Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jérôme Glisse | 1362 | 35.97% | 3 | 5.00% |
Ben Skeggs | 780 | 20.60% | 26 | 43.33% |
Christoph Hellwig | 630 | 16.64% | 11 | 18.33% |
Ralph Campbell | 624 | 16.48% | 6 | 10.00% |
Alistair Popple | 323 | 8.53% | 5 | 8.33% |
Dan J Williams | 35 | 0.92% | 3 | 5.00% |
Duoming Zhou | 12 | 0.32% | 1 | 1.67% |
Danilo Krummrich | 9 | 0.24% | 1 | 1.67% |
Alexandre Courbot | 6 | 0.16% | 1 | 1.67% |
Christian König | 3 | 0.08% | 1 | 1.67% |
Colin Ian King | 2 | 0.05% | 1 | 1.67% |
Souptick Joarder | 1 | 0.03% | 1 | 1.67% |
Total | 3787 | 60 |
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "nouveau_dmem.h" #include "nouveau_drv.h" #include "nouveau_chan.h" #include "nouveau_dma.h" #include "nouveau_mem.h" #include "nouveau_bo.h" #include "nouveau_svm.h" #include <nvif/class.h> #include <nvif/object.h> #include <nvif/push906f.h> #include <nvif/if000c.h> #include <nvif/if500b.h> #include <nvif/if900b.h> #include <nvhw/class/cla0b5.h> #include <linux/sched/mm.h> #include <linux/hmm.h> #include <linux/memremap.h> #include <linux/migrate.h> /* * FIXME: this is ugly right now we are using TTM to allocate vram and we pin * it in vram while in use. We likely want to overhaul memory management for * nouveau to be more page like (not necessarily with system page size but a * bigger page size) at lowest level and have some shim layer on top that would * provide the same functionality as TTM. */ #define DMEM_CHUNK_SIZE (2UL << 20) #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT) enum nouveau_aper { NOUVEAU_APER_VIRT, NOUVEAU_APER_VRAM, NOUVEAU_APER_HOST, }; typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages, enum nouveau_aper, u64 dst_addr, enum nouveau_aper, u64 src_addr); typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length, enum nouveau_aper, u64 dst_addr); struct nouveau_dmem_chunk { struct list_head list; struct nouveau_bo *bo; struct nouveau_drm *drm; unsigned long callocated; struct dev_pagemap pagemap; }; struct nouveau_dmem_migrate { nouveau_migrate_copy_t copy_func; nouveau_clear_page_t clear_func; struct nouveau_channel *chan; }; struct nouveau_dmem { struct nouveau_drm *drm; struct nouveau_dmem_migrate migrate; struct list_head chunks; struct mutex mutex; struct page *free_pages; spinlock_t lock; }; static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page) { return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap); } static struct nouveau_drm *page_to_drm(struct page *page) { struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); return chunk->drm; } unsigned long nouveau_dmem_page_addr(struct page *page) { struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) - chunk->pagemap.range.start; return chunk->bo->offset + off; } static void nouveau_dmem_page_free(struct page *page) { struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page); struct nouveau_dmem *dmem = chunk->drm->dmem; spin_lock(&dmem->lock); page->zone_device_data = dmem->free_pages; dmem->free_pages = page; WARN_ON(!chunk->callocated); chunk->callocated--; /* * FIXME when chunk->callocated reach 0 we should add the chunk to * a reclaim list so that it can be freed in case of memory pressure. */ spin_unlock(&dmem->lock); } static void nouveau_dmem_fence_done(struct nouveau_fence **fence) { if (fence) { nouveau_fence_wait(*fence, true, false); nouveau_fence_unref(fence); } else { /* * FIXME wait for channel to be IDLE before calling finalizing * the hmem object. */ } } static int nouveau_dmem_copy_one(struct nouveau_drm *drm, struct page *spage, struct page *dpage, dma_addr_t *dma_addr) { struct device *dev = drm->dev->dev; lock_page(dpage); *dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, *dma_addr)) return -EIO; if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr, NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage))) { dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); return -EIO; } return 0; } static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf) { struct nouveau_drm *drm = page_to_drm(vmf->page); struct nouveau_dmem *dmem = drm->dmem; struct nouveau_fence *fence; struct nouveau_svmm *svmm; struct page *spage, *dpage; unsigned long src = 0, dst = 0; dma_addr_t dma_addr = 0; vm_fault_t ret = 0; struct migrate_vma args = { .vma = vmf->vma, .start = vmf->address, .end = vmf->address + PAGE_SIZE, .src = &src, .dst = &dst, .pgmap_owner = drm->dev, .fault_page = vmf->page, .flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE, }; /* * FIXME what we really want is to find some heuristic to migrate more * than just one page on CPU fault. When such fault happens it is very * likely that more surrounding page will CPU fault too. */ if (migrate_vma_setup(&args) < 0) return VM_FAULT_SIGBUS; if (!args.cpages) return 0; spage = migrate_pfn_to_page(src); if (!spage || !(src & MIGRATE_PFN_MIGRATE)) goto done; dpage = alloc_page_vma(GFP_HIGHUSER, vmf->vma, vmf->address); if (!dpage) goto done; dst = migrate_pfn(page_to_pfn(dpage)); svmm = spage->zone_device_data; mutex_lock(&svmm->mutex); nouveau_svmm_invalidate(svmm, args.start, args.end); ret = nouveau_dmem_copy_one(drm, spage, dpage, &dma_addr); mutex_unlock(&svmm->mutex); if (ret) { ret = VM_FAULT_SIGBUS; goto done; } nouveau_fence_new(&fence, dmem->migrate.chan); migrate_vma_pages(&args); nouveau_dmem_fence_done(&fence); dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); done: migrate_vma_finalize(&args); return ret; } static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = { .page_free = nouveau_dmem_page_free, .migrate_to_ram = nouveau_dmem_migrate_to_ram, }; static int nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage) { struct nouveau_dmem_chunk *chunk; struct resource *res; struct page *page; void *ptr; unsigned long i, pfn_first; int ret; chunk = kzalloc(sizeof(*chunk), GFP_KERNEL); if (chunk == NULL) { ret = -ENOMEM; goto out; } /* Allocate unused physical address space for device private pages. */ res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE, "nouveau_dmem"); if (IS_ERR(res)) { ret = PTR_ERR(res); goto out_free; } chunk->drm = drm; chunk->pagemap.type = MEMORY_DEVICE_PRIVATE; chunk->pagemap.range.start = res->start; chunk->pagemap.range.end = res->end; chunk->pagemap.nr_range = 1; chunk->pagemap.ops = &nouveau_dmem_pagemap_ops; chunk->pagemap.owner = drm->dev; ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0, NOUVEAU_GEM_DOMAIN_VRAM, 0, 0, NULL, NULL, &chunk->bo); if (ret) goto out_release; ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false); if (ret) goto out_bo_free; ptr = memremap_pages(&chunk->pagemap, numa_node_id()); if (IS_ERR(ptr)) { ret = PTR_ERR(ptr); goto out_bo_unpin; } mutex_lock(&drm->dmem->mutex); list_add(&chunk->list, &drm->dmem->chunks); mutex_unlock(&drm->dmem->mutex); pfn_first = chunk->pagemap.range.start >> PAGE_SHIFT; page = pfn_to_page(pfn_first); spin_lock(&drm->dmem->lock); for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) { page->zone_device_data = drm->dmem->free_pages; drm->dmem->free_pages = page; } *ppage = page; chunk->callocated++; spin_unlock(&drm->dmem->lock); NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", DMEM_CHUNK_SIZE >> 20); return 0; out_bo_unpin: nouveau_bo_unpin(chunk->bo); out_bo_free: nouveau_bo_ref(NULL, &chunk->bo); out_release: release_mem_region(chunk->pagemap.range.start, range_len(&chunk->pagemap.range)); out_free: kfree(chunk); out: return ret; } static struct page * nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm) { struct nouveau_dmem_chunk *chunk; struct page *page = NULL; int ret; spin_lock(&drm->dmem->lock); if (drm->dmem->free_pages) { page = drm->dmem->free_pages; drm->dmem->free_pages = page->zone_device_data; chunk = nouveau_page_to_chunk(page); chunk->callocated++; spin_unlock(&drm->dmem->lock); } else { spin_unlock(&drm->dmem->lock); ret = nouveau_dmem_chunk_alloc(drm, &page); if (ret) return NULL; } zone_device_page_init(page); return page; } static void nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page) { unlock_page(page); put_page(page); } void nouveau_dmem_resume(struct nouveau_drm *drm) { struct nouveau_dmem_chunk *chunk; int ret; if (drm->dmem == NULL) return; mutex_lock(&drm->dmem->mutex); list_for_each_entry(chunk, &drm->dmem->chunks, list) { ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false); /* FIXME handle pin failure */ WARN_ON(ret); } mutex_unlock(&drm->dmem->mutex); } void nouveau_dmem_suspend(struct nouveau_drm *drm) { struct nouveau_dmem_chunk *chunk; if (drm->dmem == NULL) return; mutex_lock(&drm->dmem->mutex); list_for_each_entry(chunk, &drm->dmem->chunks, list) nouveau_bo_unpin(chunk->bo); mutex_unlock(&drm->dmem->mutex); } /* * Evict all pages mapping a chunk. */ static void nouveau_dmem_evict_chunk(struct nouveau_dmem_chunk *chunk) { unsigned long i, npages = range_len(&chunk->pagemap.range) >> PAGE_SHIFT; unsigned long *src_pfns, *dst_pfns; dma_addr_t *dma_addrs; struct nouveau_fence *fence; src_pfns = kvcalloc(npages, sizeof(*src_pfns), GFP_KERNEL | __GFP_NOFAIL); dst_pfns = kvcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL | __GFP_NOFAIL); dma_addrs = kvcalloc(npages, sizeof(*dma_addrs), GFP_KERNEL | __GFP_NOFAIL); migrate_device_range(src_pfns, chunk->pagemap.range.start >> PAGE_SHIFT, npages); for (i = 0; i < npages; i++) { if (src_pfns[i] & MIGRATE_PFN_MIGRATE) { struct page *dpage; /* * _GFP_NOFAIL because the GPU is going away and there * is nothing sensible we can do if we can't copy the * data back. */ dpage = alloc_page(GFP_HIGHUSER | __GFP_NOFAIL); dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)); nouveau_dmem_copy_one(chunk->drm, migrate_pfn_to_page(src_pfns[i]), dpage, &dma_addrs[i]); } } nouveau_fence_new(&fence, chunk->drm->dmem->migrate.chan); migrate_device_pages(src_pfns, dst_pfns, npages); nouveau_dmem_fence_done(&fence); migrate_device_finalize(src_pfns, dst_pfns, npages); kvfree(src_pfns); kvfree(dst_pfns); for (i = 0; i < npages; i++) dma_unmap_page(chunk->drm->dev->dev, dma_addrs[i], PAGE_SIZE, DMA_BIDIRECTIONAL); kvfree(dma_addrs); } void nouveau_dmem_fini(struct nouveau_drm *drm) { struct nouveau_dmem_chunk *chunk, *tmp; if (drm->dmem == NULL) return; mutex_lock(&drm->dmem->mutex); list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) { nouveau_dmem_evict_chunk(chunk); nouveau_bo_unpin(chunk->bo); nouveau_bo_ref(NULL, &chunk->bo); WARN_ON(chunk->callocated); list_del(&chunk->list); memunmap_pages(&chunk->pagemap); release_mem_region(chunk->pagemap.range.start, range_len(&chunk->pagemap.range)); kfree(chunk); } mutex_unlock(&drm->dmem->mutex); } static int nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages, enum nouveau_aper dst_aper, u64 dst_addr, enum nouveau_aper src_aper, u64 src_addr) { struct nvif_push *push = drm->dmem->migrate.chan->chan.push; u32 launch_dma = 0; int ret; ret = PUSH_WAIT(push, 13); if (ret) return ret; if (src_aper != NOUVEAU_APER_VIRT) { switch (src_aper) { case NOUVEAU_APER_VRAM: PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE, NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB)); break; case NOUVEAU_APER_HOST: PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE, NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM)); break; default: return -EINVAL; } launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, SRC_TYPE, PHYSICAL); } if (dst_aper != NOUVEAU_APER_VIRT) { switch (dst_aper) { case NOUVEAU_APER_VRAM: PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB)); break; case NOUVEAU_APER_HOST: PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM)); break; default: return -EINVAL; } launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL); } PUSH_MTHD(push, NVA0B5, OFFSET_IN_UPPER, NVVAL(NVA0B5, OFFSET_IN_UPPER, UPPER, upper_32_bits(src_addr)), OFFSET_IN_LOWER, lower_32_bits(src_addr), OFFSET_OUT_UPPER, NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)), OFFSET_OUT_LOWER, lower_32_bits(dst_addr), PITCH_IN, PAGE_SIZE, PITCH_OUT, PAGE_SIZE, LINE_LENGTH_IN, PAGE_SIZE, LINE_COUNT, npages); PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma | NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) | NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) | NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) | NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) | NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) | NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) | NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, TRUE) | NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, FALSE) | NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING)); return 0; } static int nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length, enum nouveau_aper dst_aper, u64 dst_addr) { struct nvif_push *push = drm->dmem->migrate.chan->chan.push; u32 launch_dma = 0; int ret; ret = PUSH_WAIT(push, 12); if (ret) return ret; switch (dst_aper) { case NOUVEAU_APER_VRAM: PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB)); break; case NOUVEAU_APER_HOST: PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE, NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM)); break; default: return -EINVAL; } launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL); PUSH_MTHD(push, NVA0B5, SET_REMAP_CONST_A, 0, SET_REMAP_CONST_B, 0, SET_REMAP_COMPONENTS, NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_X, CONST_A) | NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_Y, CONST_B) | NVDEF(NVA0B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) | NVDEF(NVA0B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, TWO)); PUSH_MTHD(push, NVA0B5, OFFSET_OUT_UPPER, NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)), OFFSET_OUT_LOWER, lower_32_bits(dst_addr)); PUSH_MTHD(push, NVA0B5, LINE_LENGTH_IN, length >> 3); PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma | NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) | NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) | NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) | NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) | NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) | NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) | NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) | NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, TRUE) | NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING)); return 0; } static int nouveau_dmem_migrate_init(struct nouveau_drm *drm) { switch (drm->ttm.copy.oclass) { case PASCAL_DMA_COPY_A: case PASCAL_DMA_COPY_B: case VOLTA_DMA_COPY_A: case TURING_DMA_COPY_A: drm->dmem->migrate.copy_func = nvc0b5_migrate_copy; drm->dmem->migrate.clear_func = nvc0b5_migrate_clear; drm->dmem->migrate.chan = drm->ttm.chan; return 0; default: break; } return -ENODEV; } void nouveau_dmem_init(struct nouveau_drm *drm) { int ret; /* This only make sense on PASCAL or newer */ if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL) return; if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL))) return; drm->dmem->drm = drm; mutex_init(&drm->dmem->mutex); INIT_LIST_HEAD(&drm->dmem->chunks); mutex_init(&drm->dmem->mutex); spin_lock_init(&drm->dmem->lock); /* Initialize migration dma helpers before registering memory */ ret = nouveau_dmem_migrate_init(drm); if (ret) { kfree(drm->dmem); drm->dmem = NULL; } } static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm, struct nouveau_svmm *svmm, unsigned long src, dma_addr_t *dma_addr, u64 *pfn) { struct device *dev = drm->dev->dev; struct page *dpage, *spage; unsigned long paddr; spage = migrate_pfn_to_page(src); if (!(src & MIGRATE_PFN_MIGRATE)) goto out; dpage = nouveau_dmem_page_alloc_locked(drm); if (!dpage) goto out; paddr = nouveau_dmem_page_addr(dpage); if (spage) { *dma_addr = dma_map_page(dev, spage, 0, page_size(spage), DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, *dma_addr)) goto out_free_page; if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr)) goto out_dma_unmap; } else { *dma_addr = DMA_MAPPING_ERROR; if (drm->dmem->migrate.clear_func(drm, page_size(dpage), NOUVEAU_APER_VRAM, paddr)) goto out_free_page; } dpage->zone_device_data = svmm; *pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM | ((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT); if (src & MIGRATE_PFN_WRITE) *pfn |= NVIF_VMM_PFNMAP_V0_W; return migrate_pfn(page_to_pfn(dpage)); out_dma_unmap: dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); out_free_page: nouveau_dmem_page_free_locked(drm, dpage); out: *pfn = NVIF_VMM_PFNMAP_V0_NONE; return 0; } static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm, struct nouveau_svmm *svmm, struct migrate_vma *args, dma_addr_t *dma_addrs, u64 *pfns) { struct nouveau_fence *fence; unsigned long addr = args->start, nr_dma = 0, i; for (i = 0; addr < args->end; i++) { args->dst[i] = nouveau_dmem_migrate_copy_one(drm, svmm, args->src[i], dma_addrs + nr_dma, pfns + i); if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma])) nr_dma++; addr += PAGE_SIZE; } nouveau_fence_new(&fence, drm->dmem->migrate.chan); migrate_vma_pages(args); nouveau_dmem_fence_done(&fence); nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i); while (nr_dma--) { dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE, DMA_BIDIRECTIONAL); } migrate_vma_finalize(args); } int nouveau_dmem_migrate_vma(struct nouveau_drm *drm, struct nouveau_svmm *svmm, struct vm_area_struct *vma, unsigned long start, unsigned long end) { unsigned long npages = (end - start) >> PAGE_SHIFT; unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages); dma_addr_t *dma_addrs; struct migrate_vma args = { .vma = vma, .start = start, .pgmap_owner = drm->dev, .flags = MIGRATE_VMA_SELECT_SYSTEM, }; unsigned long i; u64 *pfns; int ret = -ENOMEM; if (drm->dmem == NULL) return -ENODEV; args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL); if (!args.src) goto out; args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL); if (!args.dst) goto out_free_src; dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL); if (!dma_addrs) goto out_free_dst; pfns = nouveau_pfns_alloc(max); if (!pfns) goto out_free_dma; for (i = 0; i < npages; i += max) { if (args.start + (max << PAGE_SHIFT) > end) args.end = end; else args.end = args.start + (max << PAGE_SHIFT); ret = migrate_vma_setup(&args); if (ret) goto out_free_pfns; if (args.cpages) nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs, pfns); args.start = args.end; } ret = 0; out_free_pfns: nouveau_pfns_free(pfns); out_free_dma: kfree(dma_addrs); out_free_dst: kfree(args.dst); out_free_src: kfree(args.src); out: return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1