Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Skeggs | 3523 | 98.52% | 74 | 93.67% |
Alistair Popple | 35 | 0.98% | 1 | 1.27% |
Dave Airlie | 17 | 0.48% | 3 | 3.80% |
Marcin Ślusarz | 1 | 0.03% | 1 | 1.27% |
Total | 3576 | 79 |
/* * Copyright 2023 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "priv.h" #include "cgrp.h" #include "chan.h" #include "chid.h" #include "runl.h" #include <core/gpuobj.h> #include <subdev/gsp.h> #include <subdev/mmu.h> #include <subdev/vfn.h> #include <engine/gr.h> #include <nvhw/drf.h> #include <nvrm/nvtypes.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/alloc/alloc_channel.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl2080_notification.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080ce.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080fifo.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080gpu.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080internal.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrla06f/ctrla06fgpfifo.h> #include <nvrm/535.113.01/nvidia/generated/g_kernel_channel_nvoc.h> #include <nvrm/535.113.01/nvidia/generated/g_kernel_fifo_nvoc.h> #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gpu_engine_type.h> static u32 r535_chan_doorbell_handle(struct nvkm_chan *chan) { return (chan->cgrp->runl->id << 16) | chan->id; } static void r535_chan_stop(struct nvkm_chan *chan) { } static void r535_chan_start(struct nvkm_chan *chan) { } static void r535_chan_ramfc_clear(struct nvkm_chan *chan) { struct nvkm_fifo *fifo = chan->cgrp->runl->fifo; nvkm_gsp_rm_free(&chan->rm.object); dma_free_coherent(fifo->engine.subdev.device->dev, fifo->rm.mthdbuf_size, chan->rm.mthdbuf.ptr, chan->rm.mthdbuf.addr); nvkm_cgrp_vctx_put(chan->cgrp, &chan->rm.grctx); } #define CHID_PER_USERD 8 static int r535_chan_ramfc_write(struct nvkm_chan *chan, u64 offset, u64 length, u32 devm, bool priv) { struct nvkm_fifo *fifo = chan->cgrp->runl->fifo; struct nvkm_engn *engn; struct nvkm_device *device = fifo->engine.subdev.device; NV_CHANNELGPFIFO_ALLOCATION_PARAMETERS *args; const int userd_p = chan->id / CHID_PER_USERD; const int userd_i = chan->id % CHID_PER_USERD; u32 eT = ~0; int ret; if (unlikely(device->gr && !device->gr->engine.subdev.oneinit)) { ret = nvkm_subdev_oneinit(&device->gr->engine.subdev); if (ret) return ret; } nvkm_runl_foreach_engn(engn, chan->cgrp->runl) { eT = engn->id; break; } if (WARN_ON(eT == ~0)) return -EINVAL; chan->rm.mthdbuf.ptr = dma_alloc_coherent(fifo->engine.subdev.device->dev, fifo->rm.mthdbuf_size, &chan->rm.mthdbuf.addr, GFP_KERNEL); if (!chan->rm.mthdbuf.ptr) return -ENOMEM; args = nvkm_gsp_rm_alloc_get(&chan->vmm->rm.device.object, 0xf1f00000 | chan->id, fifo->func->chan.user.oclass, sizeof(*args), &chan->rm.object); if (WARN_ON(IS_ERR(args))) return PTR_ERR(args); args->gpFifoOffset = offset; args->gpFifoEntries = length / 8; args->flags = NVDEF(NVOS04, FLAGS, CHANNEL_TYPE, PHYSICAL); args->flags |= NVDEF(NVOS04, FLAGS, VPR, FALSE); args->flags |= NVDEF(NVOS04, FLAGS, CHANNEL_SKIP_MAP_REFCOUNTING, FALSE); args->flags |= NVVAL(NVOS04, FLAGS, GROUP_CHANNEL_RUNQUEUE, chan->runq); if (!priv) args->flags |= NVDEF(NVOS04, FLAGS, PRIVILEGED_CHANNEL, FALSE); else args->flags |= NVDEF(NVOS04, FLAGS, PRIVILEGED_CHANNEL, TRUE); args->flags |= NVDEF(NVOS04, FLAGS, DELAY_CHANNEL_SCHEDULING, FALSE); args->flags |= NVDEF(NVOS04, FLAGS, CHANNEL_DENY_PHYSICAL_MODE_CE, FALSE); args->flags |= NVVAL(NVOS04, FLAGS, CHANNEL_USERD_INDEX_VALUE, userd_i); args->flags |= NVDEF(NVOS04, FLAGS, CHANNEL_USERD_INDEX_FIXED, FALSE); args->flags |= NVVAL(NVOS04, FLAGS, CHANNEL_USERD_INDEX_PAGE_VALUE, userd_p); args->flags |= NVDEF(NVOS04, FLAGS, CHANNEL_USERD_INDEX_PAGE_FIXED, TRUE); args->flags |= NVDEF(NVOS04, FLAGS, CHANNEL_DENY_AUTH_LEVEL_PRIV, FALSE); args->flags |= NVDEF(NVOS04, FLAGS, CHANNEL_SKIP_SCRUBBER, FALSE); args->flags |= NVDEF(NVOS04, FLAGS, CHANNEL_CLIENT_MAP_FIFO, FALSE); args->flags |= NVDEF(NVOS04, FLAGS, SET_EVICT_LAST_CE_PREFETCH_CHANNEL, FALSE); args->flags |= NVDEF(NVOS04, FLAGS, CHANNEL_VGPU_PLUGIN_CONTEXT, FALSE); args->flags |= NVDEF(NVOS04, FLAGS, CHANNEL_PBDMA_ACQUIRE_TIMEOUT, FALSE); args->flags |= NVDEF(NVOS04, FLAGS, GROUP_CHANNEL_THREAD, DEFAULT); args->flags |= NVDEF(NVOS04, FLAGS, MAP_CHANNEL, FALSE); args->flags |= NVDEF(NVOS04, FLAGS, SKIP_CTXBUFFER_ALLOC, FALSE); args->hVASpace = chan->vmm->rm.object.handle; args->engineType = eT; args->instanceMem.base = chan->inst->addr; args->instanceMem.size = chan->inst->size; args->instanceMem.addressSpace = 2; args->instanceMem.cacheAttrib = 1; args->userdMem.base = nvkm_memory_addr(chan->userd.mem) + chan->userd.base; args->userdMem.size = fifo->func->chan.func->userd->size; args->userdMem.addressSpace = 2; args->userdMem.cacheAttrib = 1; args->ramfcMem.base = chan->inst->addr + 0; args->ramfcMem.size = 0x200; args->ramfcMem.addressSpace = 2; args->ramfcMem.cacheAttrib = 1; args->mthdbufMem.base = chan->rm.mthdbuf.addr; args->mthdbufMem.size = fifo->rm.mthdbuf_size; args->mthdbufMem.addressSpace = 1; args->mthdbufMem.cacheAttrib = 0; if (!priv) args->internalFlags = NVDEF(NV_KERNELCHANNEL, ALLOC_INTERNALFLAGS, PRIVILEGE, USER); else args->internalFlags = NVDEF(NV_KERNELCHANNEL, ALLOC_INTERNALFLAGS, PRIVILEGE, ADMIN); args->internalFlags |= NVDEF(NV_KERNELCHANNEL, ALLOC_INTERNALFLAGS, ERROR_NOTIFIER_TYPE, NONE); args->internalFlags |= NVDEF(NV_KERNELCHANNEL, ALLOC_INTERNALFLAGS, ECC_ERROR_NOTIFIER_TYPE, NONE); ret = nvkm_gsp_rm_alloc_wr(&chan->rm.object, args); if (ret) return ret; if (1) { NVA06F_CTRL_GPFIFO_SCHEDULE_PARAMS *ctrl; if (1) { NVA06F_CTRL_BIND_PARAMS *ctrl; ctrl = nvkm_gsp_rm_ctrl_get(&chan->rm.object, NVA06F_CTRL_CMD_BIND, sizeof(*ctrl)); if (WARN_ON(IS_ERR(ctrl))) return PTR_ERR(ctrl); ctrl->engineType = eT; ret = nvkm_gsp_rm_ctrl_wr(&chan->rm.object, ctrl); if (ret) return ret; } ctrl = nvkm_gsp_rm_ctrl_get(&chan->rm.object, NVA06F_CTRL_CMD_GPFIFO_SCHEDULE, sizeof(*ctrl)); if (WARN_ON(IS_ERR(ctrl))) return PTR_ERR(ctrl); ctrl->bEnable = 1; ret = nvkm_gsp_rm_ctrl_wr(&chan->rm.object, ctrl); } return ret; } static const struct nvkm_chan_func_ramfc r535_chan_ramfc = { .write = r535_chan_ramfc_write, .clear = r535_chan_ramfc_clear, .devm = 0xfff, .priv = true, }; struct r535_chan_userd { struct nvkm_memory *mem; struct nvkm_memory *map; int chid; u32 used; struct list_head head; } *userd; static void r535_chan_id_put(struct nvkm_chan *chan) { struct nvkm_runl *runl = chan->cgrp->runl; struct nvkm_fifo *fifo = runl->fifo; struct r535_chan_userd *userd; mutex_lock(&fifo->userd.mutex); list_for_each_entry(userd, &fifo->userd.list, head) { if (userd->map == chan->userd.mem) { u32 chid = chan->userd.base / chan->func->userd->size; userd->used &= ~BIT(chid); if (!userd->used) { nvkm_memory_unref(&userd->map); nvkm_memory_unref(&userd->mem); nvkm_chid_put(runl->chid, userd->chid, &chan->cgrp->lock); list_del(&userd->head); kfree(userd); } break; } } mutex_unlock(&fifo->userd.mutex); } static int r535_chan_id_get_locked(struct nvkm_chan *chan, struct nvkm_memory *muserd, u64 ouserd) { const u32 userd_size = CHID_PER_USERD * chan->func->userd->size; struct nvkm_runl *runl = chan->cgrp->runl; struct nvkm_fifo *fifo = runl->fifo; struct r535_chan_userd *userd; u32 chid; int ret; if (ouserd + chan->func->userd->size >= userd_size || (ouserd & (chan->func->userd->size - 1))) { RUNL_DEBUG(runl, "ouserd %llx", ouserd); return -EINVAL; } chid = div_u64(ouserd, chan->func->userd->size); list_for_each_entry(userd, &fifo->userd.list, head) { if (userd->mem == muserd) { if (userd->used & BIT(chid)) return -EBUSY; break; } } if (&userd->head == &fifo->userd.list) { if (nvkm_memory_size(muserd) < userd_size) { RUNL_DEBUG(runl, "userd too small"); return -EINVAL; } userd = kzalloc(sizeof(*userd), GFP_KERNEL); if (!userd) return -ENOMEM; userd->chid = nvkm_chid_get(runl->chid, chan); if (userd->chid < 0) { ret = userd->chid; kfree(userd); return ret; } userd->mem = nvkm_memory_ref(muserd); ret = nvkm_memory_kmap(userd->mem, &userd->map); if (ret) { nvkm_chid_put(runl->chid, userd->chid, &chan->cgrp->lock); kfree(userd); return ret; } list_add(&userd->head, &fifo->userd.list); } userd->used |= BIT(chid); chan->userd.mem = nvkm_memory_ref(userd->map); chan->userd.base = ouserd; return (userd->chid * CHID_PER_USERD) + chid; } static int r535_chan_id_get(struct nvkm_chan *chan, struct nvkm_memory *muserd, u64 ouserd) { struct nvkm_fifo *fifo = chan->cgrp->runl->fifo; int ret; mutex_lock(&fifo->userd.mutex); ret = r535_chan_id_get_locked(chan, muserd, ouserd); mutex_unlock(&fifo->userd.mutex); return ret; } static const struct nvkm_chan_func r535_chan = { .id_get = r535_chan_id_get, .id_put = r535_chan_id_put, .inst = &gf100_chan_inst, .userd = &gv100_chan_userd, .ramfc = &r535_chan_ramfc, .start = r535_chan_start, .stop = r535_chan_stop, .doorbell_handle = r535_chan_doorbell_handle, }; static const struct nvkm_cgrp_func r535_cgrp = { }; static int r535_engn_nonstall(struct nvkm_engn *engn) { struct nvkm_subdev *subdev = &engn->engine->subdev; int ret; ret = nvkm_gsp_intr_nonstall(subdev->device->gsp, subdev->type, subdev->inst); WARN_ON(ret == -ENOENT); return ret; } static const struct nvkm_engn_func r535_ce = { .nonstall = r535_engn_nonstall, }; static int r535_gr_ctor(struct nvkm_engn *engn, struct nvkm_vctx *vctx, struct nvkm_chan *chan) { /* RM requires GR context buffers to remain mapped until after the * channel has been destroyed (as opposed to after the last gr obj * has been deleted). * * Take an extra ref here, which will be released once the channel * object has been deleted. */ refcount_inc(&vctx->refs); chan->rm.grctx = vctx; return 0; } static const struct nvkm_engn_func r535_gr = { .nonstall = r535_engn_nonstall, .ctor2 = r535_gr_ctor, }; static int r535_flcn_bind(struct nvkm_engn *engn, struct nvkm_vctx *vctx, struct nvkm_chan *chan) { struct nvkm_gsp_client *client = &chan->vmm->rm.client; NV2080_CTRL_GPU_PROMOTE_CTX_PARAMS *ctrl; ctrl = nvkm_gsp_rm_ctrl_get(&chan->vmm->rm.device.subdevice, NV2080_CTRL_CMD_GPU_PROMOTE_CTX, sizeof(*ctrl)); if (IS_ERR(ctrl)) return PTR_ERR(ctrl); ctrl->hClient = client->object.handle; ctrl->hObject = chan->rm.object.handle; ctrl->hChanClient = client->object.handle; ctrl->virtAddress = vctx->vma->addr; ctrl->size = vctx->inst->size; ctrl->engineType = engn->id; ctrl->ChID = chan->id; return nvkm_gsp_rm_ctrl_wr(&chan->vmm->rm.device.subdevice, ctrl); } static int r535_flcn_ctor(struct nvkm_engn *engn, struct nvkm_vctx *vctx, struct nvkm_chan *chan) { int ret; if (WARN_ON(!engn->rm.size)) return -EINVAL; ret = nvkm_gpuobj_new(engn->engine->subdev.device, engn->rm.size, 0, true, NULL, &vctx->inst); if (ret) return ret; ret = nvkm_vmm_get(vctx->vmm, 12, vctx->inst->size, &vctx->vma); if (ret) return ret; ret = nvkm_memory_map(vctx->inst, 0, vctx->vmm, vctx->vma, NULL, 0); if (ret) return ret; return r535_flcn_bind(engn, vctx, chan); } static const struct nvkm_engn_func r535_flcn = { .nonstall = r535_engn_nonstall, .ctor2 = r535_flcn_ctor, }; static void r535_runl_allow(struct nvkm_runl *runl, u32 engm) { } static void r535_runl_block(struct nvkm_runl *runl, u32 engm) { } static const struct nvkm_runl_func r535_runl = { .block = r535_runl_block, .allow = r535_runl_allow, }; static int r535_fifo_2080_type(enum nvkm_subdev_type type, int inst) { switch (type) { case NVKM_ENGINE_GR: return NV2080_ENGINE_TYPE_GR0; case NVKM_ENGINE_CE: return NV2080_ENGINE_TYPE_COPY0 + inst; case NVKM_ENGINE_SEC2: return NV2080_ENGINE_TYPE_SEC2; case NVKM_ENGINE_NVDEC: return NV2080_ENGINE_TYPE_NVDEC0 + inst; case NVKM_ENGINE_NVENC: return NV2080_ENGINE_TYPE_NVENC0 + inst; case NVKM_ENGINE_NVJPG: return NV2080_ENGINE_TYPE_NVJPEG0 + inst; case NVKM_ENGINE_OFA: return NV2080_ENGINE_TYPE_OFA; case NVKM_ENGINE_SW: return NV2080_ENGINE_TYPE_SW; default: break; } WARN_ON(1); return -EINVAL; } static int r535_fifo_engn_type(RM_ENGINE_TYPE rm, enum nvkm_subdev_type *ptype) { switch (rm) { case RM_ENGINE_TYPE_GR0: *ptype = NVKM_ENGINE_GR; return 0; case RM_ENGINE_TYPE_COPY0...RM_ENGINE_TYPE_COPY9: *ptype = NVKM_ENGINE_CE; return rm - RM_ENGINE_TYPE_COPY0; case RM_ENGINE_TYPE_NVDEC0...RM_ENGINE_TYPE_NVDEC7: *ptype = NVKM_ENGINE_NVDEC; return rm - RM_ENGINE_TYPE_NVDEC0; case RM_ENGINE_TYPE_NVENC0...RM_ENGINE_TYPE_NVENC2: *ptype = NVKM_ENGINE_NVENC; return rm - RM_ENGINE_TYPE_NVENC0; case RM_ENGINE_TYPE_SW: *ptype = NVKM_ENGINE_SW; return 0; case RM_ENGINE_TYPE_SEC2: *ptype = NVKM_ENGINE_SEC2; return 0; case RM_ENGINE_TYPE_NVJPEG0...RM_ENGINE_TYPE_NVJPEG7: *ptype = NVKM_ENGINE_NVJPG; return rm - RM_ENGINE_TYPE_NVJPEG0; case RM_ENGINE_TYPE_OFA: *ptype = NVKM_ENGINE_OFA; return 0; default: return -EINVAL; } } static int r535_fifo_ectx_size(struct nvkm_fifo *fifo) { NV2080_CTRL_INTERNAL_GET_CONSTRUCTED_FALCON_INFO_PARAMS *ctrl; struct nvkm_gsp *gsp = fifo->engine.subdev.device->gsp; struct nvkm_runl *runl; struct nvkm_engn *engn; ctrl = nvkm_gsp_rm_ctrl_rd(&gsp->internal.device.subdevice, NV2080_CTRL_CMD_INTERNAL_GET_CONSTRUCTED_FALCON_INFO, sizeof(*ctrl)); if (WARN_ON(IS_ERR(ctrl))) return PTR_ERR(ctrl); for (int i = 0; i < ctrl->numConstructedFalcons; i++) { nvkm_runl_foreach(runl, fifo) { nvkm_runl_foreach_engn(engn, runl) { if (engn->rm.desc == ctrl->constructedFalconsTable[i].engDesc) { engn->rm.size = ctrl->constructedFalconsTable[i].ctxBufferSize; break; } } } } nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl); return 0; } static int r535_fifo_runl_ctor(struct nvkm_fifo *fifo) { struct nvkm_subdev *subdev = &fifo->engine.subdev; struct nvkm_gsp *gsp = subdev->device->gsp; struct nvkm_runl *runl; struct nvkm_engn *engn; u32 cgids = 2048; u32 chids = 2048; int ret; NV2080_CTRL_FIFO_GET_DEVICE_INFO_TABLE_PARAMS *ctrl; if ((ret = nvkm_chid_new(&nvkm_chan_event, subdev, cgids, 0, cgids, &fifo->cgid)) || (ret = nvkm_chid_new(&nvkm_chan_event, subdev, chids, 0, chids, &fifo->chid))) return ret; ctrl = nvkm_gsp_rm_ctrl_rd(&gsp->internal.device.subdevice, NV2080_CTRL_CMD_FIFO_GET_DEVICE_INFO_TABLE, sizeof(*ctrl)); if (WARN_ON(IS_ERR(ctrl))) return PTR_ERR(ctrl); for (int i = 0; i < ctrl->numEntries; i++) { const u32 addr = ctrl->entries[i].engineData[ENGINE_INFO_TYPE_RUNLIST_PRI_BASE]; const u32 id = ctrl->entries[i].engineData[ENGINE_INFO_TYPE_RUNLIST]; runl = nvkm_runl_get(fifo, id, addr); if (!runl) { runl = nvkm_runl_new(fifo, id, addr, 0); if (WARN_ON(IS_ERR(runl))) continue; } } for (int i = 0; i < ctrl->numEntries; i++) { const u32 addr = ctrl->entries[i].engineData[ENGINE_INFO_TYPE_RUNLIST_PRI_BASE]; const u32 rmid = ctrl->entries[i].engineData[ENGINE_INFO_TYPE_RM_ENGINE_TYPE]; const u32 id = ctrl->entries[i].engineData[ENGINE_INFO_TYPE_RUNLIST]; enum nvkm_subdev_type type; int inst, nv2080; runl = nvkm_runl_get(fifo, id, addr); if (!runl) continue; inst = r535_fifo_engn_type(rmid, &type); if (inst < 0) { nvkm_warn(subdev, "RM_ENGINE_TYPE 0x%x\n", rmid); nvkm_runl_del(runl); continue; } nv2080 = r535_fifo_2080_type(type, inst); if (nv2080 < 0) { nvkm_runl_del(runl); continue; } switch (type) { case NVKM_ENGINE_CE: engn = nvkm_runl_add(runl, nv2080, &r535_ce, type, inst); break; case NVKM_ENGINE_GR: engn = nvkm_runl_add(runl, nv2080, &r535_gr, type, inst); break; case NVKM_ENGINE_NVDEC: case NVKM_ENGINE_NVENC: case NVKM_ENGINE_NVJPG: case NVKM_ENGINE_OFA: engn = nvkm_runl_add(runl, nv2080, &r535_flcn, type, inst); break; case NVKM_ENGINE_SW: continue; default: engn = NULL; break; } if (!engn) { nvkm_runl_del(runl); continue; } engn->rm.desc = ctrl->entries[i].engineData[ENGINE_INFO_TYPE_ENG_DESC]; } nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl); { NV2080_CTRL_CE_GET_FAULT_METHOD_BUFFER_SIZE_PARAMS *ctrl; ctrl = nvkm_gsp_rm_ctrl_rd(&gsp->internal.device.subdevice, NV2080_CTRL_CMD_CE_GET_FAULT_METHOD_BUFFER_SIZE, sizeof(*ctrl)); if (IS_ERR(ctrl)) return PTR_ERR(ctrl); fifo->rm.mthdbuf_size = ctrl->size; nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl); } return r535_fifo_ectx_size(fifo); } static void r535_fifo_dtor(struct nvkm_fifo *fifo) { kfree(fifo->func); } int r535_fifo_new(const struct nvkm_fifo_func *hw, struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_fifo **pfifo) { struct nvkm_fifo_func *rm; if (!(rm = kzalloc(sizeof(*rm), GFP_KERNEL))) return -ENOMEM; rm->dtor = r535_fifo_dtor; rm->runl_ctor = r535_fifo_runl_ctor; rm->runl = &r535_runl; rm->cgrp = hw->cgrp; rm->cgrp.func = &r535_cgrp; rm->chan = hw->chan; rm->chan.func = &r535_chan; rm->nonstall = &ga100_fifo_nonstall; rm->nonstall_ctor = ga100_fifo_nonstall_ctor; return nvkm_fifo_new_(rm, device, type, inst, pfifo); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1