ver, DSI_VERSION_MAJOR); if (ver == MSM_DSI_VER_MAJOR_6G) { /* 6G version */ *major = ver; *minor = readl(base + REG_DSI_6G_HW_VERSION); return 0; } else { return -EINVAL; } } } #define DSI_ERR_STATE_ACK 0x0000 #define DSI_ERR_STATE_TIMEOUT 0x0001 #define DSI_ERR_STATE_DLN0_PHY 0x0002 #define DSI_ERR_STATE_FIFO 0x0004 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010 #define DSI_ERR_STATE_PLL_UNLOCKED 0x0020 #define DSI_CLK_CTRL_ENABLE_CLKS \ (DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \ DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \ DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \ DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK) struct msm_dsi_host { struct mipi_dsi_host base; struct platform_device *pdev; struct drm_device *dev; int id; void __iomem *ctrl_base; phys_addr_t ctrl_size; struct regulator_bulk_data *supplies; int num_bus_clks; struct clk_bulk_data bus_clks[DSI_BUS_CLK_MAX]; struct clk *byte_clk; struct clk *esc_clk; struct clk *pixel_clk; struct clk *byte_intf_clk; unsigned long byte_clk_rate; unsigned long byte_intf_clk_rate; unsigned long pixel_clk_rate; unsigned long esc_clk_rate; /* DSI v2 specific clocks */ struct clk *src_clk; unsigned long src_clk_rate; struct gpio_desc *disp_en_gpio; struct gpio_desc *te_gpio; const struct msm_dsi_cfg_handler *cfg_hnd; struct completion dma_comp; struct completion video_comp; struct mutex dev_mutex; struct mutex cmd_mutex; spinlock_t intr_lock; /* Protect interrupt ctrl register */ u32 err_work_state; struct work_struct err_work; struct workqueue_struct *workqueue; /* DSI 6G TX buffer*/ struct drm_gem_object *tx_gem_obj; struct msm_gem_address_space *aspace; /* DSI v2 TX buffer */ void *tx_buf; dma_addr_t tx_buf_paddr; int tx_size; u8 *rx_buf; struct regmap *sfpb; struct drm_display_mode *mode; struct drm_dsc_config *dsc; /* connected device info */ unsigned int channel; unsigned int lanes; enum mipi_dsi_pixel_format format; unsigned long mode_flags; /* lane data parsed via DT */ int dlane_swap; int num_data_lanes; /* from phy DT */ bool cphy_mode; u32 dma_cmd_ctrl_restore; bool registered; bool power_on; bool enabled; int irq; }; static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg) { return readl(msm_host->ctrl_base + reg); } static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data) { writel(data, msm_host->ctrl_base + reg); } static const struct msm_dsi_cfg_handler *dsi_get_config( struct msm_dsi_host *msm_host) { const struct msm_dsi_cfg_handler *cfg_hnd = NULL; struct device *dev = &msm_host->pdev->dev; struct clk *ahb_clk; int ret; u32 major = 0, minor = 0; ahb_clk = msm_clk_get(msm_host->pdev, "iface"); if (IS_ERR(ahb_clk)) { pr_err("%s: cannot get interface clock\n", __func__); goto exit; } pm_runtime_get_sync(dev); ret = clk_prepare_enable(ahb_clk); if (ret) { pr_err("%s: unable to enable ahb_clk\n", __func__); goto runtime_put; } ret = dsi_get_version(msm_host->ctrl_base, &major, &minor); if (ret) { pr_err("%s: Invalid version\n", __func__); goto disable_clks; } cfg_hnd = msm_dsi_cfg_get(major, minor); DBG("%s: Version %x:%x\n", __func__, major, minor); disable_clks: clk_disable_unprepare(ahb_clk); runtime_put: pm_runtime_put_sync(dev); exit: return cfg_hnd; } static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host) { return container_of(host, struct msm_dsi_host, base); } int dsi_clk_init_v2(struct msm_dsi_host *msm_host) { struct platform_device *pdev = msm_host->pdev; int ret = 0; msm_host->src_clk = msm_clk_get(pdev, "src"); if (IS_ERR(msm_host->src_clk)) { ret = PTR_ERR(msm_host->src_clk); pr_err("%s: can't find src clock. ret=%d\n", __func__, ret); msm_host->src_clk = NULL; return ret; } return ret; } int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host) { struct platform_device *pdev = msm_host->pdev; int ret = 0; msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf"); if (IS_ERR(msm_host->byte_intf_clk)) { ret = PTR_ERR(msm_host->byte_intf_clk); pr_err("%s: can't find byte_intf clock. ret=%d\n", __func__, ret); } return ret; } static int dsi_clk_init(struct msm_dsi_host *msm_host) { struct platform_device *pdev = msm_host->pdev; const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; const struct msm_dsi_config *cfg = cfg_hnd->cfg; int i, ret = 0; /* get bus clocks */ for (i = 0; i < cfg->num_bus_clks; i++) msm_host->bus_clks[i].id = cfg->bus_clk_names[i]; msm_host->num_bus_clks = cfg->num_bus_clks; ret = devm_clk_bulk_get(&pdev->dev, msm_host->num_bus_clks, msm_host->bus_clks); if (ret < 0) { dev_err(&pdev->dev, "Unable to get clocks, ret = %d\n", ret); goto exit; } /* get link and source clocks */ msm_host->byte_clk = msm_clk_get(pdev, "byte"); if (IS_ERR(msm_host->byte_clk)) { ret = PTR_ERR(msm_host->byte_clk); pr_err("%s: can't find dsi_byte clock. ret=%d\n", __func__, ret); msm_host->byte_clk = NULL; goto exit; } msm_host->pixel_clk = msm_clk_get(pdev, "pixel"); if (IS_ERR(msm_host->pixel_clk)) { ret = PTR_ERR(msm_host->pixel_clk); pr_err("%s: can't find dsi_pixel clock. ret=%d\n", __func__, ret); msm_host->pixel_clk = NULL; goto exit; } msm_host->esc_clk = msm_clk_get(pdev, "core"); if (IS_ERR(msm_host->esc_clk)) { ret = PTR_ERR(msm_host->esc_clk); pr_err("%s: can't find dsi_esc clock. ret=%d\n", __func__, ret); msm_host->esc_clk = NULL; goto exit; } if (cfg_hnd->ops->clk_init_ver) ret = cfg_hnd->ops->clk_init_ver(msm_host); exit: return ret; } int msm_dsi_runtime_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); struct mipi_dsi_host *host = msm_dsi->host; struct msm_dsi_host *msm_host = to_msm_dsi_host(host); if (!msm_host->cfg_hnd) return 0; clk_bulk_disable_unprepare(msm_host->num_bus_clks, msm_host->bus_clks); return 0; } int msm_dsi_runtime_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); struct mipi_dsi_host *host = msm_dsi->host; struct msm_dsi_host *msm_host = to_msm_dsi_host(host); if (!msm_host->cfg_hnd) return 0; return clk_bulk_prepare_enable(msm_host->num_bus_clks, msm_host->bus_clks); } int dsi_link_clk_set_rate_6g(struct msm_dsi_host *msm_host) { int ret; DBG("Set clk rates: pclk=%lu, byteclk=%lu", msm_host->pixel_clk_rate, msm_host->byte_clk_rate); ret = dev_pm_opp_set_rate(&msm_host->pdev->dev, msm_host->byte_clk_rate); if (ret) { pr_err("%s: dev_pm_opp_set_rate failed %d\n", __func__, ret); return ret; } ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); if (ret) { pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); return ret; } if (msm_host->byte_intf_clk) { ret = clk_set_rate(msm_host->byte_intf_clk, msm_host->byte_intf_clk_rate); if (ret) { pr_err("%s: Failed to set rate byte intf clk, %d\n", __func__, ret); return ret; } } return 0; } int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host) { int ret; ret = clk_prepare_enable(msm_host->esc_clk); if (ret) { pr_err("%s: Failed to enable dsi esc clk\n", __func__); goto error; } ret = clk_prepare_enable(msm_host->byte_clk); if (ret) { pr_err("%s: Failed to enable dsi byte clk\n", __func__); goto byte_clk_err; } ret = clk_prepare_enable(msm_host->pixel_clk); if (ret) { pr_err("%s: Failed to enable dsi pixel clk\n", __func__); goto pixel_clk_err; } ret = clk_prepare_enable(msm_host->byte_intf_clk); if (ret) { pr_err("%s: Failed to enable byte intf clk\n", __func__); goto byte_intf_clk_err; } return 0; byte_intf_clk_err: clk_disable_unprepare(msm_host->pixel_clk); pixel_clk_err: clk_disable_unprepare(msm_host->byte_clk); byte_clk_err: clk_disable_unprepare(msm_host->esc_clk); error: return ret; } int dsi_link_clk_set_rate_v2(struct msm_dsi_host *msm_host) { int ret; DBG("Set clk rates: pclk=%lu, byteclk=%lu, esc_clk=%lu, dsi_src_clk=%lu", msm_host->pixel_clk_rate, msm_host->byte_clk_rate, msm_host->esc_clk_rate, msm_host->src_clk_rate); ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); if (ret) { pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); return ret; } ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate); if (ret) { pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret); return ret; } ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate); if (ret) { pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret); return ret; } ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); if (ret) { pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); return ret; } return 0; } int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host) { int ret; ret = clk_prepare_enable(msm_host->byte_clk); if (ret) { pr_err("%s: Failed to enable dsi byte clk\n", __func__); goto error; } ret = clk_prepare_enable(msm_host->esc_clk); if (ret) { pr_err("%s: Failed to enable dsi esc clk\n", __func__); goto esc_clk_err; } ret = clk_prepare_enable(msm_host->src_clk); if (ret) { pr_err("%s: Failed to enable dsi src clk\n", __func__); goto src_clk_err; } ret = clk_prepare_enable(msm_host->pixel_clk); if (ret) { pr_err("%s: Failed to enable dsi pixel clk\n", __func__); goto pixel_clk_err; } return 0; pixel_clk_err: clk_disable_unprepare(msm_host->src_clk); src_clk_err: clk_disable_unprepare(msm_host->esc_clk); esc_clk_err: clk_disable_unprepare(msm_host->byte_clk); error: return ret; } void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host) { /* Drop the performance state vote */ dev_pm_opp_set_rate(&msm_host->pdev->dev, 0); clk_disable_unprepare(msm_host->esc_clk); clk_disable_unprepare(msm_host->pixel_clk); clk_disable_unprepare(msm_host->byte_intf_clk); clk_disable_unprepare(msm_host->byte_clk); } void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host) { clk_disable_unprepare(msm_host->pixel_clk); clk_disable_unprepare(msm_host->src_clk); clk_disable_unprepare(msm_host->esc_clk); clk_disable_unprepare(msm_host->byte_clk); } /** * dsi_adjust_pclk_for_compression() - Adjust the pclk rate for compression case * @mode: The selected mode for the DSI output * @dsc: DRM DSC configuration for this DSI output * * Adjust the pclk rate by calculating a new hdisplay proportional to * the compression ratio such that: * new_hdisplay = old_hdisplay * compressed_bpp / uncompressed_bpp * * Porches do not need to be adjusted: * - For VIDEO mode they are not compressed by DSC and are passed as is. * - For CMD mode there are no actual porches. Instead these fields * currently represent the overhead to the image data transfer. As such, they * are calculated for the final mode parameters (after the compression) and * are not to be adjusted too. * * FIXME: Reconsider this if/when CMD mode handling is rewritten to use * transfer time and data overhead as a starting point of the calculations. */ static unsigned long dsi_adjust_pclk_for_compression(const struct drm_display_mode *mode, const struct drm_dsc_config *dsc) { int new_hdisplay = DIV_ROUND_UP(mode->hdisplay * drm_dsc_get_bpp_int(dsc), dsc->bits_per_component * 3); int new_htotal = mode->htotal - mode->hdisplay + new_hdisplay; return new_htotal * mode->vtotal * drm_mode_vrefresh(mode); } static unsigned long dsi_get_pclk_rate(const struct drm_display_mode *mode, const struct drm_dsc_config *dsc, bool is_bonded_dsi) { unsigned long pclk_rate; pclk_rate = mode->clock * 1000; if (dsc) pclk_rate = dsi_adjust_pclk_for_compression(mode, dsc); /* * For bonded DSI mode, the current DRM mode has the complete width of the * panel. Since, the complete panel is driven by two DSI controllers, * the clock rates have to be split between the two dsi controllers. * Adjust the byte and pixel clock rates for each dsi host accordingly. */ if (is_bonded_dsi) pclk_rate /= 2; return pclk_rate; } unsigned long dsi_byte_clk_get_rate(struct mipi_dsi_host *host, bool is_bonded_dsi, const struct drm_display_mode *mode) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); u8 lanes = msm_host->lanes; u32 bpp = mipi_dsi_pixel_format_to_bpp(msm_host->format); unsigned long pclk_rate = dsi_get_pclk_rate(mode, msm_host->dsc, is_bonded_dsi); unsigned long pclk_bpp; if (lanes == 0) { pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__); lanes = 1; } /* CPHY "byte_clk" is in units of 16 bits */ if (msm_host->cphy_mode) pclk_bpp = mult_frac(pclk_rate, bpp, 16 * lanes); else pclk_bpp = mult_frac(pclk_rate, bpp, 8 * lanes); return pclk_bpp; } static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_bonded_dsi) { msm_host->pixel_clk_rate = dsi_get_pclk_rate(msm_host->mode, msm_host->dsc, is_bonded_dsi); msm_host->byte_clk_rate = dsi_byte_clk_get_rate(&msm_host->base, is_bonded_dsi, msm_host->mode); DBG("pclk=%lu, bclk=%lu", msm_host->pixel_clk_rate, msm_host->byte_clk_rate); } int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_bonded_dsi) { if (!msm_host->mode) { pr_err("%s: mode not set\n", __func__); return -EINVAL; } dsi_calc_pclk(msm_host, is_bonded_dsi); msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk); return 0; } int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_bonded_dsi) { u32 bpp = mipi_dsi_pixel_format_to_bpp(msm_host->format); unsigned int esc_mhz, esc_div; unsigned long byte_mhz; dsi_calc_pclk(msm_host, is_bonded_dsi); msm_host->src_clk_rate = mult_frac(msm_host->pixel_clk_rate, bpp, 8); /* * esc clock is byte clock followed by a 4 bit divider, * we need to find an escape clock frequency within the * mipi DSI spec range within the maximum divider limit * We iterate here between an escape clock frequencey * between 20 Mhz to 5 Mhz and pick up the first one * that can be supported by our divider */ byte_mhz = msm_host->byte_clk_rate / 1000000; for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) { esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz); /* * TODO: Ideally, we shouldn't know what sort of divider * is available in mmss_cc, we're just assuming that * it'll always be a 4 bit divider. Need to come up with * a better way here. */ if (esc_div >= 1 && esc_div <= 16) break; } if (esc_mhz < 5) return -EINVAL; msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div; DBG("esc=%lu, src=%lu", msm_host->esc_clk_rate, msm_host->src_clk_rate); return 0; } static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable) { u32 intr; unsigned long flags; spin_lock_irqsave(&msm_host->intr_lock, flags); intr = dsi_read(msm_host, REG_DSI_INTR_CTRL); if (enable) intr |= mask; else intr &= ~mask; DBG("intr=%x enable=%d", intr, enable); dsi_write(msm_host, REG_DSI_INTR_CTRL, intr); spin_unlock_irqrestore(&msm_host->intr_lock, flags); } static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags) { if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST) return BURST_MODE; else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) return NON_BURST_SYNCH_PULSE; return NON_BURST_SYNCH_EVENT; } static inline enum dsi_vid_dst_format dsi_get_vid_fmt( const enum mipi_dsi_pixel_format mipi_fmt) { switch (mipi_fmt) { case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888; case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE; case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666; case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565; default: return VID_DST_FORMAT_RGB888; } } static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt( const enum mipi_dsi_pixel_format mipi_fmt) { switch (mipi_fmt) { case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888; case MIPI_DSI_FMT_RGB666_PACKED: case MIPI_DSI_FMT_RGB666: return CMD_DST_FORMAT_RGB666; case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565; default: return CMD_DST_FORMAT_RGB888; } } static void dsi_ctrl_disable(struct msm_dsi_host *msm_host) { dsi_write(msm_host, REG_DSI_CTRL, 0); } bool msm_dsi_host_is_wide_bus_enabled(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); return msm_host->dsc && (msm_host->cfg_hnd->major == MSM_DSI_VER_MAJOR_6G && msm_host->cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V2_5_0); } static void dsi_ctrl_enable(struct msm_dsi_host *msm_host, struct msm_dsi_phy_shared_timings *phy_shared_timings, struct msm_dsi_phy *phy) { u32 flags = msm_host->mode_flags; enum mipi_dsi_pixel_format mipi_fmt = msm_host->format; const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; u32 data = 0, lane_ctrl = 0; if (flags & MIPI_DSI_MODE_VIDEO) { if (flags & MIPI_DSI_MODE_VIDEO_HSE) data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE; if (flags & MIPI_DSI_MODE_VIDEO_NO_HFP) data |= DSI_VID_CFG0_HFP_POWER_STOP; if (flags & MIPI_DSI_MODE_VIDEO_NO_HBP) data |= DSI_VID_CFG0_HBP_POWER_STOP; if (flags & MIPI_DSI_MODE_VIDEO_NO_HSA) data |= DSI_VID_CFG0_HSA_POWER_STOP; /* Always set low power stop mode for BLLP * to let command engine send packets */ data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP | DSI_VID_CFG0_BLLP_POWER_STOP; data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags)); data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt)); data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel); dsi_write(msm_host, REG_DSI_VID_CFG0, data); /* Do not swap RGB colors */ data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB); dsi_write(msm_host, REG_DSI_VID_CFG1, 0); } else { /* Do not swap RGB colors */ data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB); data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt)); dsi_write(msm_host, REG_DSI_CMD_CFG0, data); data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) | DSI_CMD_CFG1_WR_MEM_CONTINUE( MIPI_DCS_WRITE_MEMORY_CONTINUE); /* Always insert DCS command */ data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND; dsi_write(msm_host, REG_DSI_CMD_CFG1, data); if (cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) { data = dsi_read(msm_host, REG_DSI_CMD_MODE_MDP_CTRL2); if (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_3) data |= DSI_CMD_MODE_MDP_CTRL2_BURST_MODE; /* TODO: Allow for video-mode support once tested/fixed */ if (msm_dsi_host_is_wide_bus_enabled(&msm_host->base)) data |= DSI_CMD_MODE_MDP_CTRL2_DATABUS_WIDEN; dsi_write(msm_host, REG_DSI_CMD_MODE_MDP_CTRL2, data); } } dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER | DSI_CMD_DMA_CTRL_LOW_POWER); data = 0; /* Always assume dedicated TE pin */ data |= DSI_TRIG_CTRL_TE; data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE); data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW); data |= DSI_TRIG_CTRL_STREAM(msm_host->channel); if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2)) data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME; dsi_write(msm_host, REG_DSI_TRIG_CTRL, data); data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) | DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre); dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data); if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) && phy_shared_timings->clk_pre_inc_by_2) dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND, DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK); data = 0; if (!(flags & MIPI_DSI_MODE_NO_EOT_PACKET)) data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND; dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data); /* allow only ack-err-status to generate interrupt */ dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0); dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); data = DSI_CTRL_CLK_EN; DBG("lane number=%d", msm_host->lanes); data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0); dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL, DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap)); if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) { lane_ctrl = dsi_read(msm_host, REG_DSI_LANE_CTRL); if (msm_dsi_phy_set_continuous_clock(phy, true)) lane_ctrl &= ~DSI_LANE_CTRL_HS_REQ_SEL_PHY; dsi_write(msm_host, REG_DSI_LANE_CTRL, lane_ctrl | DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST); } data |= DSI_CTRL_ENABLE; dsi_write(msm_host, REG_DSI_CTRL, data); if (msm_host->cphy_mode) dsi_write(msm_host, REG_DSI_CPHY_MODE_CTRL, BIT(0)); } static void dsi_update_dsc_timing(struct msm_dsi_host *msm_host, bool is_cmd_mode, u32 hdisplay) { struct drm_dsc_config *dsc = msm_host->dsc; u32 reg, reg_ctrl, reg_ctrl2; u32 slice_per_intf, total_bytes_per_intf; u32 pkt_per_line; u32 eol_byte_num; /* first calculate dsc parameters and then program * compress mode registers */ slice_per_intf = msm_dsc_get_slices_per_intf(dsc, hdisplay); total_bytes_per_intf = dsc->slice_chunk_size * slice_per_intf; eol_byte_num = total_bytes_per_intf % 3; /* * Typically, pkt_per_line = slice_per_intf * slice_per_pkt. * * Since the current driver only supports slice_per_pkt = 1, * pkt_per_line will be equal to slice per intf for now. */ pkt_per_line = slice_per_intf; if (is_cmd_mode) /* packet data type */ reg = DSI_COMMAND_COMPRESSION_MODE_CTRL_STREAM0_DATATYPE(MIPI_DSI_DCS_LONG_WRITE); else reg = DSI_VIDEO_COMPRESSION_MODE_CTRL_DATATYPE(MIPI_DSI_COMPRESSED_PIXEL_STREAM); /* DSI_VIDEO_COMPRESSION_MODE & DSI_COMMAND_COMPRESSION_MODE * registers have similar offsets, so for below common code use * DSI_VIDEO_COMPRESSION_MODE_XXXX for setting bits */ reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_PKT_PER_LINE(pkt_per_line >> 1); reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_EOL_BYTE_NUM(eol_byte_num); reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_EN; if (is_cmd_mode) { reg_ctrl = dsi_read(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL); reg_ctrl2 = dsi_read(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL2); reg_ctrl &= ~0xffff; reg_ctrl |= reg; reg_ctrl2 &= ~DSI_COMMAND_COMPRESSION_MODE_CTRL2_STREAM0_SLICE_WIDTH__MASK; reg_ctrl2 |= DSI_COMMAND_COMPRESSION_MODE_CTRL2_STREAM0_SLICE_WIDTH(dsc->slice_chunk_size); dsi_write(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL, reg_ctrl); dsi_write(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL2, reg_ctrl2); } else { dsi_write(msm_host, REG_DSI_VIDEO_COMPRESSION_MODE_CTRL, reg); } } static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_bonded_dsi) { struct drm_display_mode *mode = msm_host->mode; u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */ u32 h_total = mode->htotal; u32 v_total = mode->vtotal; u32 hs_end = mode->hsync_end - mode->hsync_start; u32 vs_end = mode->vsync_end - mode->vsync_start; u32 ha_start = h_total - mode->hsync_start; u32 ha_end = ha_start + mode->hdisplay; u32 va_start = v_total - mode->vsync_start; u32 va_end = va_start + mode->vdisplay; u32 hdisplay = mode->hdisplay; u32 wc; int ret; bool wide_bus_enabled = msm_dsi_host_is_wide_bus_enabled(&msm_host->base); DBG(""); /* * For bonded DSI mode, the current DRM mode has * the complete width of the panel. Since, the complete * panel is driven by two DSI controllers, the horizontal * timings have to be split between the two dsi controllers. * Adjust the DSI host timing values accordingly. */ if (is_bonded_dsi) { h_total /= 2; hs_end /= 2; ha_start /= 2; ha_end /= 2; hdisplay /= 2; } if (msm_host->dsc) { struct drm_dsc_config *dsc = msm_host->dsc; u32 bytes_per_pclk; /* update dsc params with timing params */ if (!dsc || !mode->hdisplay || !mode->vdisplay) { pr_err("DSI: invalid input: pic_width: %d pic_height: %d\n", mode->hdisplay, mode->vdisplay); return; } dsc->pic_width = mode->hdisplay; dsc->pic_height = mode->vdisplay; DBG("Mode %dx%d\n", dsc->pic_width, dsc->pic_height); /* we do the calculations for dsc parameters here so that * panel can use these parameters */ ret = dsi_populate_dsc_params(msm_host, dsc); if (ret) return; /* * DPU sends 3 bytes per pclk cycle to DSI. If widebus is * enabled, bus width is extended to 6 bytes. * * Calculate the number of pclks needed to transmit one line of * the compressed data. * The back/font porch and pulse width are kept intact. For * VIDEO mode they represent timing parameters rather than * actual data transfer, see the documentation for * dsi_adjust_pclk_for_compression(). For CMD mode they are * unused anyway. */ h_total -= hdisplay; if (wide_bus_enabled && !(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO)) bytes_per_pclk = 6; else bytes_per_pclk = 3; hdisplay = DIV_ROUND_UP(msm_dsc_get_bytes_per_line(msm_host->dsc), bytes_per_pclk); h_total += hdisplay; ha_end = ha_start + hdisplay; } if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) { if (msm_host->dsc) dsi_update_dsc_timing(msm_host, false, mode->hdisplay); dsi_write(msm_host, REG_DSI_ACTIVE_H, DSI_ACTIVE_H_START(ha_start) | DSI_ACTIVE_H_END(ha_end)); dsi_write(msm_host, REG_DSI_ACTIVE_V, DSI_ACTIVE_V_START(va_start) | DSI_ACTIVE_V_END(va_end)); dsi_write(msm_host, REG_DSI_TOTAL, DSI_TOTAL_H_TOTAL(h_total - 1) | DSI_TOTAL_V_TOTAL(v_total - 1)); dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC, DSI_ACTIVE_HSYNC_START(hs_start) | DSI_ACTIVE_HSYNC_END(hs_end)); dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0); dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS, DSI_ACTIVE_VSYNC_VPOS_START(vs_start) | DSI_ACTIVE_VSYNC_VPOS_END(vs_end)); } else { /* command mode */ if (msm_host->dsc) dsi_update_dsc_timing(msm_host, true, mode->hdisplay); /* image data and 1 byte write_memory_start cmd */ if (!msm_host->dsc) wc = hdisplay * mipi_dsi_pixel_format_to_bpp(msm_host->format) / 8 + 1; else /* * When DSC is enabled, WC = slice_chunk_size * slice_per_pkt + 1. * Currently, the driver only supports default value of slice_per_pkt = 1 * * TODO: Expand mipi_dsi_device struct to hold slice_per_pkt info * and adjust DSC math to account for slice_per_pkt. */ wc = msm_host->dsc->slice_chunk_size + 1; dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_CTRL, DSI_CMD_MDP_STREAM0_CTRL_WORD_COUNT(wc) | DSI_CMD_MDP_STREAM0_CTRL_VIRTUAL_CHANNEL( msm_host->channel) | DSI_CMD_MDP_STREAM0_CTRL_DATA_TYPE( MIPI_DSI_DCS_LONG_WRITE)); dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_TOTAL, DSI_CMD_MDP_STREAM0_TOTAL_H_TOTAL(hdisplay) | DSI_CMD_MDP_STREAM0_TOTAL_V_TOTAL(mode->vdisplay)); } } static void dsi_sw_reset(struct msm_dsi_host *msm_host) { u32 ctrl; ctrl = dsi_read(msm_host, REG_DSI_CTRL); if (ctrl & DSI_CTRL_ENABLE) { dsi_write(msm_host, REG_DSI_CTRL, ctrl & ~DSI_CTRL_ENABLE); /* * dsi controller need to be disabled before * clocks turned on */ wmb(); } dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); wmb(); /* clocks need to be enabled before reset */ /* dsi controller can only be reset while clocks are running */ dsi_write(msm_host, REG_DSI_RESET, 1); msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */ dsi_write(msm_host, REG_DSI_RESET, 0); wmb(); /* controller out of reset */ if (ctrl & DSI_CTRL_ENABLE) { dsi_write(msm_host, REG_DSI_CTRL, ctrl); wmb(); /* make sure dsi controller enabled again */ } } static void dsi_op_mode_config(struct msm_dsi_host *msm_host, bool video_mode, bool enable) { u32 dsi_ctrl; dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL); if (!enable) { dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN | DSI_CTRL_CMD_MODE_EN); dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE | DSI_IRQ_MASK_VIDEO_DONE, 0); } else { if (video_mode) { dsi_ctrl |= DSI_CTRL_VID_MODE_EN; } else { /* command mode */ dsi_ctrl |= DSI_CTRL_CMD_MODE_EN; dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1); } dsi_ctrl |= DSI_CTRL_ENABLE; } dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl); } static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host) { u32 data; data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL); if (mode == 0) data &= ~DSI_CMD_DMA_CTRL_LOW_POWER; else data |= DSI_CMD_DMA_CTRL_LOW_POWER; dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data); } static void dsi_wait4video_done(struct msm_dsi_host *msm_host) { u32 ret = 0; struct device *dev = &msm_host->pdev->dev; dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1); reinit_completion(&msm_host->video_comp); ret = wait_for_completion_timeout(&msm_host->video_comp, msecs_to_jiffies(70)); if (ret == 0) DRM_DEV_ERROR(dev, "wait for video done timed out\n"); dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0); } static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host) { u32 data; if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO)) return; data = dsi_read(msm_host, REG_DSI_STATUS0); /* if video mode engine is not busy, its because * either timing engine was not turned on or the * DSI controller has finished transmitting the video * data already, so no need to wait in those cases */ if (!(data & DSI_STATUS0_VIDEO_MODE_ENGINE_BUSY)) return; if (msm_host->power_on && msm_host->enabled) { dsi_wait4video_done(msm_host); /* delay 4 ms to skip BLLP */ usleep_range(2000, 4000); } } int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size) { struct drm_device *dev = msm_host->dev; struct msm_drm_private *priv = dev->dev_private; uint64_t iova; u8 *data; msm_host->aspace = msm_gem_address_space_get(priv->kms->aspace); data = msm_gem_kernel_new(dev, size, MSM_BO_WC, msm_host->aspace, &msm_host->tx_gem_obj, &iova); if (IS_ERR(data)) { msm_host->tx_gem_obj = NULL; return PTR_ERR(data); } msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem"); msm_host->tx_size = msm_host->tx_gem_obj->size; return 0; } int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size) { struct drm_device *dev = msm_host->dev; msm_host->tx_buf = dma_alloc_coherent(dev->dev, size, &msm_host->tx_buf_paddr, GFP_KERNEL); if (!msm_host->tx_buf) return -ENOMEM; msm_host->tx_size = size; return 0; } void msm_dsi_tx_buf_free(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); struct drm_device *dev = msm_host->dev; /* * This is possible if we're tearing down before we've had a chance to * fully initialize. A very real possibility if our probe is deferred, * in which case we'll hit msm_dsi_host_destroy() without having run * through the dsi_tx_buf_alloc(). */ if (!dev) return; if (msm_host->tx_gem_obj) { msm_gem_kernel_put(msm_host->tx_gem_obj, msm_host->aspace); msm_gem_address_space_put(msm_host->aspace); msm_host->tx_gem_obj = NULL; msm_host->aspace = NULL; } if (msm_host->tx_buf) dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf, msm_host->tx_buf_paddr); } void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host) { return msm_gem_get_vaddr(msm_host->tx_gem_obj); } void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host) { return msm_host->tx_buf; } void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host) { msm_gem_put_vaddr(msm_host->tx_gem_obj); } /* * prepare cmd buffer to be txed */ static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host, const struct mipi_dsi_msg *msg) { const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; struct mipi_dsi_packet packet; int len; int ret; u8 *data; ret = mipi_dsi_create_packet(&packet, msg); if (ret) { pr_err("%s: create packet failed, %d\n", __func__, ret); return ret; } len = (packet.size + 3) & (~0x3); if (len > msm_host->tx_size) { pr_err("%s: packet size is too big\n", __func__); return -EINVAL; } data = cfg_hnd->ops->tx_buf_get(msm_host); if (IS_ERR(data)) { ret = PTR_ERR(data); pr_err("%s: get vaddr failed, %d\n", __func__, ret); return ret; } /* MSM specific command format in memory */ data[0] = packet.header[1]; data[1] = packet.header[2]; data[2] = packet.header[0]; data[3] = BIT(7); /* Last packet */ if (mipi_dsi_packet_format_is_long(msg->type)) data[3] |= BIT(6); if (msg->rx_buf && msg->rx_len) data[3] |= BIT(5); /* Long packet */ if (packet.payload && packet.payload_length) memcpy(data + 4, packet.payload, packet.payload_length); /* Append 0xff to the end */ if (packet.size < len) memset(data + packet.size, 0xff, len - packet.size); if (cfg_hnd->ops->tx_buf_put) cfg_hnd->ops->tx_buf_put(msm_host); return len; } /* * dsi_short_read1_resp: 1 parameter */ static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg) { u8 *data = msg->rx_buf; if (data && (msg->rx_len >= 1)) { *data = buf[1]; /* strip out dcs type */ return 1; } else { pr_err("%s: read data does not match with rx_buf len %zu\n", __func__, msg->rx_len); return -EINVAL; } } /* * dsi_short_read2_resp: 2 parameter */ static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg) { u8 *data = msg->rx_buf; if (data && (msg->rx_len >= 2)) { data[0] = buf[1]; /* strip out dcs type */ data[1] = buf[2]; return 2; } else { pr_err("%s: read data does not match with rx_buf len %zu\n", __func__, msg->rx_len); return -EINVAL; } } static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg) { /* strip out 4 byte dcs header */ if (msg->rx_buf && msg->rx_len) memcpy(msg->rx_buf, buf + 4, msg->rx_len); return msg->rx_len; } int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base) { struct drm_device *dev = msm_host->dev; struct msm_drm_private *priv = dev->dev_private; if (!dma_base) return -EINVAL; return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj, priv->kms->aspace, dma_base); } int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base) { if (!dma_base) return -EINVAL; *dma_base = msm_host->tx_buf_paddr; return 0; } static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len) { const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; int ret; uint64_t dma_base; bool triggered; ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base); if (ret) { pr_err("%s: failed to get iova: %d\n", __func__, ret); return ret; } reinit_completion(&msm_host->dma_comp); dsi_wait4video_eng_busy(msm_host); triggered = msm_dsi_manager_cmd_xfer_trigger( msm_host->id, dma_base, len); if (triggered) { ret = wait_for_completion_timeout(&msm_host->dma_comp, msecs_to_jiffies(200)); DBG("ret=%d", ret); if (ret == 0) ret = -ETIMEDOUT; else ret = len; } else ret = len; return ret; } static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host, u8 *buf, int rx_byte, int pkt_size) { u32 *temp, data; int i, j = 0, cnt; u32 read_cnt; u8 reg[16]; int repeated_bytes = 0; int buf_offset = buf - msm_host->rx_buf; temp = (u32 *)reg; cnt = (rx_byte + 3) >> 2; if (cnt > 4) cnt = 4; /* 4 x 32 bits registers only */ if (rx_byte == 4) read_cnt = 4; else read_cnt = pkt_size + 6; /* * In case of multiple reads from the panel, after the first read, there * is possibility that there are some bytes in the payload repeating in * the RDBK_DATA registers. Since we read all the parameters from the * panel right from the first byte for every pass. We need to skip the * repeating bytes and then append the new parameters to the rx buffer. */ if (read_cnt > 16) { int bytes_shifted; /* Any data more than 16 bytes will be shifted out. * The temp read buffer should already contain these bytes. * The remaining bytes in read buffer are the repeated bytes. */ bytes_shifted = read_cnt - 16; repeated_bytes = buf_offset - bytes_shifted; } for (i = cnt - 1; i >= 0; i--) { data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i)); *temp++ = ntohl(data); /* to host byte order */ DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data)); } for (i = repeated_bytes; i < 16; i++) buf[j++] = reg[i]; return j; } static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host, const struct mipi_dsi_msg *msg) { int len, ret; int bllp_len = msm_host->mode->hdisplay * mipi_dsi_pixel_format_to_bpp(msm_host->format) / 8; len = dsi_cmd_dma_add(msm_host, msg); if (len < 0) { pr_err("%s: failed to add cmd type = 0x%x\n", __func__, msg->type); return len; } /* for video mode, do not send cmds more than * one pixel line, since it only transmit it * during BLLP. */ /* TODO: if the command is sent in LP mode, the bit rate is only * half of esc clk rate. In this case, if the video is already * actively streaming, we need to check more carefully if the * command can be fit into one BLLP. */ if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) { pr_err("%s: cmd cannot fit into BLLP period, len=%d\n", __func__, len); return -EINVAL; } ret = dsi_cmd_dma_tx(msm_host, len); if (ret < 0) { pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d, ret=%d\n", __func__, msg->type, (*(u8 *)(msg->tx_buf)), len, ret); return ret; } else if (ret < len) { pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, ret=%d len=%d\n", __func__, msg->type, (*(u8 *)(msg->tx_buf)), ret, len); return -EIO; } return len; } static void dsi_err_worker(struct work_struct *work) { struct msm_dsi_host *msm_host = container_of(work, struct msm_dsi_host, err_work); u32 status = msm_host->err_work_state; pr_err_ratelimited("%s: status=%x\n", __func__, status); if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW) dsi_sw_reset(msm_host); /* It is safe to clear here because error irq is disabled. */ msm_host->err_work_state = 0; /* enable dsi error interrupt */ dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); } static void dsi_ack_err_status(struct msm_dsi_host *msm_host) { u32 status; status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS); if (status) { dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status); /* Writing of an extra 0 needed to clear error bits */ dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0); msm_host->err_work_state |= DSI_ERR_STATE_ACK; } } static void dsi_timeout_status(struct msm_dsi_host *msm_host) { u32 status; status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS); if (status) { dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status); msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT; } } static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host) { u32 status; status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR); if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC | DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC | DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL | DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 | DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) { dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status); msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY; } } static void dsi_fifo_status(struct msm_dsi_host *msm_host) { u32 status; status = dsi_read(msm_host, REG_DSI_FIFO_STATUS); /* fifo underflow, overflow */ if (status) { dsi_write(msm_host, REG_DSI_FIFO_STATUS, status); msm_host->err_work_state |= DSI_ERR_STATE_FIFO; if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW) msm_host->err_work_state |= DSI_ERR_STATE_MDP_FIFO_UNDERFLOW; } } static void dsi_status(struct msm_dsi_host *msm_host) { u32 status; status = dsi_read(msm_host, REG_DSI_STATUS0); if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) { dsi_write(msm_host, REG_DSI_STATUS0, status); msm_host->err_work_state |= DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION; } } static void dsi_clk_status(struct msm_dsi_host *msm_host) { u32 status; status = dsi_read(msm_host, REG_DSI_CLK_STATUS); if (status & DSI_CLK_STATUS_PLL_UNLOCKED) { dsi_write(msm_host, REG_DSI_CLK_STATUS, status); msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED; } } static void dsi_error(struct msm_dsi_host *msm_host) { /* disable dsi error interrupt */ dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0); dsi_clk_status(msm_host); dsi_fifo_status(msm_host); dsi_ack_err_status(msm_host); dsi_timeout_status(msm_host); dsi_status(msm_host); dsi_dln0_phy_err(msm_host); queue_work(msm_host->workqueue, &msm_host->err_work); } static irqreturn_t dsi_host_irq(int irq, void *ptr) { struct msm_dsi_host *msm_host = ptr; u32 isr; unsigned long flags; if (!msm_host->ctrl_base) return IRQ_HANDLED; spin_lock_irqsave(&msm_host->intr_lock, flags); isr = dsi_read(msm_host, REG_DSI_INTR_CTRL); dsi_write(msm_host, REG_DSI_INTR_CTRL, isr); spin_unlock_irqrestore(&msm_host->intr_lock, flags); DBG("isr=0x%x, id=%d", isr, msm_host->id); if (isr & DSI_IRQ_ERROR) dsi_error(msm_host); if (isr & DSI_IRQ_VIDEO_DONE) complete(&msm_host->video_comp); if (isr & DSI_IRQ_CMD_DMA_DONE) complete(&msm_host->dma_comp); return IRQ_HANDLED; } static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host, struct device *panel_device) { msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device, "disp-enable", GPIOD_OUT_LOW); if (IS_ERR(msm_host->disp_en_gpio)) { DBG("cannot get disp-enable-gpios %ld", PTR_ERR(msm_host->disp_en_gpio)); return PTR_ERR(msm_host->disp_en_gpio); } msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te", GPIOD_IN); if (IS_ERR(msm_host->te_gpio)) { DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio)); return PTR_ERR(msm_host->te_gpio); } return 0; } static int dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); int ret; if (dsi->lanes > msm_host->num_data_lanes) return -EINVAL; msm_host->channel = dsi->channel; msm_host->lanes = dsi->lanes; msm_host->format = dsi->format; msm_host->mode_flags = dsi->mode_flags; if (dsi->dsc) msm_host->dsc = dsi->dsc; /* Some gpios defined in panel DT need to be controlled by host */ ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev); if (ret) return ret; ret = dsi_dev_attach(msm_host->pdev); if (ret) return ret; DBG("id=%d", msm_host->id); return 0; } static int dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); dsi_dev_detach(msm_host->pdev); DBG("id=%d", msm_host->id); return 0; } static ssize_t dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); int ret; if (!msg || !msm_host->power_on) return -EINVAL; mutex_lock(&msm_host->cmd_mutex); ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg); mutex_unlock(&msm_host->cmd_mutex); return ret; } static const struct mipi_dsi_host_ops dsi_host_ops = { .attach = dsi_host_attach, .detach = dsi_host_detach, .transfer = dsi_host_transfer, }; /* * List of supported physical to logical lane mappings. * For example, the 2nd entry represents the following mapping: * * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3; */ static const int supported_data_lane_swaps[][4] = { { 0, 1, 2, 3 }, { 3, 0, 1, 2 }, { 2, 3, 0, 1 }, { 1, 2, 3, 0 }, { 0, 3, 2, 1 }, { 1, 0, 3, 2 }, { 2, 1, 0, 3 }, { 3, 2, 1, 0 }, }; static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host, struct device_node *ep) { struct device *dev = &msm_host->pdev->dev; struct property *prop; u32 lane_map[4]; int ret, i, len, num_lanes; prop = of_find_property(ep, "data-lanes", &len); if (!prop) { DRM_DEV_DEBUG(dev, "failed to find data lane mapping, using default\n"); /* Set the number of date lanes to 4 by default. */ msm_host->num_data_lanes = 4; return 0; } num_lanes = drm_of_get_data_lanes_count(ep, 1, 4); if (num_lanes < 0) { DRM_DEV_ERROR(dev, "bad number of data lanes\n"); return num_lanes; } msm_host->num_data_lanes = num_lanes; ret = of_property_read_u32_array(ep, "data-lanes", lane_map, num_lanes); if (ret) { DRM_DEV_ERROR(dev, "failed to read lane data\n"); return ret; } /* * compare DT specified physical-logical lane mappings with the ones * supported by hardware */ for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) { const int *swap = supported_data_lane_swaps[i]; int j; /* * the data-lanes array we get from DT has a logical->physical * mapping. The "data lane swap" register field represents * supported configurations in a physical->logical mapping. * Translate the DT mapping to what we understand and find a * configuration that works. */ for (j = 0; j < num_lanes; j++) { if (lane_map[j] < 0 || lane_map[j] > 3) DRM_DEV_ERROR(dev, "bad physical lane entry %u\n", lane_map[j]); if (swap[lane_map[j]] != j) break; } if (j == num_lanes) { msm_host->dlane_swap = i; return 0; } } return -EINVAL; } static int dsi_populate_dsc_params(struct msm_dsi_host *msm_host, struct drm_dsc_config *dsc) { int ret; if (dsc->bits_per_pixel & 0xf) { DRM_DEV_ERROR(&msm_host->pdev->dev, "DSI does not support fractional bits_per_pixel\n"); return -EINVAL; } if (dsc->bits_per_component != 8) { DRM_DEV_ERROR(&msm_host->pdev->dev, "DSI does not support bits_per_component != 8 yet\n"); return -EOPNOTSUPP; } dsc->simple_422 = 0; dsc->convert_rgb = 1; dsc->vbr_enable = 0; drm_dsc_set_const_params(dsc); drm_dsc_set_rc_buf_thresh(dsc); /* handle only bpp = bpc = 8, pre-SCR panels */ ret = drm_dsc_setup_rc_params(dsc, DRM_DSC_1_1_PRE_SCR); if (ret) { DRM_DEV_ERROR(&msm_host->pdev->dev, "could not find DSC RC parameters\n"); return ret; } dsc->initial_scale_value = drm_dsc_initial_scale_value(dsc); dsc->line_buf_depth = dsc->bits_per_component + 1; return drm_dsc_compute_rc_parameters(dsc); } static int dsi_host_parse_dt(struct msm_dsi_host *msm_host) { struct device *dev = &msm_host->pdev->dev; struct device_node *np = dev->of_node; struct device_node *endpoint; int ret = 0; /* * Get the endpoint of the output port of the DSI host. In our case, * this is mapped to port number with reg = 1. Don't return an error if * the remote endpoint isn't defined. It's possible that there is * nothing connected to the dsi output. */ endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); if (!endpoint) { DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__); return 0; } ret = dsi_host_parse_lane_data(msm_host, endpoint); if (ret) { DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n", __func__, ret); ret = -EINVAL; goto err; } if (of_property_read_bool(np, "syscon-sfpb")) { msm_host->sfpb = syscon_regmap_lookup_by_phandle(np, "syscon-sfpb"); if (IS_ERR(msm_host->sfpb)) { DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n", __func__); ret = PTR_ERR(msm_host->sfpb); } } err: of_node_put(endpoint); return ret; } static int dsi_host_get_id(struct msm_dsi_host *msm_host) { struct platform_device *pdev = msm_host->pdev; const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; struct resource *res; int i, j; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl"); if (!res) return -EINVAL; for (i = 0; i < VARIANTS_MAX; i++) for (j = 0; j < DSI_MAX; j++) if (cfg->io_start[i][j] == res->start) return j; return -EINVAL; } int msm_dsi_host_init(struct msm_dsi *msm_dsi) { struct msm_dsi_host *msm_host = NULL; struct platform_device *pdev = msm_dsi->pdev; const struct msm_dsi_config *cfg; int ret; msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL); if (!msm_host) { return -ENOMEM; } msm_host->pdev = pdev; msm_dsi->host = &msm_host->base; ret = dsi_host_parse_dt(msm_host); if (ret) { pr_err("%s: failed to parse dt\n", __func__); return ret; } msm_host->ctrl_base = msm_ioremap_size(pdev, "dsi_ctrl", &msm_host->ctrl_size); if (IS_ERR(msm_host->ctrl_base)) { pr_err("%s: unable to map Dsi ctrl base\n", __func__); return PTR_ERR(msm_host->ctrl_base); } pm_runtime_enable(&pdev->dev); msm_host->cfg_hnd = dsi_get_config(msm_host); if (!msm_host->cfg_hnd) { pr_err("%s: get config failed\n", __func__); return -EINVAL; } cfg = msm_host->cfg_hnd->cfg; msm_host->id = dsi_host_get_id(msm_host); if (msm_host->id < 0) { pr_err("%s: unable to identify DSI host index\n", __func__); return msm_host->id; } /* fixup base address by io offset */ msm_host->ctrl_base += cfg->io_offset; ret = devm_regulator_bulk_get_const(&pdev->dev, cfg->num_regulators, cfg->regulator_data, &msm_host->supplies); if (ret) return ret; ret = dsi_clk_init(msm_host); if (ret) { pr_err("%s: unable to initialize dsi clks\n", __func__); return ret; } msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL); if (!msm_host->rx_buf) { pr_err("%s: alloc rx temp buf failed\n", __func__); return -ENOMEM; } ret = devm_pm_opp_set_clkname(&pdev->dev, "byte"); if (ret) return ret; /* OPP table is optional */ ret = devm_pm_opp_of_add_table(&pdev->dev); if (ret && ret != -ENODEV) { dev_err(&pdev->dev, "invalid OPP table in device tree\n"); return ret; } msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); if (!msm_host->irq) { dev_err(&pdev->dev, "failed to get irq\n"); return -EINVAL; } /* do not autoenable, will be enabled later */ ret = devm_request_irq(&pdev->dev, msm_host->irq, dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN, "dsi_isr", msm_host); if (ret < 0) { dev_err(&pdev->dev, "failed to request IRQ%u: %d\n", msm_host->irq, ret); return ret; } init_completion(&msm_host->dma_comp); init_completion(&msm_host->video_comp); mutex_init(&msm_host->dev_mutex); mutex_init(&msm_host->cmd_mutex); spin_lock_init(&msm_host->intr_lock); /* setup workqueue */ msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0); if (!msm_host->workqueue) return -ENOMEM; INIT_WORK(&msm_host->err_work, dsi_err_worker); msm_dsi->id = msm_host->id; DBG("Dsi Host %d initialized", msm_host->id); return 0; } void msm_dsi_host_destroy(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); DBG(""); if (msm_host->workqueue) { destroy_workqueue(msm_host->workqueue); msm_host->workqueue = NULL; } mutex_destroy(&msm_host->cmd_mutex); mutex_destroy(&msm_host->dev_mutex); pm_runtime_disable(&msm_host->pdev->dev); } int msm_dsi_host_modeset_init(struct mipi_dsi_host *host, struct drm_device *dev) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; int ret; msm_host->dev = dev; ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K); if (ret) { pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret); return ret; } return 0; } int msm_dsi_host_register(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); int ret; /* Register mipi dsi host */ if (!msm_host->registered) { host->dev = &msm_host->pdev->dev; host->ops = &dsi_host_ops; ret = mipi_dsi_host_register(host); if (ret) return ret; msm_host->registered = true; } return 0; } void msm_dsi_host_unregister(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); if (msm_host->registered) { mipi_dsi_host_unregister(host); host->dev = NULL; host->ops = NULL; msm_host->registered = false; } } int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; /* TODO: make sure dsi_cmd_mdp is idle. * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed. * How to handle the old versions? Wait for mdp cmd done? */ /* * mdss interrupt is generated in mdp core clock domain * mdp clock need to be enabled to receive dsi interrupt */ pm_runtime_get_sync(&msm_host->pdev->dev); cfg_hnd->ops->link_clk_set_rate(msm_host); cfg_hnd->ops->link_clk_enable(msm_host); /* TODO: vote for bus bandwidth */ if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) dsi_set_tx_power_mode(0, msm_host); msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL); dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore | DSI_CTRL_CMD_MODE_EN | DSI_CTRL_ENABLE); dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1); return 0; } void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0); dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore); if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) dsi_set_tx_power_mode(1, msm_host); /* TODO: unvote for bus bandwidth */ cfg_hnd->ops->link_clk_disable(msm_host); pm_runtime_put(&msm_host->pdev->dev); } int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); return dsi_cmds2buf_tx(msm_host, msg); } int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; int data_byte, rx_byte, dlen, end; int short_response, diff, pkt_size, ret = 0; char cmd; int rlen = msg->rx_len; u8 *buf; if (rlen <= 2) { short_response = 1; pkt_size = rlen; rx_byte = 4; } else { short_response = 0; data_byte = 10; /* first read */ if (rlen < data_byte) pkt_size = rlen; else pkt_size = data_byte; rx_byte = data_byte + 6; /* 4 header + 2 crc */ } buf = msm_host->rx_buf; end = 0; while (!end) { u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8}; struct mipi_dsi_msg max_pkt_size_msg = { .channel = msg->channel, .type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, .tx_len = 2, .tx_buf = tx, }; DBG("rlen=%d pkt_size=%d rx_byte=%d", rlen, pkt_size, rx_byte); ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg); if (ret < 2) { pr_err("%s: Set max pkt size failed, %d\n", __func__, ret); return -EINVAL; } if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) { /* Clear the RDBK_DATA registers */ dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, DSI_RDBK_DATA_CTRL_CLR); wmb(); /* make sure the RDBK registers are cleared */ dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0); wmb(); /* release cleared status before transfer */ } ret = dsi_cmds2buf_tx(msm_host, msg); if (ret < 0) { pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret); return ret; } else if (ret < msg->tx_len) { pr_err("%s: Read cmd Tx failed, too short: %d\n", __func__, ret); return -ECOMM; } /* * once cmd_dma_done interrupt received, * return data from client is ready and stored * at RDBK_DATA register already * since rx fifo is 16 bytes, dcs header is kept at first loop, * after that dcs header lost during shift into registers */ dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size); if (dlen <= 0) return 0; if (short_response) break; if (rlen <= data_byte) { diff = data_byte - rlen; end = 1; } else { diff = 0; rlen -= data_byte; } if (!end) { dlen -= 2; /* 2 crc */ dlen -= diff; buf += dlen; /* next start position */ data_byte = 14; /* NOT first read */ if (rlen < data_byte) pkt_size += rlen; else pkt_size += data_byte; DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff); } } /* * For single Long read, if the requested rlen < 10, * we need to shift the start position of rx * data buffer to skip the bytes which are not * updated. */ if (pkt_size < 10 && !short_response) buf = msm_host->rx_buf + (10 - rlen); else buf = msm_host->rx_buf; cmd = buf[0]; switch (cmd) { case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__); ret = 0; break; case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: ret = dsi_short_read1_resp(buf, msg); break; case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: ret = dsi_short_read2_resp(buf, msg); break; case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: ret = dsi_long_read_resp(buf, msg); break; default: pr_warn("%s:Invalid response cmd\n", __func__); ret = 0; } return ret; } void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base, u32 len) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base); dsi_write(msm_host, REG_DSI_DMA_LEN, len); dsi_write(msm_host, REG_DSI_TRIG_DMA, 1); /* Make sure trigger happens */ wmb(); } void msm_dsi_host_set_phy_mode(struct mipi_dsi_host *host, struct msm_dsi_phy *src_phy) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); msm_host->cphy_mode = src_phy->cphy_mode; } void msm_dsi_host_reset_phy(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); DBG(""); dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET); /* Make sure fully reset */ wmb(); udelay(1000); dsi_write(msm_host, REG_DSI_PHY_RESET, 0); udelay(100); } void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host, struct msm_dsi_phy_clk_request *clk_req, bool is_bonded_dsi) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; int ret; ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_bonded_dsi); if (ret) { pr_err("%s: unable to calc clk rate, %d\n", __func__, ret); return; } /* CPHY transmits 16 bits over 7 clock cycles * "byte_clk" is in units of 16-bits (see dsi_calc_pclk), * so multiply by 7 to get the "bitclk rate" */ if (msm_host->cphy_mode) clk_req->bitclk_rate = msm_host->byte_clk_rate * 7; else clk_req->bitclk_rate = msm_host->byte_clk_rate * 8; clk_req->escclk_rate = msm_host->esc_clk_rate; } void msm_dsi_host_enable_irq(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); enable_irq(msm_host->irq); } void msm_dsi_host_disable_irq(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); disable_irq(msm_host->irq); } int msm_dsi_host_enable(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); dsi_op_mode_config(msm_host, !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true); /* TODO: clock should be turned off for command mode, * and only turned on before MDP START. * This part of code should be enabled once mdp driver support it. */ /* if (msm_panel->mode == MSM_DSI_CMD_MODE) { * dsi_link_clk_disable(msm_host); * pm_runtime_put(&msm_host->pdev->dev); * } */ msm_host->enabled = true; return 0; } int msm_dsi_host_disable(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); msm_host->enabled = false; dsi_op_mode_config(msm_host, !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false); /* Since we have disabled INTF, the video engine won't stop so that * the cmd engine will be blocked. * Reset to disable video engine so that we can send off cmd. */ dsi_sw_reset(msm_host); return 0; } static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable) { enum sfpb_ahb_arb_master_port_en en; if (!msm_host->sfpb) return; en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE; regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG, SFPB_GPREG_MASTER_PORT_EN__MASK, SFPB_GPREG_MASTER_PORT_EN(en)); } int msm_dsi_host_power_on(struct mipi_dsi_host *host, struct msm_dsi_phy_shared_timings *phy_shared_timings, bool is_bonded_dsi, struct msm_dsi_phy *phy) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; int ret = 0; mutex_lock(&msm_host->dev_mutex); if (msm_host->power_on) { DBG("dsi host already on"); goto unlock_ret; } msm_host->byte_intf_clk_rate = msm_host->byte_clk_rate; if (phy_shared_timings->byte_intf_clk_div_2) msm_host->byte_intf_clk_rate /= 2; msm_dsi_sfpb_config(msm_host, true); ret = regulator_bulk_enable(msm_host->cfg_hnd->cfg->num_regulators, msm_host->supplies); if (ret) { pr_err("%s:Failed to enable vregs.ret=%d\n", __func__, ret); goto unlock_ret; } pm_runtime_get_sync(&msm_host->pdev->dev); ret = cfg_hnd->ops->link_clk_set_rate(msm_host); if (!ret) ret = cfg_hnd->ops->link_clk_enable(msm_host); if (ret) { pr_err("%s: failed to enable link clocks. ret=%d\n", __func__, ret); goto fail_disable_reg; } ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev); if (ret) { pr_err("%s: failed to set pinctrl default state, %d\n", __func__, ret); goto fail_disable_clk; } dsi_timing_setup(msm_host, is_bonded_dsi); dsi_sw_reset(msm_host); dsi_ctrl_enable(msm_host, phy_shared_timings, phy); if (msm_host->disp_en_gpio) gpiod_set_value(msm_host->disp_en_gpio, 1); msm_host->power_on = true; mutex_unlock(&msm_host->dev_mutex); return 0; fail_disable_clk: cfg_hnd->ops->link_clk_disable(msm_host); pm_runtime_put(&msm_host->pdev->dev); fail_disable_reg: regulator_bulk_disable(msm_host->cfg_hnd->cfg->num_regulators, msm_host->supplies); unlock_ret: mutex_unlock(&msm_host->dev_mutex); return ret; } int msm_dsi_host_power_off(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; mutex_lock(&msm_host->dev_mutex); if (!msm_host->power_on) { DBG("dsi host already off"); goto unlock_ret; } dsi_ctrl_disable(msm_host); if (msm_host->disp_en_gpio) gpiod_set_value(msm_host->disp_en_gpio, 0); pinctrl_pm_select_sleep_state(&msm_host->pdev->dev); cfg_hnd->ops->link_clk_disable(msm_host); pm_runtime_put(&msm_host->pdev->dev); regulator_bulk_disable(msm_host->cfg_hnd->cfg->num_regulators, msm_host->supplies); msm_dsi_sfpb_config(msm_host, false); DBG("-"); msm_host->power_on = false; unlock_ret: mutex_unlock(&msm_host->dev_mutex); return 0; } int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host, const struct drm_display_mode *mode) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); if (msm_host->mode) { drm_mode_destroy(msm_host->dev, msm_host->mode); msm_host->mode = NULL; } msm_host->mode = drm_mode_duplicate(msm_host->dev, mode); if (!msm_host->mode) { pr_err("%s: cannot duplicate mode\n", __func__); return -ENOMEM; } return 0; } enum drm_mode_status msm_dsi_host_check_dsc(struct mipi_dsi_host *host, const struct drm_display_mode *mode) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); struct drm_dsc_config *dsc = msm_host->dsc; int pic_width = mode->hdisplay; int pic_height = mode->vdisplay; if (!msm_host->dsc) return MODE_OK; if (pic_width % dsc->slice_width) { pr_err("DSI: pic_width %d has to be multiple of slice %d\n", pic_width, dsc->slice_width); return MODE_H_ILLEGAL; } if (pic_height % dsc->slice_height) { pr_err("DSI: pic_height %d has to be multiple of slice %d\n", pic_height, dsc->slice_height); return MODE_V_ILLEGAL; } return MODE_OK; } unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host) { return to_msm_dsi_host(host)->mode_flags; } void msm_dsi_host_snapshot(struct msm_disp_state *disp_state, struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); pm_runtime_get_sync(&msm_host->pdev->dev); msm_disp_snapshot_add_block(disp_state, msm_host->ctrl_size, msm_host->ctrl_base, "dsi%d_ctrl", msm_host->id); pm_runtime_put_sync(&msm_host->pdev->dev); } static void msm_dsi_host_video_test_pattern_setup(struct msm_dsi_host *msm_host) { u32 reg; reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_VIDEO_INIT_VAL, 0xff); /* draw checkered rectangle pattern */ dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL, DSI_TPG_MAIN_CONTROL_CHECKERED_RECTANGLE_PATTERN); /* use 24-bit RGB test pttern */ dsi_write(msm_host, REG_DSI_TPG_VIDEO_CONFIG, DSI_TPG_VIDEO_CONFIG_BPP(VIDEO_CONFIG_24BPP) | DSI_TPG_VIDEO_CONFIG_RGB); reg |= DSI_TEST_PATTERN_GEN_CTRL_VIDEO_PATTERN_SEL(VID_MDSS_GENERAL_PATTERN); dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg); DBG("Video test pattern setup done\n"); } static void msm_dsi_host_cmd_test_pattern_setup(struct msm_dsi_host *msm_host) { u32 reg; reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); /* initial value for test pattern */ dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_MDP_INIT_VAL0, 0xff); reg |= DSI_TEST_PATTERN_GEN_CTRL_CMD_MDP_STREAM0_PATTERN_SEL(CMD_MDP_MDSS_GENERAL_PATTERN); dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg); /* draw checkered rectangle pattern */ dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL2, DSI_TPG_MAIN_CONTROL2_CMD_MDP0_CHECKERED_RECTANGLE_PATTERN); DBG("Cmd test pattern setup done\n"); } void msm_dsi_host_test_pattern_en(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); bool is_video_mode = !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO); u32 reg; if (is_video_mode) msm_dsi_host_video_test_pattern_setup(msm_host); else msm_dsi_host_cmd_test_pattern_setup(msm_host); reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); /* enable the test pattern generator */ dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, (reg | DSI_TEST_PATTERN_GEN_CTRL_EN)); /* for command mode need to trigger one frame from tpg */ if (!is_video_mode) dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER, DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER_SW_TRIGGER); } struct drm_dsc_config *msm_dsi_host_get_dsc_config(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); return msm_host->dsc; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1