Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthew Brost | 6513 | 66.70% | 5 | 6.10% |
Matthew Auld | 880 | 9.01% | 15 | 18.29% |
Maarten Lankhorst | 482 | 4.94% | 5 | 6.10% |
Thomas Hellstrom | 307 | 3.14% | 11 | 13.41% |
Badal Nilawar | 274 | 2.81% | 1 | 1.22% |
Pallavi Mishra | 230 | 2.36% | 3 | 3.66% |
Francois Dugast | 185 | 1.89% | 6 | 7.32% |
Brian Welty | 162 | 1.66% | 2 | 2.44% |
Michał Winiarski | 150 | 1.54% | 2 | 2.44% |
Himal Prasad Ghimiray | 127 | 1.30% | 2 | 2.44% |
Matt Roper | 79 | 0.81% | 3 | 3.66% |
Lucas De Marchi | 79 | 0.81% | 3 | 3.66% |
Tejas Upadhyay | 69 | 0.71% | 4 | 4.88% |
Mauro Carvalho Chehab | 59 | 0.60% | 1 | 1.22% |
Rodrigo Vivi | 39 | 0.40% | 6 | 7.32% |
Chris Moeller | 38 | 0.39% | 1 | 1.22% |
Niranjana Vishwanathapura | 24 | 0.25% | 2 | 2.44% |
Akshata Jahagirdar | 17 | 0.17% | 1 | 1.22% |
Thomas Zimmermann | 13 | 0.13% | 1 | 1.22% |
Priyanka Dandamudi | 13 | 0.13% | 2 | 2.44% |
Michal Wajdeczko | 10 | 0.10% | 1 | 1.22% |
Anshuman Gupta | 6 | 0.06% | 1 | 1.22% |
Bommithi Sakeena | 4 | 0.04% | 1 | 1.22% |
Michael J. Ruhl | 3 | 0.03% | 1 | 1.22% |
Oak Zeng | 1 | 0.01% | 1 | 1.22% |
Jani Nikula | 1 | 0.01% | 1 | 1.22% |
Total | 9765 | 82 |
// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include "xe_bo.h" #include <linux/dma-buf.h> #include <drm/drm_drv.h> #include <drm/drm_gem_ttm_helper.h> #include <drm/drm_managed.h> #include <drm/ttm/ttm_device.h> #include <drm/ttm/ttm_placement.h> #include <drm/ttm/ttm_tt.h> #include <drm/xe_drm.h> #include "xe_device.h" #include "xe_dma_buf.h" #include "xe_drm_client.h" #include "xe_ggtt.h" #include "xe_gt.h" #include "xe_map.h" #include "xe_migrate.h" #include "xe_pm.h" #include "xe_preempt_fence.h" #include "xe_res_cursor.h" #include "xe_trace.h" #include "xe_ttm_stolen_mgr.h" #include "xe_vm.h" const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { [XE_PL_SYSTEM] = "system", [XE_PL_TT] = "gtt", [XE_PL_VRAM0] = "vram0", [XE_PL_VRAM1] = "vram1", [XE_PL_STOLEN] = "stolen" }; static const struct ttm_place sys_placement_flags = { .fpfn = 0, .lpfn = 0, .mem_type = XE_PL_SYSTEM, .flags = 0, }; static struct ttm_placement sys_placement = { .num_placement = 1, .placement = &sys_placement_flags, }; static const struct ttm_place tt_placement_flags[] = { { .fpfn = 0, .lpfn = 0, .mem_type = XE_PL_TT, .flags = TTM_PL_FLAG_DESIRED, }, { .fpfn = 0, .lpfn = 0, .mem_type = XE_PL_SYSTEM, .flags = TTM_PL_FLAG_FALLBACK, } }; static struct ttm_placement tt_placement = { .num_placement = 2, .placement = tt_placement_flags, }; bool mem_type_is_vram(u32 mem_type) { return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; } static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) { return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); } static bool resource_is_vram(struct ttm_resource *res) { return mem_type_is_vram(res->mem_type); } bool xe_bo_is_vram(struct xe_bo *bo) { return resource_is_vram(bo->ttm.resource) || resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); } bool xe_bo_is_stolen(struct xe_bo *bo) { return bo->ttm.resource->mem_type == XE_PL_STOLEN; } /** * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR * @bo: The BO * * The stolen memory is accessed through the PCI BAR for both DGFX and some * integrated platforms that have a dedicated bit in the PTE for devmem (DM). * * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. */ bool xe_bo_is_stolen_devmem(struct xe_bo *bo) { return xe_bo_is_stolen(bo) && GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; } static bool xe_bo_is_user(struct xe_bo *bo) { return bo->flags & XE_BO_FLAG_USER; } static struct xe_migrate * mem_type_to_migrate(struct xe_device *xe, u32 mem_type) { struct xe_tile *tile; xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; return tile->migrate; } static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res) { struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); struct ttm_resource_manager *mgr; xe_assert(xe, resource_is_vram(res)); mgr = ttm_manager_type(&xe->ttm, res->mem_type); return to_xe_ttm_vram_mgr(mgr)->vram; } static void try_add_system(struct xe_device *xe, struct xe_bo *bo, u32 bo_flags, u32 *c) { if (bo_flags & XE_BO_FLAG_SYSTEM) { xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); bo->placements[*c] = (struct ttm_place) { .mem_type = XE_PL_TT, }; *c += 1; } } static void add_vram(struct xe_device *xe, struct xe_bo *bo, struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) { struct ttm_place place = { .mem_type = mem_type }; struct xe_mem_region *vram; u64 io_size; xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram; xe_assert(xe, vram && vram->usable_size); io_size = vram->io_size; /* * For eviction / restore on suspend / resume objects * pinned in VRAM must be contiguous */ if (bo_flags & (XE_BO_FLAG_PINNED | XE_BO_FLAG_GGTT)) place.flags |= TTM_PL_FLAG_CONTIGUOUS; if (io_size < vram->usable_size) { if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { place.fpfn = 0; place.lpfn = io_size >> PAGE_SHIFT; } else { place.flags |= TTM_PL_FLAG_TOPDOWN; } } places[*c] = place; *c += 1; } static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, u32 bo_flags, u32 *c) { if (bo_flags & XE_BO_FLAG_VRAM0) add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); if (bo_flags & XE_BO_FLAG_VRAM1) add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); } static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, u32 bo_flags, u32 *c) { if (bo_flags & XE_BO_FLAG_STOLEN) { xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); bo->placements[*c] = (struct ttm_place) { .mem_type = XE_PL_STOLEN, .flags = bo_flags & (XE_BO_FLAG_PINNED | XE_BO_FLAG_GGTT) ? TTM_PL_FLAG_CONTIGUOUS : 0, }; *c += 1; } } static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, u32 bo_flags) { u32 c = 0; try_add_vram(xe, bo, bo_flags, &c); try_add_system(xe, bo, bo_flags, &c); try_add_stolen(xe, bo, bo_flags, &c); if (!c) return -EINVAL; bo->placement = (struct ttm_placement) { .num_placement = c, .placement = bo->placements, }; return 0; } int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, u32 bo_flags) { xe_bo_assert_held(bo); return __xe_bo_placement_for_flags(xe, bo, bo_flags); } static void xe_evict_flags(struct ttm_buffer_object *tbo, struct ttm_placement *placement) { if (!xe_bo_is_xe_bo(tbo)) { /* Don't handle scatter gather BOs */ if (tbo->type == ttm_bo_type_sg) { placement->num_placement = 0; return; } *placement = sys_placement; return; } /* * For xe, sg bos that are evicted to system just triggers a * rebind of the sg list upon subsequent validation to XE_PL_TT. */ switch (tbo->resource->mem_type) { case XE_PL_VRAM0: case XE_PL_VRAM1: case XE_PL_STOLEN: *placement = tt_placement; break; case XE_PL_TT: default: *placement = sys_placement; break; } } struct xe_ttm_tt { struct ttm_tt ttm; struct device *dev; struct sg_table sgt; struct sg_table *sg; }; static int xe_tt_map_sg(struct ttm_tt *tt) { struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); unsigned long num_pages = tt->num_pages; int ret; XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL); if (xe_tt->sg) return 0; ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, num_pages, 0, (u64)num_pages << PAGE_SHIFT, xe_sg_segment_size(xe_tt->dev), GFP_KERNEL); if (ret) return ret; xe_tt->sg = &xe_tt->sgt; ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC); if (ret) { sg_free_table(xe_tt->sg); xe_tt->sg = NULL; return ret; } return 0; } struct sg_table *xe_bo_sg(struct xe_bo *bo) { struct ttm_tt *tt = bo->ttm.ttm; struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); return xe_tt->sg; } static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, u32 page_flags) { struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); struct xe_device *xe = xe_bo_device(bo); struct xe_ttm_tt *tt; unsigned long extra_pages; enum ttm_caching caching; int err; tt = kzalloc(sizeof(*tt), GFP_KERNEL); if (!tt) return NULL; tt->dev = xe->drm.dev; extra_pages = 0; if (xe_bo_needs_ccs_pages(bo)) extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size), PAGE_SIZE); switch (bo->cpu_caching) { case DRM_XE_GEM_CPU_CACHING_WC: caching = ttm_write_combined; break; default: caching = ttm_cached; break; } WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); /* * Display scanout is always non-coherent with the CPU cache. * * For Xe_LPG and beyond, PPGTT PTE lookups are also non-coherent and * require a CPU:WC mapping. */ if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || (xe->info.graphics_verx100 >= 1270 && bo->flags & XE_BO_FLAG_PAGETABLE)) caching = ttm_write_combined; err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages); if (err) { kfree(tt); return NULL; } return &tt->ttm; } static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, struct ttm_operation_ctx *ctx) { int err; /* * dma-bufs are not populated with pages, and the dma- * addresses are set up when moved to XE_PL_TT. */ if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) return 0; err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); if (err) return err; /* A follow up may move this xe_bo_move when BO is moved to XE_PL_TT */ err = xe_tt_map_sg(tt); if (err) ttm_pool_free(&ttm_dev->pool, tt); return err; } static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) { struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); if (tt->page_flags & TTM_TT_FLAG_EXTERNAL) return; if (xe_tt->sg) { dma_unmap_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL, 0); sg_free_table(xe_tt->sg); xe_tt->sg = NULL; } return ttm_pool_free(&ttm_dev->pool, tt); } static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) { ttm_tt_fini(tt); kfree(tt); } static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) { struct xe_device *xe = ttm_to_xe_device(bdev); switch (mem->mem_type) { case XE_PL_SYSTEM: case XE_PL_TT: return 0; case XE_PL_VRAM0: case XE_PL_VRAM1: { struct xe_ttm_vram_mgr_resource *vres = to_xe_ttm_vram_mgr_resource(mem); struct xe_mem_region *vram = res_to_mem_region(mem); if (vres->used_visible_size < mem->size) return -EINVAL; mem->bus.offset = mem->start << PAGE_SHIFT; if (vram->mapping && mem->placement & TTM_PL_FLAG_CONTIGUOUS) mem->bus.addr = (u8 __force *)vram->mapping + mem->bus.offset; mem->bus.offset += vram->io_start; mem->bus.is_iomem = true; #if !defined(CONFIG_X86) mem->bus.caching = ttm_write_combined; #endif return 0; } case XE_PL_STOLEN: return xe_ttm_stolen_io_mem_reserve(xe, mem); default: return -EINVAL; } } static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, const struct ttm_operation_ctx *ctx) { struct dma_resv_iter cursor; struct dma_fence *fence; struct drm_gem_object *obj = &bo->ttm.base; struct drm_gpuvm_bo *vm_bo; bool idle = false; int ret = 0; dma_resv_assert_held(bo->ttm.base.resv); if (!list_empty(&bo->ttm.base.gpuva.list)) { dma_resv_iter_begin(&cursor, bo->ttm.base.resv, DMA_RESV_USAGE_BOOKKEEP); dma_resv_for_each_fence_unlocked(&cursor, fence) dma_fence_enable_sw_signaling(fence); dma_resv_iter_end(&cursor); } drm_gem_for_each_gpuvm_bo(vm_bo, obj) { struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); struct drm_gpuva *gpuva; if (!xe_vm_in_fault_mode(vm)) { drm_gpuvm_bo_evict(vm_bo, true); continue; } if (!idle) { long timeout; if (ctx->no_wait_gpu && !dma_resv_test_signaled(bo->ttm.base.resv, DMA_RESV_USAGE_BOOKKEEP)) return -EBUSY; timeout = dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_BOOKKEEP, ctx->interruptible, MAX_SCHEDULE_TIMEOUT); if (!timeout) return -ETIME; if (timeout < 0) return timeout; idle = true; } drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { struct xe_vma *vma = gpuva_to_vma(gpuva); trace_xe_vma_evict(vma); ret = xe_vm_invalidate_vma(vma); if (XE_WARN_ON(ret)) return ret; } } return ret; } /* * The dma-buf map_attachment() / unmap_attachment() is hooked up here. * Note that unmapping the attachment is deferred to the next * map_attachment time, or to bo destroy (after idling) whichever comes first. * This is to avoid syncing before unmap_attachment(), assuming that the * caller relies on idling the reservation object before moving the * backing store out. Should that assumption not hold, then we will be able * to unconditionally call unmap_attachment() when moving out to system. */ static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, struct ttm_resource *new_res) { struct dma_buf_attachment *attach = ttm_bo->base.import_attach; struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm); struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); struct sg_table *sg; xe_assert(xe, attach); xe_assert(xe, ttm_bo->ttm); if (new_res->mem_type == XE_PL_SYSTEM) goto out; if (ttm_bo->sg) { dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); ttm_bo->sg = NULL; } sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); if (IS_ERR(sg)) return PTR_ERR(sg); ttm_bo->sg = sg; xe_tt->sg = sg; out: ttm_bo_move_null(ttm_bo, new_res); return 0; } /** * xe_bo_move_notify - Notify subsystems of a pending move * @bo: The buffer object * @ctx: The struct ttm_operation_ctx controlling locking and waits. * * This function notifies subsystems of an upcoming buffer move. * Upon receiving such a notification, subsystems should schedule * halting access to the underlying pages and optionally add a fence * to the buffer object's dma_resv object, that signals when access is * stopped. The caller will wait on all dma_resv fences before * starting the move. * * A subsystem may commence access to the object after obtaining * bindings to the new backing memory under the object lock. * * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, * negative error code on error. */ static int xe_bo_move_notify(struct xe_bo *bo, const struct ttm_operation_ctx *ctx) { struct ttm_buffer_object *ttm_bo = &bo->ttm; struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); struct ttm_resource *old_mem = ttm_bo->resource; u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; int ret; /* * If this starts to call into many components, consider * using a notification chain here. */ if (xe_bo_is_pinned(bo)) return -EINVAL; xe_bo_vunmap(bo); ret = xe_bo_trigger_rebind(xe, bo, ctx); if (ret) return ret; /* Don't call move_notify() for imported dma-bufs. */ if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) dma_buf_move_notify(ttm_bo->base.dma_buf); /* * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), * so if we moved from VRAM make sure to unlink this from the userfault * tracking. */ if (mem_type_is_vram(old_mem_type)) { mutex_lock(&xe->mem_access.vram_userfault.lock); if (!list_empty(&bo->vram_userfault_link)) list_del_init(&bo->vram_userfault_link); mutex_unlock(&xe->mem_access.vram_userfault.lock); } return 0; } static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, struct ttm_operation_ctx *ctx, struct ttm_resource *new_mem, struct ttm_place *hop) { struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); struct ttm_resource *old_mem = ttm_bo->resource; u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; struct ttm_tt *ttm = ttm_bo->ttm; struct xe_migrate *migrate = NULL; struct dma_fence *fence; bool move_lacks_source; bool tt_has_data; bool needs_clear; bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && ttm && ttm_tt_is_populated(ttm)) ? true : false; int ret = 0; /* Bo creation path, moving to system or TT. */ if ((!old_mem && ttm) && !handle_system_ccs) { ttm_bo_move_null(ttm_bo, new_mem); return 0; } if (ttm_bo->type == ttm_bo_type_sg) { ret = xe_bo_move_notify(bo, ctx); if (!ret) ret = xe_bo_move_dmabuf(ttm_bo, new_mem); goto out; } tt_has_data = ttm && (ttm_tt_is_populated(ttm) || (ttm->page_flags & TTM_TT_FLAG_SWAPPED)); move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared) : (!mem_type_is_vram(old_mem_type) && !tt_has_data); needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || (!ttm && ttm_bo->type == ttm_bo_type_device); if ((move_lacks_source && !needs_clear)) { ttm_bo_move_null(ttm_bo, new_mem); goto out; } if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { ttm_bo_move_null(ttm_bo, new_mem); goto out; } /* * Failed multi-hop where the old_mem is still marked as * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. */ if (old_mem_type == XE_PL_TT && new_mem->mem_type == XE_PL_TT) { ttm_bo_move_null(ttm_bo, new_mem); goto out; } if (!move_lacks_source && !xe_bo_is_pinned(bo)) { ret = xe_bo_move_notify(bo, ctx); if (ret) goto out; } if (old_mem_type == XE_PL_TT && new_mem->mem_type == XE_PL_SYSTEM) { long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, true, MAX_SCHEDULE_TIMEOUT); if (timeout < 0) { ret = timeout; goto out; } if (!handle_system_ccs) { ttm_bo_move_null(ttm_bo, new_mem); goto out; } } if (!move_lacks_source && ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || (mem_type_is_vram(old_mem_type) && new_mem->mem_type == XE_PL_SYSTEM))) { hop->fpfn = 0; hop->lpfn = 0; hop->mem_type = XE_PL_TT; hop->flags = TTM_PL_FLAG_TEMPORARY; ret = -EMULTIHOP; goto out; } if (bo->tile) migrate = bo->tile->migrate; else if (resource_is_vram(new_mem)) migrate = mem_type_to_migrate(xe, new_mem->mem_type); else if (mem_type_is_vram(old_mem_type)) migrate = mem_type_to_migrate(xe, old_mem_type); else migrate = xe->tiles[0].migrate; xe_assert(xe, migrate); trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); xe_pm_runtime_get_noresume(xe); if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) { /* * Kernel memory that is pinned should only be moved on suspend * / resume, some of the pinned memory is required for the * device to resume / use the GPU to move other evicted memory * (user memory) around. This likely could be optimized a bit * futher where we find the minimum set of pinned memory * required for resume but for simplity doing a memcpy for all * pinned memory. */ ret = xe_bo_vmap(bo); if (!ret) { ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem); /* Create a new VMAP once kernel BO back in VRAM */ if (!ret && resource_is_vram(new_mem)) { struct xe_mem_region *vram = res_to_mem_region(new_mem); void __iomem *new_addr = vram->mapping + (new_mem->start << PAGE_SHIFT); if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) { ret = -EINVAL; xe_pm_runtime_put(xe); goto out; } xe_assert(xe, new_mem->start == bo->placements->fpfn); iosys_map_set_vaddr_iomem(&bo->vmap, new_addr); } } } else { if (move_lacks_source) fence = xe_migrate_clear(migrate, bo, new_mem); else fence = xe_migrate_copy(migrate, bo, bo, old_mem, new_mem, handle_system_ccs); if (IS_ERR(fence)) { ret = PTR_ERR(fence); xe_pm_runtime_put(xe); goto out; } if (!move_lacks_source) { ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, true, new_mem); if (ret) { dma_fence_wait(fence, false); ttm_bo_move_null(ttm_bo, new_mem); ret = 0; } } else { /* * ttm_bo_move_accel_cleanup() may blow up if * bo->resource == NULL, so just attach the * fence and set the new resource. */ dma_resv_add_fence(ttm_bo->base.resv, fence, DMA_RESV_USAGE_KERNEL); ttm_bo_move_null(ttm_bo, new_mem); } dma_fence_put(fence); } xe_pm_runtime_put(xe); out: return ret; } /** * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory * @bo: The buffer object to move. * * On successful completion, the object memory will be moved to sytem memory. * * This is needed to for special handling of pinned VRAM object during * suspend-resume. * * Return: 0 on success. Negative error code on failure. */ int xe_bo_evict_pinned(struct xe_bo *bo) { struct ttm_place place = { .mem_type = XE_PL_TT, }; struct ttm_placement placement = { .placement = &place, .num_placement = 1, }; struct ttm_operation_ctx ctx = { .interruptible = false, }; struct ttm_resource *new_mem; int ret; xe_bo_assert_held(bo); if (WARN_ON(!bo->ttm.resource)) return -EINVAL; if (WARN_ON(!xe_bo_is_pinned(bo))) return -EINVAL; if (WARN_ON(!xe_bo_is_vram(bo))) return -EINVAL; ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx); if (ret) return ret; if (!bo->ttm.ttm) { bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0); if (!bo->ttm.ttm) { ret = -ENOMEM; goto err_res_free; } } ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); if (ret) goto err_res_free; ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); if (ret) goto err_res_free; ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); if (ret) goto err_res_free; return 0; err_res_free: ttm_resource_free(&bo->ttm, &new_mem); return ret; } /** * xe_bo_restore_pinned() - Restore a pinned VRAM object * @bo: The buffer object to move. * * On successful completion, the object memory will be moved back to VRAM. * * This is needed to for special handling of pinned VRAM object during * suspend-resume. * * Return: 0 on success. Negative error code on failure. */ int xe_bo_restore_pinned(struct xe_bo *bo) { struct ttm_operation_ctx ctx = { .interruptible = false, }; struct ttm_resource *new_mem; int ret; xe_bo_assert_held(bo); if (WARN_ON(!bo->ttm.resource)) return -EINVAL; if (WARN_ON(!xe_bo_is_pinned(bo))) return -EINVAL; if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm)) return -EINVAL; ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx); if (ret) return ret; ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx); if (ret) goto err_res_free; ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); if (ret) goto err_res_free; ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL); if (ret) goto err_res_free; return 0; err_res_free: ttm_resource_free(&bo->ttm, &new_mem); return ret; } static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, unsigned long page_offset) { struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); struct xe_res_cursor cursor; struct xe_mem_region *vram; if (ttm_bo->resource->mem_type == XE_PL_STOLEN) return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; vram = res_to_mem_region(ttm_bo->resource); xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); return (vram->io_start + cursor.start) >> PAGE_SHIFT; } static void __xe_bo_vunmap(struct xe_bo *bo); /* * TODO: Move this function to TTM so we don't rely on how TTM does its * locking, thereby abusing TTM internals. */ static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) { struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); bool locked; xe_assert(xe, !kref_read(&ttm_bo->kref)); /* * We can typically only race with TTM trylocking under the * lru_lock, which will immediately be unlocked again since * the ttm_bo refcount is zero at this point. So trylocking *should* * always succeed here, as long as we hold the lru lock. */ spin_lock(&ttm_bo->bdev->lru_lock); locked = dma_resv_trylock(ttm_bo->base.resv); spin_unlock(&ttm_bo->bdev->lru_lock); xe_assert(xe, locked); return locked; } static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) { struct dma_resv_iter cursor; struct dma_fence *fence; struct dma_fence *replacement = NULL; struct xe_bo *bo; if (!xe_bo_is_xe_bo(ttm_bo)) return; bo = ttm_to_xe_bo(ttm_bo); xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); /* * Corner case where TTM fails to allocate memory and this BOs resv * still points the VMs resv */ if (ttm_bo->base.resv != &ttm_bo->base._resv) return; if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) return; /* * Scrub the preempt fences if any. The unbind fence is already * attached to the resv. * TODO: Don't do this for external bos once we scrub them after * unbind. */ dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, fence) { if (xe_fence_is_xe_preempt(fence) && !dma_fence_is_signaled(fence)) { if (!replacement) replacement = dma_fence_get_stub(); dma_resv_replace_fences(ttm_bo->base.resv, fence->context, replacement, DMA_RESV_USAGE_BOOKKEEP); } } dma_fence_put(replacement); dma_resv_unlock(ttm_bo->base.resv); } static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) { if (!xe_bo_is_xe_bo(ttm_bo)) return; /* * Object is idle and about to be destroyed. Release the * dma-buf attachment. */ if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm); dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, DMA_BIDIRECTIONAL); ttm_bo->sg = NULL; xe_tt->sg = NULL; } } const struct ttm_device_funcs xe_ttm_funcs = { .ttm_tt_create = xe_ttm_tt_create, .ttm_tt_populate = xe_ttm_tt_populate, .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, .ttm_tt_destroy = xe_ttm_tt_destroy, .evict_flags = xe_evict_flags, .move = xe_bo_move, .io_mem_reserve = xe_ttm_io_mem_reserve, .io_mem_pfn = xe_ttm_io_mem_pfn, .release_notify = xe_ttm_bo_release_notify, .eviction_valuable = ttm_bo_eviction_valuable, .delete_mem_notify = xe_ttm_bo_delete_mem_notify, }; static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) { struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); if (bo->ttm.base.import_attach) drm_prime_gem_destroy(&bo->ttm.base, NULL); drm_gem_object_release(&bo->ttm.base); xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); if (bo->ggtt_node.size) xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo); #ifdef CONFIG_PROC_FS if (bo->client) xe_drm_client_remove_bo(bo); #endif if (bo->vm && xe_bo_is_user(bo)) xe_vm_put(bo->vm); mutex_lock(&xe->mem_access.vram_userfault.lock); if (!list_empty(&bo->vram_userfault_link)) list_del(&bo->vram_userfault_link); mutex_unlock(&xe->mem_access.vram_userfault.lock); kfree(bo); } static void xe_gem_object_free(struct drm_gem_object *obj) { /* Our BO reference counting scheme works as follows: * * The gem object kref is typically used throughout the driver, * and the gem object holds a ttm_buffer_object refcount, so * that when the last gem object reference is put, which is when * we end up in this function, we put also that ttm_buffer_object * refcount. Anything using gem interfaces is then no longer * allowed to access the object in a way that requires a gem * refcount, including locking the object. * * driver ttm callbacks is allowed to use the ttm_buffer_object * refcount directly if needed. */ __xe_bo_vunmap(gem_to_xe_bo(obj)); ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); } static void xe_gem_object_close(struct drm_gem_object *obj, struct drm_file *file_priv) { struct xe_bo *bo = gem_to_xe_bo(obj); if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); xe_bo_lock(bo, false); ttm_bo_set_bulk_move(&bo->ttm, NULL); xe_bo_unlock(bo); } } static vm_fault_t xe_gem_fault(struct vm_fault *vmf) { struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; struct drm_device *ddev = tbo->base.dev; struct xe_device *xe = to_xe_device(ddev); struct xe_bo *bo = ttm_to_xe_bo(tbo); bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; vm_fault_t ret; int idx; if (needs_rpm) xe_pm_runtime_get(xe); ret = ttm_bo_vm_reserve(tbo, vmf); if (ret) goto out; if (drm_dev_enter(ddev, &idx)) { trace_xe_bo_cpu_fault(bo); ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, TTM_BO_VM_NUM_PREFAULT); drm_dev_exit(idx); } else { ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); } if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) goto out; /* * ttm_bo_vm_reserve() already has dma_resv_lock. */ if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) { mutex_lock(&xe->mem_access.vram_userfault.lock); if (list_empty(&bo->vram_userfault_link)) list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list); mutex_unlock(&xe->mem_access.vram_userfault.lock); } dma_resv_unlock(tbo->base.resv); out: if (needs_rpm) xe_pm_runtime_put(xe); return ret; } static const struct vm_operations_struct xe_gem_vm_ops = { .fault = xe_gem_fault, .open = ttm_bo_vm_open, .close = ttm_bo_vm_close, .access = ttm_bo_vm_access }; static const struct drm_gem_object_funcs xe_gem_object_funcs = { .free = xe_gem_object_free, .close = xe_gem_object_close, .mmap = drm_gem_ttm_mmap, .export = xe_gem_prime_export, .vm_ops = &xe_gem_vm_ops, }; /** * xe_bo_alloc - Allocate storage for a struct xe_bo * * This funcition is intended to allocate storage to be used for input * to __xe_bo_create_locked(), in the case a pointer to the bo to be * created is needed before the call to __xe_bo_create_locked(). * If __xe_bo_create_locked ends up never to be called, then the * storage allocated with this function needs to be freed using * xe_bo_free(). * * Return: A pointer to an uninitialized struct xe_bo on success, * ERR_PTR(-ENOMEM) on error. */ struct xe_bo *xe_bo_alloc(void) { struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); if (!bo) return ERR_PTR(-ENOMEM); return bo; } /** * xe_bo_free - Free storage allocated using xe_bo_alloc() * @bo: The buffer object storage. * * Refer to xe_bo_alloc() documentation for valid use-cases. */ void xe_bo_free(struct xe_bo *bo) { kfree(bo); } struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, struct xe_tile *tile, struct dma_resv *resv, struct ttm_lru_bulk_move *bulk, size_t size, u16 cpu_caching, enum ttm_bo_type type, u32 flags) { struct ttm_operation_ctx ctx = { .interruptible = true, .no_wait_gpu = false, }; struct ttm_placement *placement; uint32_t alignment; size_t aligned_size; int err; /* Only kernel objects should set GT */ xe_assert(xe, !tile || type == ttm_bo_type_kernel); if (XE_WARN_ON(!size)) { xe_bo_free(bo); return ERR_PTR(-EINVAL); } if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || (flags & XE_BO_NEEDS_64K))) { aligned_size = ALIGN(size, SZ_64K); if (type != ttm_bo_type_device) size = ALIGN(size, SZ_64K); flags |= XE_BO_FLAG_INTERNAL_64K; alignment = SZ_64K >> PAGE_SHIFT; } else { aligned_size = ALIGN(size, SZ_4K); flags &= ~XE_BO_FLAG_INTERNAL_64K; alignment = SZ_4K >> PAGE_SHIFT; } if (type == ttm_bo_type_device && aligned_size != size) return ERR_PTR(-EINVAL); if (!bo) { bo = xe_bo_alloc(); if (IS_ERR(bo)) return bo; } bo->ccs_cleared = false; bo->tile = tile; bo->size = size; bo->flags = flags; bo->cpu_caching = cpu_caching; bo->ttm.base.funcs = &xe_gem_object_funcs; bo->ttm.priority = XE_BO_PRIORITY_NORMAL; INIT_LIST_HEAD(&bo->pinned_link); #ifdef CONFIG_PROC_FS INIT_LIST_HEAD(&bo->client_link); #endif INIT_LIST_HEAD(&bo->vram_userfault_link); drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); if (resv) { ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); ctx.resv = resv; } if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { err = __xe_bo_placement_for_flags(xe, bo, bo->flags); if (WARN_ON(err)) { xe_ttm_bo_destroy(&bo->ttm); return ERR_PTR(err); } } /* Defer populating type_sg bos */ placement = (type == ttm_bo_type_sg || bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : &bo->placement; err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, placement, alignment, &ctx, NULL, resv, xe_ttm_bo_destroy); if (err) return ERR_PTR(err); /* * The VRAM pages underneath are potentially still being accessed by the * GPU, as per async GPU clearing and async evictions. However TTM makes * sure to add any corresponding move/clear fences into the objects * dma-resv using the DMA_RESV_USAGE_KERNEL slot. * * For KMD internal buffers we don't care about GPU clearing, however we * still need to handle async evictions, where the VRAM is still being * accessed by the GPU. Most internal callers are not expecting this, * since they are missing the required synchronisation before accessing * the memory. To keep things simple just sync wait any kernel fences * here, if the buffer is designated KMD internal. * * For normal userspace objects we should already have the required * pipelining or sync waiting elsewhere, since we already have to deal * with things like async GPU clearing. */ if (type == ttm_bo_type_kernel) { long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, ctx.interruptible, MAX_SCHEDULE_TIMEOUT); if (timeout < 0) { if (!resv) dma_resv_unlock(bo->ttm.base.resv); xe_bo_put(bo); return ERR_PTR(timeout); } } bo->created = true; if (bulk) ttm_bo_set_bulk_move(&bo->ttm, bulk); else ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); return bo; } static int __xe_bo_fixed_placement(struct xe_device *xe, struct xe_bo *bo, u32 flags, u64 start, u64 end, u64 size) { struct ttm_place *place = bo->placements; if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) return -EINVAL; place->flags = TTM_PL_FLAG_CONTIGUOUS; place->fpfn = start >> PAGE_SHIFT; place->lpfn = end >> PAGE_SHIFT; switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { case XE_BO_FLAG_VRAM0: place->mem_type = XE_PL_VRAM0; break; case XE_BO_FLAG_VRAM1: place->mem_type = XE_PL_VRAM1; break; case XE_BO_FLAG_STOLEN: place->mem_type = XE_PL_STOLEN; break; default: /* 0 or multiple of the above set */ return -EINVAL; } bo->placement = (struct ttm_placement) { .num_placement = 1, .placement = place, }; return 0; } static struct xe_bo * __xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm, size_t size, u64 start, u64 end, u16 cpu_caching, enum ttm_bo_type type, u32 flags) { struct xe_bo *bo = NULL; int err; if (vm) xe_vm_assert_held(vm); if (start || end != ~0ULL) { bo = xe_bo_alloc(); if (IS_ERR(bo)) return bo; flags |= XE_BO_FLAG_FIXED_PLACEMENT; err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); if (err) { xe_bo_free(bo); return ERR_PTR(err); } } bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, vm && !xe_vm_in_fault_mode(vm) && flags & XE_BO_FLAG_USER ? &vm->lru_bulk_move : NULL, size, cpu_caching, type, flags); if (IS_ERR(bo)) return bo; /* * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), * to ensure the shared resv doesn't disappear under the bo, the bo * will keep a reference to the vm, and avoid circular references * by having all the vm's bo refereferences released at vm close * time. */ if (vm && xe_bo_is_user(bo)) xe_vm_get(vm); bo->vm = vm; if (bo->flags & XE_BO_FLAG_GGTT) { if (!tile && flags & XE_BO_FLAG_STOLEN) tile = xe_device_get_root_tile(xe); xe_assert(xe, tile); if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo, start + bo->size, U64_MAX); } else { err = xe_ggtt_insert_bo(tile->mem.ggtt, bo); } if (err) goto err_unlock_put_bo; } return bo; err_unlock_put_bo: __xe_bo_unset_bulk_move(bo); xe_bo_unlock_vm_held(bo); xe_bo_put(bo); return ERR_PTR(err); } struct xe_bo * xe_bo_create_locked_range(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm, size_t size, u64 start, u64 end, enum ttm_bo_type type, u32 flags) { return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags); } struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm, size_t size, enum ttm_bo_type type, u32 flags) { return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags); } struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm, size_t size, u16 cpu_caching, enum ttm_bo_type type, u32 flags) { struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, cpu_caching, type, flags | XE_BO_FLAG_USER); if (!IS_ERR(bo)) xe_bo_unlock_vm_held(bo); return bo; } struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm, size_t size, enum ttm_bo_type type, u32 flags) { struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); if (!IS_ERR(bo)) xe_bo_unlock_vm_held(bo); return bo; } struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm, size_t size, u64 offset, enum ttm_bo_type type, u32 flags) { struct xe_bo *bo; int err; u64 start = offset == ~0ull ? 0 : offset; u64 end = offset == ~0ull ? offset : start + size; if (flags & XE_BO_FLAG_STOLEN && xe_ttm_stolen_cpu_access_needs_ggtt(xe)) flags |= XE_BO_FLAG_GGTT; bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, flags | XE_BO_FLAG_NEEDS_CPU_ACCESS); if (IS_ERR(bo)) return bo; err = xe_bo_pin(bo); if (err) goto err_put; err = xe_bo_vmap(bo); if (err) goto err_unpin; xe_bo_unlock_vm_held(bo); return bo; err_unpin: xe_bo_unpin(bo); err_put: xe_bo_unlock_vm_held(bo); xe_bo_put(bo); return ERR_PTR(err); } struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm, size_t size, enum ttm_bo_type type, u32 flags) { return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); } struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, const void *data, size_t size, enum ttm_bo_type type, u32 flags) { struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL, ALIGN(size, PAGE_SIZE), type, flags); if (IS_ERR(bo)) return bo; xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); return bo; } static void __xe_bo_unpin_map_no_vm(struct drm_device *drm, void *arg) { xe_bo_unpin_map_no_vm(arg); } struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, size_t size, u32 flags) { struct xe_bo *bo; int ret; bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); if (IS_ERR(bo)) return bo; ret = drmm_add_action_or_reset(&xe->drm, __xe_bo_unpin_map_no_vm, bo); if (ret) return ERR_PTR(ret); return bo; } struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, const void *data, size_t size, u32 flags) { struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); if (IS_ERR(bo)) return bo; xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); return bo; } /** * xe_managed_bo_reinit_in_vram * @xe: xe device * @tile: Tile where the new buffer will be created * @src: Managed buffer object allocated in system memory * * Replace a managed src buffer object allocated in system memory with a new * one allocated in vram, copying the data between them. * Buffer object in VRAM is not going to have the same GGTT address, the caller * is responsible for making sure that any old references to it are updated. * * Returns 0 for success, negative error code otherwise. */ int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) { struct xe_bo *bo; u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE; xe_assert(xe, IS_DGFX(xe)); xe_assert(xe, !(*src)->vmap.is_iomem); bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, (*src)->size, dst_flags); if (IS_ERR(bo)) return PTR_ERR(bo); drmm_release_action(&xe->drm, __xe_bo_unpin_map_no_vm, *src); *src = bo; return 0; } /* * XXX: This is in the VM bind data path, likely should calculate this once and * store, with a recalculation if the BO is moved. */ uint64_t vram_region_gpu_offset(struct ttm_resource *res) { struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); if (res->mem_type == XE_PL_STOLEN) return xe_ttm_stolen_gpu_offset(xe); return res_to_mem_region(res)->dpa_base; } /** * xe_bo_pin_external - pin an external BO * @bo: buffer object to be pinned * * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) * BO. Unique call compared to xe_bo_pin as this function has it own set of * asserts and code to ensure evict / restore on suspend / resume. * * Returns 0 for success, negative error code otherwise. */ int xe_bo_pin_external(struct xe_bo *bo) { struct xe_device *xe = xe_bo_device(bo); int err; xe_assert(xe, !bo->vm); xe_assert(xe, xe_bo_is_user(bo)); if (!xe_bo_is_pinned(bo)) { err = xe_bo_validate(bo, NULL, false); if (err) return err; if (xe_bo_is_vram(bo)) { spin_lock(&xe->pinned.lock); list_add_tail(&bo->pinned_link, &xe->pinned.external_vram); spin_unlock(&xe->pinned.lock); } } ttm_bo_pin(&bo->ttm); /* * FIXME: If we always use the reserve / unreserve functions for locking * we do not need this. */ ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); return 0; } int xe_bo_pin(struct xe_bo *bo) { struct xe_device *xe = xe_bo_device(bo); int err; /* We currently don't expect user BO to be pinned */ xe_assert(xe, !xe_bo_is_user(bo)); /* Pinned object must be in GGTT or have pinned flag */ xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | XE_BO_FLAG_GGTT)); /* * No reason we can't support pinning imported dma-bufs we just don't * expect to pin an imported dma-buf. */ xe_assert(xe, !bo->ttm.base.import_attach); /* We only expect at most 1 pin */ xe_assert(xe, !xe_bo_is_pinned(bo)); err = xe_bo_validate(bo, NULL, false); if (err) return err; /* * For pinned objects in on DGFX, which are also in vram, we expect * these to be in contiguous VRAM memory. Required eviction / restore * during suspend / resume (force restore to same physical address). */ if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { struct ttm_place *place = &(bo->placements[0]); if (mem_type_is_vram(place->mem_type)) { xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS); place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) - vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT; place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT); spin_lock(&xe->pinned.lock); list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present); spin_unlock(&xe->pinned.lock); } } ttm_bo_pin(&bo->ttm); /* * FIXME: If we always use the reserve / unreserve functions for locking * we do not need this. */ ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); return 0; } /** * xe_bo_unpin_external - unpin an external BO * @bo: buffer object to be unpinned * * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) * BO. Unique call compared to xe_bo_unpin as this function has it own set of * asserts and code to ensure evict / restore on suspend / resume. * * Returns 0 for success, negative error code otherwise. */ void xe_bo_unpin_external(struct xe_bo *bo) { struct xe_device *xe = xe_bo_device(bo); xe_assert(xe, !bo->vm); xe_assert(xe, xe_bo_is_pinned(bo)); xe_assert(xe, xe_bo_is_user(bo)); if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) { spin_lock(&xe->pinned.lock); list_del_init(&bo->pinned_link); spin_unlock(&xe->pinned.lock); } ttm_bo_unpin(&bo->ttm); /* * FIXME: If we always use the reserve / unreserve functions for locking * we do not need this. */ ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); } void xe_bo_unpin(struct xe_bo *bo) { struct xe_device *xe = xe_bo_device(bo); xe_assert(xe, !bo->ttm.base.import_attach); xe_assert(xe, xe_bo_is_pinned(bo)); if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) && bo->flags & XE_BO_FLAG_INTERNAL_TEST)) { struct ttm_place *place = &(bo->placements[0]); if (mem_type_is_vram(place->mem_type)) { xe_assert(xe, !list_empty(&bo->pinned_link)); spin_lock(&xe->pinned.lock); list_del_init(&bo->pinned_link); spin_unlock(&xe->pinned.lock); } } ttm_bo_unpin(&bo->ttm); } /** * xe_bo_validate() - Make sure the bo is in an allowed placement * @bo: The bo, * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or * NULL. Used together with @allow_res_evict. * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's * reservation object. * * Make sure the bo is in allowed placement, migrating it if necessary. If * needed, other bos will be evicted. If bos selected for eviction shares * the @vm's reservation object, they can be evicted iff @allow_res_evict is * set to true, otherwise they will be bypassed. * * Return: 0 on success, negative error code on failure. May return * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. */ int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) { struct ttm_operation_ctx ctx = { .interruptible = true, .no_wait_gpu = false, }; if (vm) { lockdep_assert_held(&vm->lock); xe_vm_assert_held(vm); ctx.allow_res_evict = allow_res_evict; ctx.resv = xe_vm_resv(vm); } return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); } bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) { if (bo->destroy == &xe_ttm_bo_destroy) return true; return false; } /* * Resolve a BO address. There is no assert to check if the proper lock is held * so it should only be used in cases where it is not fatal to get the wrong * address, such as printing debug information, but not in cases where memory is * written based on this result. */ dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) { struct xe_device *xe = xe_bo_device(bo); struct xe_res_cursor cur; u64 page; xe_assert(xe, page_size <= PAGE_SIZE); page = offset >> PAGE_SHIFT; offset &= (PAGE_SIZE - 1); if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { xe_assert(xe, bo->ttm.ttm); xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, page_size, &cur); return xe_res_dma(&cur) + offset; } else { struct xe_res_cursor cur; xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, page_size, &cur); return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); } } dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) { if (!READ_ONCE(bo->ttm.pin_count)) xe_bo_assert_held(bo); return __xe_bo_addr(bo, offset, page_size); } int xe_bo_vmap(struct xe_bo *bo) { void *virtual; bool is_iomem; int ret; xe_bo_assert_held(bo); if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS)) return -EINVAL; if (!iosys_map_is_null(&bo->vmap)) return 0; /* * We use this more or less deprecated interface for now since * ttm_bo_vmap() doesn't offer the optimization of kmapping * single page bos, which is done here. * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap * to use struct iosys_map. */ ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap); if (ret) return ret; virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); if (is_iomem) iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); else iosys_map_set_vaddr(&bo->vmap, virtual); return 0; } static void __xe_bo_vunmap(struct xe_bo *bo) { if (!iosys_map_is_null(&bo->vmap)) { iosys_map_clear(&bo->vmap); ttm_bo_kunmap(&bo->kmap); } } void xe_bo_vunmap(struct xe_bo *bo) { xe_bo_assert_held(bo); __xe_bo_vunmap(bo); } int xe_gem_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct xe_file *xef = to_xe_file(file); struct drm_xe_gem_create *args = data; struct xe_vm *vm = NULL; struct xe_bo *bo; unsigned int bo_flags; u32 handle; int err; if (XE_IOCTL_DBG(xe, args->extensions) || XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) return -EINVAL; /* at least one valid memory placement must be specified */ if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || !args->placement)) return -EINVAL; if (XE_IOCTL_DBG(xe, args->flags & ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | DRM_XE_GEM_CREATE_FLAG_SCANOUT | DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) return -EINVAL; if (XE_IOCTL_DBG(xe, args->handle)) return -EINVAL; if (XE_IOCTL_DBG(xe, !args->size)) return -EINVAL; if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) return -EINVAL; if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) return -EINVAL; bo_flags = 0; if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) bo_flags |= XE_BO_FLAG_DEFER_BACKING; if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) bo_flags |= XE_BO_FLAG_SCANOUT; bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) return -EINVAL; bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; } if (XE_IOCTL_DBG(xe, !args->cpu_caching || args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) return -EINVAL; if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) return -EINVAL; if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) return -EINVAL; if (args->vm_id) { vm = xe_vm_lookup(xef, args->vm_id); if (XE_IOCTL_DBG(xe, !vm)) return -ENOENT; err = xe_vm_lock(vm, true); if (err) goto out_vm; } bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, ttm_bo_type_device, bo_flags); if (vm) xe_vm_unlock(vm); if (IS_ERR(bo)) { err = PTR_ERR(bo); goto out_vm; } err = drm_gem_handle_create(file, &bo->ttm.base, &handle); if (err) goto out_bulk; args->handle = handle; goto out_put; out_bulk: if (vm && !xe_vm_in_fault_mode(vm)) { xe_vm_lock(vm, false); __xe_bo_unset_bulk_move(bo); xe_vm_unlock(vm); } out_put: xe_bo_put(bo); out_vm: if (vm) xe_vm_put(vm); return err; } int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct drm_xe_gem_mmap_offset *args = data; struct drm_gem_object *gem_obj; if (XE_IOCTL_DBG(xe, args->extensions) || XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) return -EINVAL; if (XE_IOCTL_DBG(xe, args->flags)) return -EINVAL; gem_obj = drm_gem_object_lookup(file, args->handle); if (XE_IOCTL_DBG(xe, !gem_obj)) return -ENOENT; /* The mmap offset was set up at BO allocation time. */ args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); xe_bo_put(gem_to_xe_bo(gem_obj)); return 0; } /** * xe_bo_lock() - Lock the buffer object's dma_resv object * @bo: The struct xe_bo whose lock is to be taken * @intr: Whether to perform any wait interruptible * * Locks the buffer object's dma_resv object. If the buffer object is * pointing to a shared dma_resv object, that shared lock is locked. * * Return: 0 on success, -EINTR if @intr is true and the wait for a * contended lock was interrupted. If @intr is set to false, the * function always returns 0. */ int xe_bo_lock(struct xe_bo *bo, bool intr) { if (intr) return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); dma_resv_lock(bo->ttm.base.resv, NULL); return 0; } /** * xe_bo_unlock() - Unlock the buffer object's dma_resv object * @bo: The struct xe_bo whose lock is to be released. * * Unlock a buffer object lock that was locked by xe_bo_lock(). */ void xe_bo_unlock(struct xe_bo *bo) { dma_resv_unlock(bo->ttm.base.resv); } /** * xe_bo_can_migrate - Whether a buffer object likely can be migrated * @bo: The buffer object to migrate * @mem_type: The TTM memory type intended to migrate to * * Check whether the buffer object supports migration to the * given memory type. Note that pinning may affect the ability to migrate as * returned by this function. * * This function is primarily intended as a helper for checking the * possibility to migrate buffer objects and can be called without * the object lock held. * * Return: true if migration is possible, false otherwise. */ bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) { unsigned int cur_place; if (bo->ttm.type == ttm_bo_type_kernel) return true; if (bo->ttm.type == ttm_bo_type_sg) return false; for (cur_place = 0; cur_place < bo->placement.num_placement; cur_place++) { if (bo->placements[cur_place].mem_type == mem_type) return true; } return false; } static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) { memset(place, 0, sizeof(*place)); place->mem_type = mem_type; } /** * xe_bo_migrate - Migrate an object to the desired region id * @bo: The buffer object to migrate. * @mem_type: The TTM region type to migrate to. * * Attempt to migrate the buffer object to the desired memory region. The * buffer object may not be pinned, and must be locked. * On successful completion, the object memory type will be updated, * but an async migration task may not have completed yet, and to * accomplish that, the object's kernel fences must be signaled with * the object lock held. * * Return: 0 on success. Negative error code on failure. In particular may * return -EINTR or -ERESTARTSYS if signal pending. */ int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) { struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); struct ttm_operation_ctx ctx = { .interruptible = true, .no_wait_gpu = false, }; struct ttm_placement placement; struct ttm_place requested; xe_bo_assert_held(bo); if (bo->ttm.resource->mem_type == mem_type) return 0; if (xe_bo_is_pinned(bo)) return -EBUSY; if (!xe_bo_can_migrate(bo, mem_type)) return -EINVAL; xe_place_from_ttm_type(mem_type, &requested); placement.num_placement = 1; placement.placement = &requested; /* * Stolen needs to be handled like below VRAM handling if we ever need * to support it. */ drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); if (mem_type_is_vram(mem_type)) { u32 c = 0; add_vram(xe, bo, &requested, bo->flags, mem_type, &c); } return ttm_bo_validate(&bo->ttm, &placement, &ctx); } /** * xe_bo_evict - Evict an object to evict placement * @bo: The buffer object to migrate. * @force_alloc: Set force_alloc in ttm_operation_ctx * * On successful completion, the object memory will be moved to evict * placement. Ths function blocks until the object has been fully moved. * * Return: 0 on success. Negative error code on failure. */ int xe_bo_evict(struct xe_bo *bo, bool force_alloc) { struct ttm_operation_ctx ctx = { .interruptible = false, .no_wait_gpu = false, .force_alloc = force_alloc, }; struct ttm_placement placement; int ret; xe_evict_flags(&bo->ttm, &placement); ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); if (ret) return ret; dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, false, MAX_SCHEDULE_TIMEOUT); return 0; } /** * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when * placed in system memory. * @bo: The xe_bo * * Return: true if extra pages need to be allocated, false otherwise. */ bool xe_bo_needs_ccs_pages(struct xe_bo *bo) { struct xe_device *xe = xe_bo_device(bo); if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) return false; if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) return false; /* On discrete GPUs, if the GPU can access this buffer from * system memory (i.e., it allows XE_PL_TT placement), FlatCCS * can't be used since there's no CCS storage associated with * non-VRAM addresses. */ if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) return false; return true; } /** * __xe_bo_release_dummy() - Dummy kref release function * @kref: The embedded struct kref. * * Dummy release function for xe_bo_put_deferred(). Keep off. */ void __xe_bo_release_dummy(struct kref *kref) { } /** * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). * @deferred: The lockless list used for the call to xe_bo_put_deferred(). * * Puts all bos whose put was deferred by xe_bo_put_deferred(). * The @deferred list can be either an onstack local list or a global * shared list used by a workqueue. */ void xe_bo_put_commit(struct llist_head *deferred) { struct llist_node *freed; struct xe_bo *bo, *next; if (!deferred) return; freed = llist_del_all(deferred); if (!freed) return; llist_for_each_entry_safe(bo, next, freed, freed) drm_gem_object_free(&bo->ttm.base.refcount); } /** * xe_bo_dumb_create - Create a dumb bo as backing for a fb * @file_priv: ... * @dev: ... * @args: ... * * See dumb_create() hook in include/drm/drm_drv.h * * Return: ... */ int xe_bo_dumb_create(struct drm_file *file_priv, struct drm_device *dev, struct drm_mode_create_dumb *args) { struct xe_device *xe = to_xe_device(dev); struct xe_bo *bo; uint32_t handle; int cpp = DIV_ROUND_UP(args->bpp, 8); int err; u32 page_size = max_t(u32, PAGE_SIZE, xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); args->pitch = ALIGN(args->width * cpp, 64); args->size = ALIGN(mul_u32_u32(args->pitch, args->height), page_size); bo = xe_bo_create_user(xe, NULL, NULL, args->size, DRM_XE_GEM_CPU_CACHING_WC, ttm_bo_type_device, XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | XE_BO_FLAG_SCANOUT | XE_BO_FLAG_NEEDS_CPU_ACCESS); if (IS_ERR(bo)) return PTR_ERR(bo); err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); /* drop reference from allocate - handle holds it now */ drm_gem_object_put(&bo->ttm.base); if (!err) args->handle = handle; return err; } void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) { struct ttm_buffer_object *tbo = &bo->ttm; struct ttm_device *bdev = tbo->bdev; drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); list_del_init(&bo->vram_userfault_link); } #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) #include "tests/xe_bo.c" #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1