Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexandre Courbot | 1953 | 71.75% | 9 | 23.08% |
Ben Skeggs | 732 | 26.89% | 24 | 61.54% |
Thierry Reding | 26 | 0.96% | 2 | 5.13% |
Krzysztof Kozlowski | 4 | 0.15% | 1 | 2.56% |
Kamil Dudka | 4 | 0.15% | 1 | 2.56% |
Jason Gunthorpe | 2 | 0.07% | 1 | 2.56% |
Marcin Ślusarz | 1 | 0.04% | 1 | 2.56% |
Total | 2722 | 39 |
/* * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /* * GK20A does not have dedicated video memory, and to accurately represent this * fact Nouveau will not create a RAM device for it. Therefore its instmem * implementation must be done directly on top of system memory, while * preserving coherency for read and write operations. * * Instmem can be allocated through two means: * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory * pages contiguous to the GPU. This is the preferred way. * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically * contiguous memory. * * In both cases CPU read and writes are performed by creating a write-combined * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To * be conservative we do this every time we acquire or release an instobj, but * ideally L2 management should be handled at a higher level. * * To improve performance, CPU mappings are not removed upon instobj release. * Instead they are placed into a LRU list to be recycled when the mapped space * goes beyond a certain threshold. At the moment this limit is 1MB. */ #include "priv.h" #include <core/memory.h> #include <core/tegra.h> #include <subdev/ltc.h> #include <subdev/mmu.h> struct gk20a_instobj { struct nvkm_instobj base; struct nvkm_mm_node *mn; struct gk20a_instmem *imem; /* CPU mapping */ u32 *vaddr; }; #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, base.memory) /* * Used for objects allocated using the DMA API */ struct gk20a_instobj_dma { struct gk20a_instobj base; dma_addr_t handle; struct nvkm_mm_node r; }; #define gk20a_instobj_dma(p) \ container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base) /* * Used for objects flattened using the IOMMU API */ struct gk20a_instobj_iommu { struct gk20a_instobj base; /* to link into gk20a_instmem::vaddr_lru */ struct list_head vaddr_node; /* how many clients are using vaddr? */ u32 use_cpt; /* will point to the higher half of pages */ dma_addr_t *dma_addrs; /* array of base.mem->size pages (+ dma_addr_ts) */ struct page *pages[]; }; #define gk20a_instobj_iommu(p) \ container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base) struct gk20a_instmem { struct nvkm_instmem base; /* protects vaddr_* and gk20a_instobj::vaddr* */ struct mutex lock; /* CPU mappings LRU */ unsigned int vaddr_use; unsigned int vaddr_max; struct list_head vaddr_lru; /* Only used if IOMMU if present */ struct mutex *mm_mutex; struct nvkm_mm *mm; struct iommu_domain *domain; unsigned long iommu_pgshift; u16 iommu_bit; /* Only used by DMA API */ unsigned long attrs; }; #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base) static enum nvkm_memory_target gk20a_instobj_target(struct nvkm_memory *memory) { return NVKM_MEM_TARGET_NCOH; } static u8 gk20a_instobj_page(struct nvkm_memory *memory) { return 12; } static u64 gk20a_instobj_addr(struct nvkm_memory *memory) { return (u64)gk20a_instobj(memory)->mn->offset << 12; } static u64 gk20a_instobj_size(struct nvkm_memory *memory) { return (u64)gk20a_instobj(memory)->mn->length << 12; } /* * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held. */ static void gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj) { struct gk20a_instmem *imem = obj->base.imem; /* there should not be any user left... */ WARN_ON(obj->use_cpt); list_del(&obj->vaddr_node); vunmap(obj->base.vaddr); obj->base.vaddr = NULL; imem->vaddr_use -= nvkm_memory_size(&obj->base.base.memory); nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use, imem->vaddr_max); } /* * Must be called while holding gk20a_instmem::lock */ static void gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size) { while (imem->vaddr_use + size > imem->vaddr_max) { /* no candidate that can be unmapped, abort... */ if (list_empty(&imem->vaddr_lru)) break; gk20a_instobj_iommu_recycle_vaddr( list_first_entry(&imem->vaddr_lru, struct gk20a_instobj_iommu, vaddr_node)); } } static void __iomem * gk20a_instobj_acquire_dma(struct nvkm_memory *memory) { struct gk20a_instobj *node = gk20a_instobj(memory); struct gk20a_instmem *imem = node->imem; struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; nvkm_ltc_flush(ltc); return node->vaddr; } static void __iomem * gk20a_instobj_acquire_iommu(struct nvkm_memory *memory) { struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); struct gk20a_instmem *imem = node->base.imem; struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; const u64 size = nvkm_memory_size(memory); nvkm_ltc_flush(ltc); mutex_lock(&imem->lock); if (node->base.vaddr) { if (!node->use_cpt) { /* remove from LRU list since mapping in use again */ list_del(&node->vaddr_node); } goto out; } /* try to free some address space if we reached the limit */ gk20a_instmem_vaddr_gc(imem, size); /* map the pages */ node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP, pgprot_writecombine(PAGE_KERNEL)); if (!node->base.vaddr) { nvkm_error(&imem->base.subdev, "cannot map instobj - " "this is not going to end well...\n"); goto out; } imem->vaddr_use += size; nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use, imem->vaddr_max); out: node->use_cpt++; mutex_unlock(&imem->lock); return node->base.vaddr; } static void gk20a_instobj_release_dma(struct nvkm_memory *memory) { struct gk20a_instobj *node = gk20a_instobj(memory); struct gk20a_instmem *imem = node->imem; struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; /* in case we got a write-combined mapping */ wmb(); nvkm_ltc_invalidate(ltc); } static void gk20a_instobj_release_iommu(struct nvkm_memory *memory) { struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); struct gk20a_instmem *imem = node->base.imem; struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; mutex_lock(&imem->lock); /* we should at least have one user to release... */ if (WARN_ON(node->use_cpt == 0)) goto out; /* add unused objs to the LRU list to recycle their mapping */ if (--node->use_cpt == 0) list_add_tail(&node->vaddr_node, &imem->vaddr_lru); out: mutex_unlock(&imem->lock); wmb(); nvkm_ltc_invalidate(ltc); } static u32 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset) { struct gk20a_instobj *node = gk20a_instobj(memory); return node->vaddr[offset / 4]; } static void gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) { struct gk20a_instobj *node = gk20a_instobj(memory); node->vaddr[offset / 4] = data; } static int gk20a_instobj_map(struct nvkm_memory *memory, u64 offset, struct nvkm_vmm *vmm, struct nvkm_vma *vma, void *argv, u32 argc) { struct gk20a_instobj *node = gk20a_instobj(memory); struct nvkm_vmm_map map = { .memory = &node->base.memory, .offset = offset, .mem = node->mn, }; return nvkm_vmm_map(vmm, vma, argv, argc, &map); } static void * gk20a_instobj_dtor_dma(struct nvkm_memory *memory) { struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory); struct gk20a_instmem *imem = node->base.imem; struct device *dev = imem->base.subdev.device->dev; if (unlikely(!node->base.vaddr)) goto out; dma_free_attrs(dev, (u64)node->base.mn->length << PAGE_SHIFT, node->base.vaddr, node->handle, imem->attrs); out: return node; } static void * gk20a_instobj_dtor_iommu(struct nvkm_memory *memory) { struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); struct gk20a_instmem *imem = node->base.imem; struct device *dev = imem->base.subdev.device->dev; struct nvkm_mm_node *r = node->base.mn; int i; if (unlikely(!r)) goto out; mutex_lock(&imem->lock); /* vaddr has already been recycled */ if (node->base.vaddr) gk20a_instobj_iommu_recycle_vaddr(node); mutex_unlock(&imem->lock); /* clear IOMMU bit to unmap pages */ r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift); /* Unmap pages from GPU address space and free them */ for (i = 0; i < node->base.mn->length; i++) { iommu_unmap(imem->domain, (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE); dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE, DMA_BIDIRECTIONAL); __free_page(node->pages[i]); } /* Release area from GPU address space */ mutex_lock(imem->mm_mutex); nvkm_mm_free(imem->mm, &r); mutex_unlock(imem->mm_mutex); out: return node; } static const struct nvkm_memory_func gk20a_instobj_func_dma = { .dtor = gk20a_instobj_dtor_dma, .target = gk20a_instobj_target, .page = gk20a_instobj_page, .addr = gk20a_instobj_addr, .size = gk20a_instobj_size, .acquire = gk20a_instobj_acquire_dma, .release = gk20a_instobj_release_dma, .map = gk20a_instobj_map, }; static const struct nvkm_memory_func gk20a_instobj_func_iommu = { .dtor = gk20a_instobj_dtor_iommu, .target = gk20a_instobj_target, .page = gk20a_instobj_page, .addr = gk20a_instobj_addr, .size = gk20a_instobj_size, .acquire = gk20a_instobj_acquire_iommu, .release = gk20a_instobj_release_iommu, .map = gk20a_instobj_map, }; static const struct nvkm_memory_ptrs gk20a_instobj_ptrs = { .rd32 = gk20a_instobj_rd32, .wr32 = gk20a_instobj_wr32, }; static int gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align, struct gk20a_instobj **_node) { struct gk20a_instobj_dma *node; struct nvkm_subdev *subdev = &imem->base.subdev; struct device *dev = subdev->device->dev; if (!(node = kzalloc(sizeof(*node), GFP_KERNEL))) return -ENOMEM; *_node = &node->base; nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.base.memory); node->base.base.memory.ptrs = &gk20a_instobj_ptrs; node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, &node->handle, GFP_KERNEL, imem->attrs); if (!node->base.vaddr) { nvkm_error(subdev, "cannot allocate DMA memory\n"); return -ENOMEM; } /* alignment check */ if (unlikely(node->handle & (align - 1))) nvkm_warn(subdev, "memory not aligned as requested: %pad (0x%x)\n", &node->handle, align); /* present memory for being mapped using small pages */ node->r.type = 12; node->r.offset = node->handle >> 12; node->r.length = (npages << PAGE_SHIFT) >> 12; node->base.mn = &node->r; return 0; } static int gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align, struct gk20a_instobj **_node) { struct gk20a_instobj_iommu *node; struct nvkm_subdev *subdev = &imem->base.subdev; struct device *dev = subdev->device->dev; struct nvkm_mm_node *r; int ret; int i; /* * despite their variable size, instmem allocations are small enough * (< 1 page) to be handled by kzalloc */ if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) + sizeof(*node->dma_addrs)) * npages), GFP_KERNEL))) return -ENOMEM; *_node = &node->base; node->dma_addrs = (void *)(node->pages + npages); nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.base.memory); node->base.base.memory.ptrs = &gk20a_instobj_ptrs; /* Allocate backing memory */ for (i = 0; i < npages; i++) { struct page *p = alloc_page(GFP_KERNEL); dma_addr_t dma_adr; if (p == NULL) { ret = -ENOMEM; goto free_pages; } node->pages[i] = p; dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, dma_adr)) { nvkm_error(subdev, "DMA mapping error!\n"); ret = -ENOMEM; goto free_pages; } node->dma_addrs[i] = dma_adr; } mutex_lock(imem->mm_mutex); /* Reserve area from GPU address space */ ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages, align >> imem->iommu_pgshift, &r); mutex_unlock(imem->mm_mutex); if (ret) { nvkm_error(subdev, "IOMMU space is full!\n"); goto free_pages; } /* Map into GPU address space */ for (i = 0; i < npages; i++) { u32 offset = (r->offset + i) << imem->iommu_pgshift; ret = iommu_map(imem->domain, offset, node->dma_addrs[i], PAGE_SIZE, IOMMU_READ | IOMMU_WRITE, GFP_KERNEL); if (ret < 0) { nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret); while (i-- > 0) { offset -= PAGE_SIZE; iommu_unmap(imem->domain, offset, PAGE_SIZE); } goto release_area; } } /* IOMMU bit tells that an address is to be resolved through the IOMMU */ r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift); node->base.mn = r; return 0; release_area: mutex_lock(imem->mm_mutex); nvkm_mm_free(imem->mm, &r); mutex_unlock(imem->mm_mutex); free_pages: for (i = 0; i < npages && node->pages[i] != NULL; i++) { dma_addr_t dma_addr = node->dma_addrs[i]; if (dma_addr) dma_unmap_page(dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); __free_page(node->pages[i]); } return ret; } static int gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero, struct nvkm_memory **pmemory) { struct gk20a_instmem *imem = gk20a_instmem(base); struct nvkm_subdev *subdev = &imem->base.subdev; struct gk20a_instobj *node = NULL; int ret; nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__, imem->domain ? "IOMMU" : "DMA", size, align); /* Round size and align to page bounds */ size = max(roundup(size, PAGE_SIZE), PAGE_SIZE); align = max(roundup(align, PAGE_SIZE), PAGE_SIZE); if (imem->domain) ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT, align, &node); else ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT, align, &node); *pmemory = node ? &node->base.memory : NULL; if (ret) return ret; node->imem = imem; nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n", size, align, (u64)node->mn->offset << 12); return 0; } static void * gk20a_instmem_dtor(struct nvkm_instmem *base) { struct gk20a_instmem *imem = gk20a_instmem(base); /* perform some sanity checks... */ if (!list_empty(&imem->vaddr_lru)) nvkm_warn(&base->subdev, "instobj LRU not empty!\n"); if (imem->vaddr_use != 0) nvkm_warn(&base->subdev, "instobj vmap area not empty! " "0x%x bytes still mapped\n", imem->vaddr_use); return imem; } static const struct nvkm_instmem_func gk20a_instmem = { .dtor = gk20a_instmem_dtor, .suspend = nv04_instmem_suspend, .resume = nv04_instmem_resume, .memory_new = gk20a_instobj_new, .zero = false, }; int gk20a_instmem_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_instmem **pimem) { struct nvkm_device_tegra *tdev = device->func->tegra(device); struct gk20a_instmem *imem; if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL))) return -ENOMEM; nvkm_instmem_ctor(&gk20a_instmem, device, type, inst, &imem->base); mutex_init(&imem->lock); *pimem = &imem->base; /* do not allow more than 1MB of CPU-mapped instmem */ imem->vaddr_use = 0; imem->vaddr_max = 0x100000; INIT_LIST_HEAD(&imem->vaddr_lru); if (tdev->iommu.domain) { imem->mm_mutex = &tdev->iommu.mutex; imem->mm = &tdev->iommu.mm; imem->domain = tdev->iommu.domain; imem->iommu_pgshift = tdev->iommu.pgshift; imem->iommu_bit = tdev->func->iommu_bit; nvkm_info(&imem->base.subdev, "using IOMMU\n"); } else { imem->attrs = DMA_ATTR_WEAK_ORDERING | DMA_ATTR_WRITE_COMBINE; nvkm_info(&imem->base.subdev, "using DMA API\n"); } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1