Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michal Wajdeczko | 8964 | 100.00% | 5 | 100.00% |
Total | 8964 | 5 |
// SPDX-License-Identifier: MIT /* * Copyright © 2023-2024 Intel Corporation */ #include <linux/string_choices.h> #include <linux/wordpart.h> #include "abi/guc_actions_sriov_abi.h" #include "abi/guc_klvs_abi.h" #include "regs/xe_guc_regs.h" #include "xe_bo.h" #include "xe_device.h" #include "xe_ggtt.h" #include "xe_gt.h" #include "xe_gt_sriov_pf_config.h" #include "xe_gt_sriov_pf_helpers.h" #include "xe_gt_sriov_pf_policy.h" #include "xe_gt_sriov_printk.h" #include "xe_guc.h" #include "xe_guc_ct.h" #include "xe_guc_db_mgr.h" #include "xe_guc_fwif.h" #include "xe_guc_id_mgr.h" #include "xe_guc_klv_helpers.h" #include "xe_guc_submit.h" #include "xe_lmtt.h" #include "xe_map.h" #include "xe_sriov.h" #include "xe_ttm_vram_mgr.h" #include "xe_wopcm.h" /* * Return: number of KLVs that were successfully parsed and saved, * negative error code on failure. */ static int guc_action_update_vf_cfg(struct xe_guc *guc, u32 vfid, u64 addr, u32 size) { u32 request[] = { GUC_ACTION_PF2GUC_UPDATE_VF_CFG, vfid, lower_32_bits(addr), upper_32_bits(addr), size, }; return xe_guc_ct_send_block(&guc->ct, request, ARRAY_SIZE(request)); } /* * Return: 0 on success, negative error code on failure. */ static int pf_send_vf_cfg_reset(struct xe_gt *gt, u32 vfid) { struct xe_guc *guc = >->uc.guc; int ret; ret = guc_action_update_vf_cfg(guc, vfid, 0, 0); return ret <= 0 ? ret : -EPROTO; } /* * Return: number of KLVs that were successfully parsed and saved, * negative error code on failure. */ static int pf_send_vf_cfg_klvs(struct xe_gt *gt, u32 vfid, const u32 *klvs, u32 num_dwords) { const u32 bytes = num_dwords * sizeof(u32); struct xe_tile *tile = gt_to_tile(gt); struct xe_device *xe = tile_to_xe(tile); struct xe_guc *guc = >->uc.guc; struct xe_bo *bo; int ret; bo = xe_bo_create_pin_map(xe, tile, NULL, ALIGN(bytes, PAGE_SIZE), ttm_bo_type_kernel, XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT | XE_BO_FLAG_GGTT_INVALIDATE); if (IS_ERR(bo)) return PTR_ERR(bo); xe_map_memcpy_to(xe, &bo->vmap, 0, klvs, bytes); ret = guc_action_update_vf_cfg(guc, vfid, xe_bo_ggtt_addr(bo), num_dwords); xe_bo_unpin_map_no_vm(bo); return ret; } /* * Return: 0 on success, -ENOKEY if some KLVs were not updated, -EPROTO if reply was malformed, * negative error code on failure. */ static int pf_push_vf_cfg_klvs(struct xe_gt *gt, unsigned int vfid, u32 num_klvs, const u32 *klvs, u32 num_dwords) { int ret; xe_gt_assert(gt, num_klvs == xe_guc_klv_count(klvs, num_dwords)); ret = pf_send_vf_cfg_klvs(gt, vfid, klvs, num_dwords); if (ret != num_klvs) { int err = ret < 0 ? ret : ret < num_klvs ? -ENOKEY : -EPROTO; struct drm_printer p = xe_gt_info_printer(gt); char name[8]; xe_gt_sriov_notice(gt, "Failed to push %s %u config KLV%s (%pe)\n", xe_sriov_function_name(vfid, name, sizeof(name)), num_klvs, str_plural(num_klvs), ERR_PTR(err)); xe_guc_klv_print(klvs, num_dwords, &p); return err; } if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV)) { struct drm_printer p = xe_gt_info_printer(gt); xe_guc_klv_print(klvs, num_dwords, &p); } return 0; } static int pf_push_vf_cfg_u32(struct xe_gt *gt, unsigned int vfid, u16 key, u32 value) { u32 klv[] = { FIELD_PREP(GUC_KLV_0_KEY, key) | FIELD_PREP(GUC_KLV_0_LEN, 1), value, }; return pf_push_vf_cfg_klvs(gt, vfid, 1, klv, ARRAY_SIZE(klv)); } static int pf_push_vf_cfg_u64(struct xe_gt *gt, unsigned int vfid, u16 key, u64 value) { u32 klv[] = { FIELD_PREP(GUC_KLV_0_KEY, key) | FIELD_PREP(GUC_KLV_0_LEN, 2), lower_32_bits(value), upper_32_bits(value), }; return pf_push_vf_cfg_klvs(gt, vfid, 1, klv, ARRAY_SIZE(klv)); } static int pf_push_vf_cfg_ggtt(struct xe_gt *gt, unsigned int vfid, u64 start, u64 size) { u32 klvs[] = { PREP_GUC_KLV_TAG(VF_CFG_GGTT_START), lower_32_bits(start), upper_32_bits(start), PREP_GUC_KLV_TAG(VF_CFG_GGTT_SIZE), lower_32_bits(size), upper_32_bits(size), }; return pf_push_vf_cfg_klvs(gt, vfid, 2, klvs, ARRAY_SIZE(klvs)); } static int pf_push_vf_cfg_ctxs(struct xe_gt *gt, unsigned int vfid, u32 begin, u32 num) { u32 klvs[] = { PREP_GUC_KLV_TAG(VF_CFG_BEGIN_CONTEXT_ID), begin, PREP_GUC_KLV_TAG(VF_CFG_NUM_CONTEXTS), num, }; return pf_push_vf_cfg_klvs(gt, vfid, 2, klvs, ARRAY_SIZE(klvs)); } static int pf_push_vf_cfg_dbs(struct xe_gt *gt, unsigned int vfid, u32 begin, u32 num) { u32 klvs[] = { PREP_GUC_KLV_TAG(VF_CFG_BEGIN_DOORBELL_ID), begin, PREP_GUC_KLV_TAG(VF_CFG_NUM_DOORBELLS), num, }; return pf_push_vf_cfg_klvs(gt, vfid, 2, klvs, ARRAY_SIZE(klvs)); } static int pf_push_vf_cfg_exec_quantum(struct xe_gt *gt, unsigned int vfid, u32 exec_quantum) { return pf_push_vf_cfg_u32(gt, vfid, GUC_KLV_VF_CFG_EXEC_QUANTUM_KEY, exec_quantum); } static int pf_push_vf_cfg_preempt_timeout(struct xe_gt *gt, unsigned int vfid, u32 preempt_timeout) { return pf_push_vf_cfg_u32(gt, vfid, GUC_KLV_VF_CFG_PREEMPT_TIMEOUT_KEY, preempt_timeout); } static int pf_push_vf_cfg_lmem(struct xe_gt *gt, unsigned int vfid, u64 size) { return pf_push_vf_cfg_u64(gt, vfid, GUC_KLV_VF_CFG_LMEM_SIZE_KEY, size); } static struct xe_gt_sriov_config *pf_pick_vf_config(struct xe_gt *gt, unsigned int vfid) { xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); xe_gt_assert(gt, vfid <= xe_sriov_pf_get_totalvfs(gt_to_xe(gt))); lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); return >->sriov.pf.vfs[vfid].config; } /* Return: number of configuration dwords written */ static u32 encode_config_ggtt(u32 *cfg, const struct xe_gt_sriov_config *config) { u32 n = 0; if (drm_mm_node_allocated(&config->ggtt_region)) { cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_GGTT_START); cfg[n++] = lower_32_bits(config->ggtt_region.start); cfg[n++] = upper_32_bits(config->ggtt_region.start); cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_GGTT_SIZE); cfg[n++] = lower_32_bits(config->ggtt_region.size); cfg[n++] = upper_32_bits(config->ggtt_region.size); } return n; } /* Return: number of configuration dwords written */ static u32 encode_config(u32 *cfg, const struct xe_gt_sriov_config *config) { u32 n = 0; n += encode_config_ggtt(cfg, config); cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_BEGIN_CONTEXT_ID); cfg[n++] = config->begin_ctx; cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_NUM_CONTEXTS); cfg[n++] = config->num_ctxs; cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_BEGIN_DOORBELL_ID); cfg[n++] = config->begin_db; cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_NUM_DOORBELLS); cfg[n++] = config->num_dbs; if (config->lmem_obj) { cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_LMEM_SIZE); cfg[n++] = lower_32_bits(config->lmem_obj->size); cfg[n++] = upper_32_bits(config->lmem_obj->size); } cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_EXEC_QUANTUM); cfg[n++] = config->exec_quantum; cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_PREEMPT_TIMEOUT); cfg[n++] = config->preempt_timeout; return n; } static int pf_push_full_vf_config(struct xe_gt *gt, unsigned int vfid) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); u32 max_cfg_dwords = SZ_4K / sizeof(u32); u32 num_dwords; int num_klvs; u32 *cfg; int err; cfg = kcalloc(max_cfg_dwords, sizeof(u32), GFP_KERNEL); if (!cfg) return -ENOMEM; num_dwords = encode_config(cfg, config); xe_gt_assert(gt, num_dwords <= max_cfg_dwords); if (xe_gt_is_media_type(gt)) { struct xe_gt *primary = gt->tile->primary_gt; struct xe_gt_sriov_config *other = pf_pick_vf_config(primary, vfid); /* media-GT will never include a GGTT config */ xe_gt_assert(gt, !encode_config_ggtt(cfg + num_dwords, config)); /* the GGTT config must be taken from the primary-GT instead */ num_dwords += encode_config_ggtt(cfg + num_dwords, other); } xe_gt_assert(gt, num_dwords <= max_cfg_dwords); num_klvs = xe_guc_klv_count(cfg, num_dwords); err = pf_push_vf_cfg_klvs(gt, vfid, num_klvs, cfg, num_dwords); kfree(cfg); return err; } static u64 pf_get_ggtt_alignment(struct xe_gt *gt) { struct xe_device *xe = gt_to_xe(gt); return IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K; } static u64 pf_get_min_spare_ggtt(struct xe_gt *gt) { /* XXX: preliminary */ return IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV) ? pf_get_ggtt_alignment(gt) : SZ_64M; } static u64 pf_get_spare_ggtt(struct xe_gt *gt) { u64 spare; xe_gt_assert(gt, !xe_gt_is_media_type(gt)); xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); spare = gt->sriov.pf.spare.ggtt_size; spare = max_t(u64, spare, pf_get_min_spare_ggtt(gt)); return spare; } static int pf_set_spare_ggtt(struct xe_gt *gt, u64 size) { xe_gt_assert(gt, !xe_gt_is_media_type(gt)); xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); if (size && size < pf_get_min_spare_ggtt(gt)) return -EINVAL; size = round_up(size, pf_get_ggtt_alignment(gt)); gt->sriov.pf.spare.ggtt_size = size; return 0; } static int pf_distribute_config_ggtt(struct xe_tile *tile, unsigned int vfid, u64 start, u64 size) { int err, err2 = 0; err = pf_push_vf_cfg_ggtt(tile->primary_gt, vfid, start, size); if (tile->media_gt && !err) err2 = pf_push_vf_cfg_ggtt(tile->media_gt, vfid, start, size); return err ?: err2; } static void pf_release_ggtt(struct xe_tile *tile, struct drm_mm_node *node) { struct xe_ggtt *ggtt = tile->mem.ggtt; if (drm_mm_node_allocated(node)) { /* * explicit GGTT PTE assignment to the PF using xe_ggtt_assign() * is redundant, as PTE will be implicitly re-assigned to PF by * the xe_ggtt_clear() called by below xe_ggtt_remove_node(). */ xe_ggtt_remove_node(ggtt, node, false); } } static void pf_release_vf_config_ggtt(struct xe_gt *gt, struct xe_gt_sriov_config *config) { pf_release_ggtt(gt_to_tile(gt), &config->ggtt_region); } static int pf_provision_vf_ggtt(struct xe_gt *gt, unsigned int vfid, u64 size) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); struct drm_mm_node *node = &config->ggtt_region; struct xe_tile *tile = gt_to_tile(gt); struct xe_ggtt *ggtt = tile->mem.ggtt; u64 alignment = pf_get_ggtt_alignment(gt); int err; xe_gt_assert(gt, vfid); xe_gt_assert(gt, !xe_gt_is_media_type(gt)); xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); size = round_up(size, alignment); if (drm_mm_node_allocated(node)) { err = pf_distribute_config_ggtt(tile, vfid, 0, 0); if (unlikely(err)) return err; pf_release_ggtt(tile, node); } xe_gt_assert(gt, !drm_mm_node_allocated(node)); if (!size) return 0; err = xe_ggtt_insert_special_node(ggtt, node, size, alignment); if (unlikely(err)) return err; xe_ggtt_assign(ggtt, node, vfid); xe_gt_sriov_dbg_verbose(gt, "VF%u assigned GGTT %llx-%llx\n", vfid, node->start, node->start + node->size - 1); err = pf_distribute_config_ggtt(gt->tile, vfid, node->start, node->size); if (unlikely(err)) return err; return 0; } static u64 pf_get_vf_config_ggtt(struct xe_gt *gt, unsigned int vfid) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); struct drm_mm_node *node = &config->ggtt_region; xe_gt_assert(gt, !xe_gt_is_media_type(gt)); return drm_mm_node_allocated(node) ? node->size : 0; } /** * xe_gt_sriov_pf_config_get_ggtt - Query size of GGTT address space of the VF. * @gt: the &xe_gt * @vfid: the VF identifier * * This function can only be called on PF. * * Return: size of the VF's assigned (or PF's spare) GGTT address space. */ u64 xe_gt_sriov_pf_config_get_ggtt(struct xe_gt *gt, unsigned int vfid) { u64 size; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); if (vfid) size = pf_get_vf_config_ggtt(gt_to_tile(gt)->primary_gt, vfid); else size = pf_get_spare_ggtt(gt_to_tile(gt)->primary_gt); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return size; } static int pf_config_set_u64_done(struct xe_gt *gt, unsigned int vfid, u64 value, u64 actual, const char *what, int err) { char size[10]; char name[8]; xe_sriov_function_name(vfid, name, sizeof(name)); if (unlikely(err)) { string_get_size(value, 1, STRING_UNITS_2, size, sizeof(size)); xe_gt_sriov_notice(gt, "Failed to provision %s with %llu (%s) %s (%pe)\n", name, value, size, what, ERR_PTR(err)); string_get_size(actual, 1, STRING_UNITS_2, size, sizeof(size)); xe_gt_sriov_info(gt, "%s provisioning remains at %llu (%s) %s\n", name, actual, size, what); return err; } /* the actual value may have changed during provisioning */ string_get_size(actual, 1, STRING_UNITS_2, size, sizeof(size)); xe_gt_sriov_info(gt, "%s provisioned with %llu (%s) %s\n", name, actual, size, what); return 0; } /** * xe_gt_sriov_pf_config_set_ggtt - Provision VF with GGTT space. * @gt: the &xe_gt (can't be media) * @vfid: the VF identifier * @size: requested GGTT size * * If &vfid represents PF, then function will change PF's spare GGTT config. * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_set_ggtt(struct xe_gt *gt, unsigned int vfid, u64 size) { int err; xe_gt_assert(gt, !xe_gt_is_media_type(gt)); mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); if (vfid) err = pf_provision_vf_ggtt(gt, vfid, size); else err = pf_set_spare_ggtt(gt, size); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return pf_config_set_u64_done(gt, vfid, size, xe_gt_sriov_pf_config_get_ggtt(gt, vfid), vfid ? "GGTT" : "spare GGTT", err); } static int pf_config_bulk_set_u64_done(struct xe_gt *gt, unsigned int first, unsigned int num_vfs, u64 value, u64 (*get)(struct xe_gt*, unsigned int), const char *what, unsigned int last, int err) { char size[10]; xe_gt_assert(gt, first); xe_gt_assert(gt, num_vfs); xe_gt_assert(gt, first <= last); if (num_vfs == 1) return pf_config_set_u64_done(gt, first, value, get(gt, first), what, err); if (unlikely(err)) { xe_gt_sriov_notice(gt, "Failed to bulk provision VF%u..VF%u with %s\n", first, first + num_vfs - 1, what); if (last > first) pf_config_bulk_set_u64_done(gt, first, last - first, value, get, what, last, 0); return pf_config_set_u64_done(gt, last, value, get(gt, last), what, err); } /* pick actual value from first VF - bulk provisioning shall be equal across all VFs */ value = get(gt, first); string_get_size(value, 1, STRING_UNITS_2, size, sizeof(size)); xe_gt_sriov_info(gt, "VF%u..VF%u provisioned with %llu (%s) %s\n", first, first + num_vfs - 1, value, size, what); return 0; } /** * xe_gt_sriov_pf_config_bulk_set_ggtt - Provision many VFs with GGTT. * @gt: the &xe_gt (can't be media) * @vfid: starting VF identifier (can't be 0) * @num_vfs: number of VFs to provision * @size: requested GGTT size * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_bulk_set_ggtt(struct xe_gt *gt, unsigned int vfid, unsigned int num_vfs, u64 size) { unsigned int n; int err = 0; xe_gt_assert(gt, vfid); xe_gt_assert(gt, !xe_gt_is_media_type(gt)); if (!num_vfs) return 0; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); for (n = vfid; n < vfid + num_vfs; n++) { err = pf_provision_vf_ggtt(gt, n, size); if (err) break; } mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return pf_config_bulk_set_u64_done(gt, vfid, num_vfs, size, xe_gt_sriov_pf_config_get_ggtt, "GGTT", n, err); } /* Return: size of the largest continuous GGTT region */ static u64 pf_get_max_ggtt(struct xe_gt *gt) { struct xe_ggtt *ggtt = gt_to_tile(gt)->mem.ggtt; const struct drm_mm *mm = &ggtt->mm; const struct drm_mm_node *entry; u64 alignment = pf_get_ggtt_alignment(gt); u64 spare = pf_get_spare_ggtt(gt); u64 hole_min_start = xe_wopcm_size(gt_to_xe(gt)); u64 hole_start, hole_end, hole_size; u64 max_hole = 0; mutex_lock(&ggtt->lock); drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { hole_start = max(hole_start, hole_min_start); hole_start = ALIGN(hole_start, alignment); hole_end = ALIGN_DOWN(hole_end, alignment); if (hole_start >= hole_end) continue; hole_size = hole_end - hole_start; xe_gt_sriov_dbg_verbose(gt, "HOLE start %llx size %lluK\n", hole_start, hole_size / SZ_1K); spare -= min3(spare, hole_size, max_hole); max_hole = max(max_hole, hole_size); } mutex_unlock(&ggtt->lock); xe_gt_sriov_dbg_verbose(gt, "HOLE max %lluK reserved %lluK\n", max_hole / SZ_1K, spare / SZ_1K); return max_hole > spare ? max_hole - spare : 0; } static u64 pf_estimate_fair_ggtt(struct xe_gt *gt, unsigned int num_vfs) { u64 available = pf_get_max_ggtt(gt); u64 alignment = pf_get_ggtt_alignment(gt); u64 fair; /* * To simplify the logic we only look at single largest GGTT region * as that will be always the best fit for 1 VF case, and most likely * will also nicely cover other cases where VFs are provisioned on the * fresh and idle PF driver, without any stale GGTT allocations spread * in the middle of the full GGTT range. */ fair = div_u64(available, num_vfs); fair = ALIGN_DOWN(fair, alignment); xe_gt_sriov_dbg_verbose(gt, "GGTT available(%lluK) fair(%u x %lluK)\n", available / SZ_1K, num_vfs, fair / SZ_1K); return fair; } /** * xe_gt_sriov_pf_config_set_fair_ggtt - Provision many VFs with fair GGTT. * @gt: the &xe_gt (can't be media) * @vfid: starting VF identifier (can't be 0) * @num_vfs: number of VFs to provision * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_set_fair_ggtt(struct xe_gt *gt, unsigned int vfid, unsigned int num_vfs) { u64 fair; xe_gt_assert(gt, vfid); xe_gt_assert(gt, num_vfs); xe_gt_assert(gt, !xe_gt_is_media_type(gt)); mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); fair = pf_estimate_fair_ggtt(gt, num_vfs); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); if (!fair) return -ENOSPC; return xe_gt_sriov_pf_config_bulk_set_ggtt(gt, vfid, num_vfs, fair); } static u32 pf_get_min_spare_ctxs(struct xe_gt *gt) { /* XXX: preliminary */ return IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV) ? hweight64(gt->info.engine_mask) : SZ_256; } static u32 pf_get_spare_ctxs(struct xe_gt *gt) { u32 spare; xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); spare = gt->sriov.pf.spare.num_ctxs; spare = max_t(u32, spare, pf_get_min_spare_ctxs(gt)); return spare; } static int pf_set_spare_ctxs(struct xe_gt *gt, u32 spare) { xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); if (spare > GUC_ID_MAX) return -EINVAL; if (spare && spare < pf_get_min_spare_ctxs(gt)) return -EINVAL; gt->sriov.pf.spare.num_ctxs = spare; return 0; } /* Return: start ID or negative error code on failure */ static int pf_reserve_ctxs(struct xe_gt *gt, u32 num) { struct xe_guc_id_mgr *idm = >->uc.guc.submission_state.idm; unsigned int spare = pf_get_spare_ctxs(gt); return xe_guc_id_mgr_reserve(idm, num, spare); } static void pf_release_ctxs(struct xe_gt *gt, u32 start, u32 num) { struct xe_guc_id_mgr *idm = >->uc.guc.submission_state.idm; if (num) xe_guc_id_mgr_release(idm, start, num); } static void pf_release_config_ctxs(struct xe_gt *gt, struct xe_gt_sriov_config *config) { lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); pf_release_ctxs(gt, config->begin_ctx, config->num_ctxs); config->begin_ctx = 0; config->num_ctxs = 0; } static int pf_provision_vf_ctxs(struct xe_gt *gt, unsigned int vfid, u32 num_ctxs) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); int ret; xe_gt_assert(gt, vfid); if (num_ctxs > GUC_ID_MAX) return -EINVAL; if (config->num_ctxs) { ret = pf_push_vf_cfg_ctxs(gt, vfid, 0, 0); if (unlikely(ret)) return ret; pf_release_config_ctxs(gt, config); } if (!num_ctxs) return 0; ret = pf_reserve_ctxs(gt, num_ctxs); if (unlikely(ret < 0)) return ret; config->begin_ctx = ret; config->num_ctxs = num_ctxs; ret = pf_push_vf_cfg_ctxs(gt, vfid, config->begin_ctx, config->num_ctxs); if (unlikely(ret)) { pf_release_config_ctxs(gt, config); return ret; } xe_gt_sriov_dbg_verbose(gt, "VF%u contexts %u-%u\n", vfid, config->begin_ctx, config->begin_ctx + config->num_ctxs - 1); return 0; } static u32 pf_get_vf_config_ctxs(struct xe_gt *gt, unsigned int vfid) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); return config->num_ctxs; } /** * xe_gt_sriov_pf_config_get_ctxs - Get VF's GuC contexts IDs quota. * @gt: the &xe_gt * @vfid: the VF identifier * * This function can only be called on PF. * If &vfid represents a PF then number of PF's spare GuC context IDs is returned. * * Return: VF's quota (or PF's spare). */ u32 xe_gt_sriov_pf_config_get_ctxs(struct xe_gt *gt, unsigned int vfid) { u32 num_ctxs; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); if (vfid) num_ctxs = pf_get_vf_config_ctxs(gt, vfid); else num_ctxs = pf_get_spare_ctxs(gt); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return num_ctxs; } static const char *no_unit(u32 unused) { return ""; } static const char *spare_unit(u32 unused) { return " spare"; } static int pf_config_set_u32_done(struct xe_gt *gt, unsigned int vfid, u32 value, u32 actual, const char *what, const char *(*unit)(u32), int err) { char name[8]; xe_sriov_function_name(vfid, name, sizeof(name)); if (unlikely(err)) { xe_gt_sriov_notice(gt, "Failed to provision %s with %u%s %s (%pe)\n", name, value, unit(value), what, ERR_PTR(err)); xe_gt_sriov_info(gt, "%s provisioning remains at %u%s %s\n", name, actual, unit(actual), what); return err; } /* the actual value may have changed during provisioning */ xe_gt_sriov_info(gt, "%s provisioned with %u%s %s\n", name, actual, unit(actual), what); return 0; } /** * xe_gt_sriov_pf_config_set_ctxs - Configure GuC contexts IDs quota for the VF. * @gt: the &xe_gt * @vfid: the VF identifier * @num_ctxs: requested number of GuC contexts IDs (0 to release) * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_set_ctxs(struct xe_gt *gt, unsigned int vfid, u32 num_ctxs) { int err; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); if (vfid) err = pf_provision_vf_ctxs(gt, vfid, num_ctxs); else err = pf_set_spare_ctxs(gt, num_ctxs); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return pf_config_set_u32_done(gt, vfid, num_ctxs, xe_gt_sriov_pf_config_get_ctxs(gt, vfid), "GuC context IDs", vfid ? no_unit : spare_unit, err); } static int pf_config_bulk_set_u32_done(struct xe_gt *gt, unsigned int first, unsigned int num_vfs, u32 value, u32 (*get)(struct xe_gt*, unsigned int), const char *what, const char *(*unit)(u32), unsigned int last, int err) { xe_gt_assert(gt, first); xe_gt_assert(gt, num_vfs); xe_gt_assert(gt, first <= last); if (num_vfs == 1) return pf_config_set_u32_done(gt, first, value, get(gt, first), what, unit, err); if (unlikely(err)) { xe_gt_sriov_notice(gt, "Failed to bulk provision VF%u..VF%u with %s\n", first, first + num_vfs - 1, what); if (last > first) pf_config_bulk_set_u32_done(gt, first, last - first, value, get, what, unit, last, 0); return pf_config_set_u32_done(gt, last, value, get(gt, last), what, unit, err); } /* pick actual value from first VF - bulk provisioning shall be equal across all VFs */ value = get(gt, first); xe_gt_sriov_info(gt, "VF%u..VF%u provisioned with %u%s %s\n", first, first + num_vfs - 1, value, unit(value), what); return 0; } /** * xe_gt_sriov_pf_config_bulk_set_ctxs - Provision many VFs with GuC context IDs. * @gt: the &xe_gt * @vfid: starting VF identifier * @num_vfs: number of VFs to provision * @num_ctxs: requested number of GuC contexts IDs (0 to release) * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_bulk_set_ctxs(struct xe_gt *gt, unsigned int vfid, unsigned int num_vfs, u32 num_ctxs) { unsigned int n; int err = 0; xe_gt_assert(gt, vfid); if (!num_vfs) return 0; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); for (n = vfid; n < vfid + num_vfs; n++) { err = pf_provision_vf_ctxs(gt, n, num_ctxs); if (err) break; } mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return pf_config_bulk_set_u32_done(gt, vfid, num_vfs, num_ctxs, xe_gt_sriov_pf_config_get_ctxs, "GuC context IDs", no_unit, n, err); } static u32 pf_estimate_fair_ctxs(struct xe_gt *gt, unsigned int num_vfs) { struct xe_guc_id_mgr *idm = >->uc.guc.submission_state.idm; u32 spare = pf_get_spare_ctxs(gt); u32 fair = (idm->total - spare) / num_vfs; int ret; for (; fair; --fair) { ret = xe_guc_id_mgr_reserve(idm, fair * num_vfs, spare); if (ret < 0) continue; xe_guc_id_mgr_release(idm, ret, fair * num_vfs); break; } xe_gt_sriov_dbg_verbose(gt, "contexts fair(%u x %u)\n", num_vfs, fair); return fair; } /** * xe_gt_sriov_pf_config_set_fair_ctxs - Provision many VFs with fair GuC context IDs. * @gt: the &xe_gt * @vfid: starting VF identifier (can't be 0) * @num_vfs: number of VFs to provision (can't be 0) * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_set_fair_ctxs(struct xe_gt *gt, unsigned int vfid, unsigned int num_vfs) { u32 fair; xe_gt_assert(gt, vfid); xe_gt_assert(gt, num_vfs); mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); fair = pf_estimate_fair_ctxs(gt, num_vfs); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); if (!fair) return -ENOSPC; return xe_gt_sriov_pf_config_bulk_set_ctxs(gt, vfid, num_vfs, fair); } static u32 pf_get_min_spare_dbs(struct xe_gt *gt) { /* XXX: preliminary, we don't use doorbells yet! */ return IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV) ? 1 : 0; } static u32 pf_get_spare_dbs(struct xe_gt *gt) { u32 spare; xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); spare = gt->sriov.pf.spare.num_dbs; spare = max_t(u32, spare, pf_get_min_spare_dbs(gt)); return spare; } static int pf_set_spare_dbs(struct xe_gt *gt, u32 spare) { xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); if (spare > GUC_NUM_DOORBELLS) return -EINVAL; if (spare && spare < pf_get_min_spare_dbs(gt)) return -EINVAL; gt->sriov.pf.spare.num_dbs = spare; return 0; } /* Return: start ID or negative error code on failure */ static int pf_reserve_dbs(struct xe_gt *gt, u32 num) { struct xe_guc_db_mgr *dbm = >->uc.guc.dbm; unsigned int spare = pf_get_spare_dbs(gt); return xe_guc_db_mgr_reserve_range(dbm, num, spare); } static void pf_release_dbs(struct xe_gt *gt, u32 start, u32 num) { struct xe_guc_db_mgr *dbm = >->uc.guc.dbm; if (num) xe_guc_db_mgr_release_range(dbm, start, num); } static void pf_release_config_dbs(struct xe_gt *gt, struct xe_gt_sriov_config *config) { lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); pf_release_dbs(gt, config->begin_db, config->num_dbs); config->begin_db = 0; config->num_dbs = 0; } static int pf_provision_vf_dbs(struct xe_gt *gt, unsigned int vfid, u32 num_dbs) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); int ret; xe_gt_assert(gt, vfid); if (num_dbs > GUC_NUM_DOORBELLS) return -EINVAL; if (config->num_dbs) { ret = pf_push_vf_cfg_dbs(gt, vfid, 0, 0); if (unlikely(ret)) return ret; pf_release_config_dbs(gt, config); } if (!num_dbs) return 0; ret = pf_reserve_dbs(gt, num_dbs); if (unlikely(ret < 0)) return ret; config->begin_db = ret; config->num_dbs = num_dbs; ret = pf_push_vf_cfg_dbs(gt, vfid, config->begin_db, config->num_dbs); if (unlikely(ret)) { pf_release_config_dbs(gt, config); return ret; } xe_gt_sriov_dbg_verbose(gt, "VF%u doorbells %u-%u\n", vfid, config->begin_db, config->begin_db + config->num_dbs - 1); return 0; } static u32 pf_get_vf_config_dbs(struct xe_gt *gt, unsigned int vfid) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); return config->num_dbs; } /** * xe_gt_sriov_pf_config_get_dbs - Get VF's GuC doorbells IDs quota. * @gt: the &xe_gt * @vfid: the VF identifier * * This function can only be called on PF. * If &vfid represents a PF then number of PF's spare GuC doorbells IDs is returned. * * Return: VF's quota (or PF's spare). */ u32 xe_gt_sriov_pf_config_get_dbs(struct xe_gt *gt, unsigned int vfid) { u32 num_dbs; xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); xe_gt_assert(gt, vfid <= xe_sriov_pf_get_totalvfs(gt_to_xe(gt))); mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); if (vfid) num_dbs = pf_get_vf_config_dbs(gt, vfid); else num_dbs = pf_get_spare_dbs(gt); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return num_dbs; } /** * xe_gt_sriov_pf_config_set_dbs - Configure GuC doorbells IDs quota for the VF. * @gt: the &xe_gt * @vfid: the VF identifier * @num_dbs: requested number of GuC doorbells IDs (0 to release) * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_set_dbs(struct xe_gt *gt, unsigned int vfid, u32 num_dbs) { int err; xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); xe_gt_assert(gt, vfid <= xe_sriov_pf_get_totalvfs(gt_to_xe(gt))); mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); if (vfid) err = pf_provision_vf_dbs(gt, vfid, num_dbs); else err = pf_set_spare_dbs(gt, num_dbs); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return pf_config_set_u32_done(gt, vfid, num_dbs, xe_gt_sriov_pf_config_get_dbs(gt, vfid), "GuC doorbell IDs", vfid ? no_unit : spare_unit, err); } /** * xe_gt_sriov_pf_config_bulk_set_dbs - Provision many VFs with GuC context IDs. * @gt: the &xe_gt * @vfid: starting VF identifier (can't be 0) * @num_vfs: number of VFs to provision * @num_dbs: requested number of GuC doorbell IDs (0 to release) * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_bulk_set_dbs(struct xe_gt *gt, unsigned int vfid, unsigned int num_vfs, u32 num_dbs) { unsigned int n; int err = 0; xe_gt_assert(gt, vfid); if (!num_vfs) return 0; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); for (n = vfid; n < vfid + num_vfs; n++) { err = pf_provision_vf_dbs(gt, n, num_dbs); if (err) break; } mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return pf_config_bulk_set_u32_done(gt, vfid, num_vfs, num_dbs, xe_gt_sriov_pf_config_get_dbs, "GuC doorbell IDs", no_unit, n, err); } static u32 pf_estimate_fair_dbs(struct xe_gt *gt, unsigned int num_vfs) { struct xe_guc_db_mgr *dbm = >->uc.guc.dbm; u32 spare = pf_get_spare_dbs(gt); u32 fair = (GUC_NUM_DOORBELLS - spare) / num_vfs; int ret; for (; fair; --fair) { ret = xe_guc_db_mgr_reserve_range(dbm, fair * num_vfs, spare); if (ret < 0) continue; xe_guc_db_mgr_release_range(dbm, ret, fair * num_vfs); break; } xe_gt_sriov_dbg_verbose(gt, "doorbells fair(%u x %u)\n", num_vfs, fair); return fair; } /** * xe_gt_sriov_pf_config_set_fair_dbs - Provision many VFs with fair GuC doorbell IDs. * @gt: the &xe_gt * @vfid: starting VF identifier (can't be 0) * @num_vfs: number of VFs to provision (can't be 0) * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_set_fair_dbs(struct xe_gt *gt, unsigned int vfid, unsigned int num_vfs) { u32 fair; xe_gt_assert(gt, vfid); xe_gt_assert(gt, num_vfs); mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); fair = pf_estimate_fair_dbs(gt, num_vfs); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); if (!fair) return -ENOSPC; return xe_gt_sriov_pf_config_bulk_set_dbs(gt, vfid, num_vfs, fair); } static u64 pf_get_lmem_alignment(struct xe_gt *gt) { /* this might be platform dependent */ return SZ_2M; } static u64 pf_get_min_spare_lmem(struct xe_gt *gt) { /* this might be platform dependent */ return SZ_128M; /* XXX: preliminary */ } static u64 pf_get_spare_lmem(struct xe_gt *gt) { u64 spare; xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); spare = gt->sriov.pf.spare.lmem_size; spare = max_t(u64, spare, pf_get_min_spare_lmem(gt)); return spare; } static int pf_set_spare_lmem(struct xe_gt *gt, u64 size) { xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); if (size && size < pf_get_min_spare_lmem(gt)) return -EINVAL; gt->sriov.pf.spare.lmem_size = size; return 0; } static u64 pf_get_vf_config_lmem(struct xe_gt *gt, unsigned int vfid) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); struct xe_bo *bo; bo = config->lmem_obj; return bo ? bo->size : 0; } static int pf_distribute_config_lmem(struct xe_gt *gt, unsigned int vfid, u64 size) { struct xe_device *xe = gt_to_xe(gt); struct xe_tile *tile; unsigned int tid; int err; for_each_tile(tile, xe, tid) { if (tile->primary_gt == gt) { err = pf_push_vf_cfg_lmem(gt, vfid, size); } else { u64 lmem = pf_get_vf_config_lmem(tile->primary_gt, vfid); if (!lmem) continue; err = pf_push_vf_cfg_lmem(gt, vfid, lmem); } if (unlikely(err)) return err; } return 0; } static void pf_force_lmtt_invalidate(struct xe_device *xe) { /* TODO */ } static void pf_reset_vf_lmtt(struct xe_device *xe, unsigned int vfid) { struct xe_lmtt *lmtt; struct xe_tile *tile; unsigned int tid; xe_assert(xe, IS_DGFX(xe)); xe_assert(xe, IS_SRIOV_PF(xe)); for_each_tile(tile, xe, tid) { lmtt = &tile->sriov.pf.lmtt; xe_lmtt_drop_pages(lmtt, vfid); } } static int pf_update_vf_lmtt(struct xe_device *xe, unsigned int vfid) { struct xe_gt_sriov_config *config; struct xe_tile *tile; struct xe_lmtt *lmtt; struct xe_bo *bo; struct xe_gt *gt; u64 total, offset; unsigned int gtid; unsigned int tid; int err; xe_assert(xe, IS_DGFX(xe)); xe_assert(xe, IS_SRIOV_PF(xe)); total = 0; for_each_tile(tile, xe, tid) total += pf_get_vf_config_lmem(tile->primary_gt, vfid); for_each_tile(tile, xe, tid) { lmtt = &tile->sriov.pf.lmtt; xe_lmtt_drop_pages(lmtt, vfid); if (!total) continue; err = xe_lmtt_prepare_pages(lmtt, vfid, total); if (err) goto fail; offset = 0; for_each_gt(gt, xe, gtid) { if (xe_gt_is_media_type(gt)) continue; config = pf_pick_vf_config(gt, vfid); bo = config->lmem_obj; if (!bo) continue; err = xe_lmtt_populate_pages(lmtt, vfid, bo, offset); if (err) goto fail; offset += bo->size; } } pf_force_lmtt_invalidate(xe); return 0; fail: for_each_tile(tile, xe, tid) { lmtt = &tile->sriov.pf.lmtt; xe_lmtt_drop_pages(lmtt, vfid); } return err; } static void pf_release_vf_config_lmem(struct xe_gt *gt, struct xe_gt_sriov_config *config) { xe_gt_assert(gt, IS_DGFX(gt_to_xe(gt))); xe_gt_assert(gt, !xe_gt_is_media_type(gt)); lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); if (config->lmem_obj) { xe_bo_unpin_map_no_vm(config->lmem_obj); config->lmem_obj = NULL; } } static int pf_provision_vf_lmem(struct xe_gt *gt, unsigned int vfid, u64 size) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); struct xe_device *xe = gt_to_xe(gt); struct xe_tile *tile = gt_to_tile(gt); struct xe_bo *bo; int err; xe_gt_assert(gt, vfid); xe_gt_assert(gt, IS_DGFX(xe)); xe_gt_assert(gt, !xe_gt_is_media_type(gt)); size = round_up(size, pf_get_lmem_alignment(gt)); if (config->lmem_obj) { err = pf_distribute_config_lmem(gt, vfid, 0); if (unlikely(err)) return err; pf_reset_vf_lmtt(xe, vfid); pf_release_vf_config_lmem(gt, config); } xe_gt_assert(gt, !config->lmem_obj); if (!size) return 0; xe_gt_assert(gt, pf_get_lmem_alignment(gt) == SZ_2M); bo = xe_bo_create_pin_map(xe, tile, NULL, ALIGN(size, PAGE_SIZE), ttm_bo_type_kernel, XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_PINNED); if (IS_ERR(bo)) return PTR_ERR(bo); config->lmem_obj = bo; err = pf_update_vf_lmtt(xe, vfid); if (unlikely(err)) goto release; err = pf_push_vf_cfg_lmem(gt, vfid, bo->size); if (unlikely(err)) goto reset_lmtt; xe_gt_sriov_dbg_verbose(gt, "VF%u LMEM %zu (%zuM)\n", vfid, bo->size, bo->size / SZ_1M); return 0; reset_lmtt: pf_reset_vf_lmtt(xe, vfid); release: pf_release_vf_config_lmem(gt, config); return err; } /** * xe_gt_sriov_pf_config_get_lmem - Get VF's LMEM quota. * @gt: the &xe_gt * @vfid: the VF identifier * * This function can only be called on PF. * * Return: VF's (or PF's spare) LMEM quota. */ u64 xe_gt_sriov_pf_config_get_lmem(struct xe_gt *gt, unsigned int vfid) { u64 size; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); if (vfid) size = pf_get_vf_config_lmem(gt, vfid); else size = pf_get_spare_lmem(gt); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return size; } /** * xe_gt_sriov_pf_config_set_lmem - Provision VF with LMEM. * @gt: the &xe_gt (can't be media) * @vfid: the VF identifier * @size: requested LMEM size * * This function can only be called on PF. */ int xe_gt_sriov_pf_config_set_lmem(struct xe_gt *gt, unsigned int vfid, u64 size) { int err; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); if (vfid) err = pf_provision_vf_lmem(gt, vfid, size); else err = pf_set_spare_lmem(gt, size); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return pf_config_set_u64_done(gt, vfid, size, xe_gt_sriov_pf_config_get_lmem(gt, vfid), vfid ? "LMEM" : "spare LMEM", err); } /** * xe_gt_sriov_pf_config_bulk_set_lmem - Provision many VFs with LMEM. * @gt: the &xe_gt (can't be media) * @vfid: starting VF identifier (can't be 0) * @num_vfs: number of VFs to provision * @size: requested LMEM size * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_bulk_set_lmem(struct xe_gt *gt, unsigned int vfid, unsigned int num_vfs, u64 size) { unsigned int n; int err = 0; xe_gt_assert(gt, vfid); xe_gt_assert(gt, !xe_gt_is_media_type(gt)); if (!num_vfs) return 0; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); for (n = vfid; n < vfid + num_vfs; n++) { err = pf_provision_vf_lmem(gt, n, size); if (err) break; } mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return pf_config_bulk_set_u64_done(gt, vfid, num_vfs, size, xe_gt_sriov_pf_config_get_lmem, "LMEM", n, err); } static u64 pf_query_free_lmem(struct xe_gt *gt) { struct xe_tile *tile = gt->tile; return xe_ttm_vram_get_avail(&tile->mem.vram_mgr->manager); } static u64 pf_query_max_lmem(struct xe_gt *gt) { u64 alignment = pf_get_lmem_alignment(gt); u64 spare = pf_get_spare_lmem(gt); u64 free = pf_query_free_lmem(gt); u64 avail; /* XXX: need to account for 2MB blocks only */ avail = free > spare ? free - spare : 0; avail = round_down(avail, alignment); return avail; } #ifdef CONFIG_DRM_XE_DEBUG_SRIOV #define MAX_FAIR_LMEM SZ_128M /* XXX: make it small for the driver bringup */ #else #define MAX_FAIR_LMEM SZ_2G /* XXX: known issue with allocating BO over 2GiB */ #endif static u64 pf_estimate_fair_lmem(struct xe_gt *gt, unsigned int num_vfs) { u64 available = pf_query_max_lmem(gt); u64 alignment = pf_get_lmem_alignment(gt); u64 fair; fair = div_u64(available, num_vfs); fair = ALIGN_DOWN(fair, alignment); #ifdef MAX_FAIR_LMEM fair = min_t(u64, MAX_FAIR_LMEM, fair); #endif xe_gt_sriov_dbg_verbose(gt, "LMEM available(%lluM) fair(%u x %lluM)\n", available / SZ_1M, num_vfs, fair / SZ_1M); return fair; } /** * xe_gt_sriov_pf_config_set_fair_lmem - Provision many VFs with fair LMEM. * @gt: the &xe_gt (can't be media) * @vfid: starting VF identifier (can't be 0) * @num_vfs: number of VFs to provision (can't be 0) * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_set_fair_lmem(struct xe_gt *gt, unsigned int vfid, unsigned int num_vfs) { u64 fair; xe_gt_assert(gt, vfid); xe_gt_assert(gt, num_vfs); xe_gt_assert(gt, !xe_gt_is_media_type(gt)); if (!IS_DGFX(gt_to_xe(gt))) return 0; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); fair = pf_estimate_fair_lmem(gt, num_vfs); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); if (!fair) return -ENOSPC; return xe_gt_sriov_pf_config_bulk_set_lmem(gt, vfid, num_vfs, fair); } /** * xe_gt_sriov_pf_config_set_fair - Provision many VFs with fair resources. * @gt: the &xe_gt * @vfid: starting VF identifier (can't be 0) * @num_vfs: number of VFs to provision (can't be 0) * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_set_fair(struct xe_gt *gt, unsigned int vfid, unsigned int num_vfs) { int result = 0; int err; xe_gt_assert(gt, vfid); xe_gt_assert(gt, num_vfs); if (!xe_gt_is_media_type(gt)) { err = xe_gt_sriov_pf_config_set_fair_ggtt(gt, vfid, num_vfs); result = result ?: err; err = xe_gt_sriov_pf_config_set_fair_lmem(gt, vfid, num_vfs); result = result ?: err; } err = xe_gt_sriov_pf_config_set_fair_ctxs(gt, vfid, num_vfs); result = result ?: err; err = xe_gt_sriov_pf_config_set_fair_dbs(gt, vfid, num_vfs); result = result ?: err; return result; } static const char *exec_quantum_unit(u32 exec_quantum) { return exec_quantum ? "ms" : "(infinity)"; } static int pf_provision_exec_quantum(struct xe_gt *gt, unsigned int vfid, u32 exec_quantum) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); int err; err = pf_push_vf_cfg_exec_quantum(gt, vfid, exec_quantum); if (unlikely(err)) return err; config->exec_quantum = exec_quantum; return 0; } static int pf_get_exec_quantum(struct xe_gt *gt, unsigned int vfid) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); return config->exec_quantum; } /** * xe_gt_sriov_pf_config_set_exec_quantum - Configure execution quantum for the VF. * @gt: the &xe_gt * @vfid: the VF identifier * @exec_quantum: requested execution quantum in milliseconds (0 is infinity) * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_set_exec_quantum(struct xe_gt *gt, unsigned int vfid, u32 exec_quantum) { int err; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); err = pf_provision_exec_quantum(gt, vfid, exec_quantum); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return pf_config_set_u32_done(gt, vfid, exec_quantum, xe_gt_sriov_pf_config_get_exec_quantum(gt, vfid), "execution quantum", exec_quantum_unit, err); } /** * xe_gt_sriov_pf_config_get_exec_quantum - Get VF's execution quantum. * @gt: the &xe_gt * @vfid: the VF identifier * * This function can only be called on PF. * * Return: VF's (or PF's) execution quantum in milliseconds. */ u32 xe_gt_sriov_pf_config_get_exec_quantum(struct xe_gt *gt, unsigned int vfid) { u32 exec_quantum; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); exec_quantum = pf_get_exec_quantum(gt, vfid); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return exec_quantum; } static const char *preempt_timeout_unit(u32 preempt_timeout) { return preempt_timeout ? "us" : "(infinity)"; } static int pf_provision_preempt_timeout(struct xe_gt *gt, unsigned int vfid, u32 preempt_timeout) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); int err; err = pf_push_vf_cfg_preempt_timeout(gt, vfid, preempt_timeout); if (unlikely(err)) return err; config->preempt_timeout = preempt_timeout; return 0; } static int pf_get_preempt_timeout(struct xe_gt *gt, unsigned int vfid) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); return config->preempt_timeout; } /** * xe_gt_sriov_pf_config_set_preempt_timeout - Configure preemption timeout for the VF. * @gt: the &xe_gt * @vfid: the VF identifier * @preempt_timeout: requested preemption timeout in microseconds (0 is infinity) * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_set_preempt_timeout(struct xe_gt *gt, unsigned int vfid, u32 preempt_timeout) { int err; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); err = pf_provision_preempt_timeout(gt, vfid, preempt_timeout); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return pf_config_set_u32_done(gt, vfid, preempt_timeout, xe_gt_sriov_pf_config_get_preempt_timeout(gt, vfid), "preemption timeout", preempt_timeout_unit, err); } /** * xe_gt_sriov_pf_config_get_preempt_timeout - Get VF's preemption timeout. * @gt: the &xe_gt * @vfid: the VF identifier * * This function can only be called on PF. * * Return: VF's (or PF's) preemption timeout in microseconds. */ u32 xe_gt_sriov_pf_config_get_preempt_timeout(struct xe_gt *gt, unsigned int vfid) { u32 preempt_timeout; mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); preempt_timeout = pf_get_preempt_timeout(gt, vfid); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return preempt_timeout; } static void pf_reset_config_sched(struct xe_gt *gt, struct xe_gt_sriov_config *config) { lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt)); config->exec_quantum = 0; config->preempt_timeout = 0; } static void pf_release_vf_config(struct xe_gt *gt, unsigned int vfid) { struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid); struct xe_device *xe = gt_to_xe(gt); if (!xe_gt_is_media_type(gt)) { pf_release_vf_config_ggtt(gt, config); if (IS_DGFX(xe)) { pf_release_vf_config_lmem(gt, config); pf_update_vf_lmtt(xe, vfid); } } pf_release_config_ctxs(gt, config); pf_release_config_dbs(gt, config); pf_reset_config_sched(gt, config); } /** * xe_gt_sriov_pf_config_release - Release and reset VF configuration. * @gt: the &xe_gt * @vfid: the VF identifier (can't be PF) * @force: force configuration release * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_release(struct xe_gt *gt, unsigned int vfid, bool force) { int err; xe_gt_assert(gt, vfid); mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); err = pf_send_vf_cfg_reset(gt, vfid); if (!err || force) pf_release_vf_config(gt, vfid); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); if (unlikely(err)) { xe_gt_sriov_notice(gt, "VF%u unprovisioning failed with error (%pe)%s\n", vfid, ERR_PTR(err), force ? " but all resources were released anyway!" : ""); } return force ? 0 : err; } /** * xe_gt_sriov_pf_config_push - Reprovision VF's configuration. * @gt: the &xe_gt * @vfid: the VF identifier (can't be PF) * @refresh: explicit refresh * * This function can only be called on PF. * * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_push(struct xe_gt *gt, unsigned int vfid, bool refresh) { int err = 0; xe_gt_assert(gt, vfid); mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); if (refresh) err = pf_send_vf_cfg_reset(gt, vfid); if (!err) err = pf_push_full_vf_config(gt, vfid); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); if (unlikely(err)) { xe_gt_sriov_notice(gt, "Failed to %s VF%u configuration (%pe)\n", refresh ? "refresh" : "push", vfid, ERR_PTR(err)); } return err; } /** * xe_gt_sriov_pf_config_print_ggtt - Print GGTT configurations. * @gt: the &xe_gt * @p: the &drm_printer * * Print GGTT configuration data for all VFs. * VFs without provisioned GGTT are ignored. * * This function can only be called on PF. */ int xe_gt_sriov_pf_config_print_ggtt(struct xe_gt *gt, struct drm_printer *p) { unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(gt_to_xe(gt)); const struct xe_gt_sriov_config *config; char buf[10]; for (n = 1; n <= total_vfs; n++) { config = >->sriov.pf.vfs[n].config; if (!drm_mm_node_allocated(&config->ggtt_region)) continue; string_get_size(config->ggtt_region.size, 1, STRING_UNITS_2, buf, sizeof(buf)); drm_printf(p, "VF%u:\t%#0llx-%#llx\t(%s)\n", n, config->ggtt_region.start, config->ggtt_region.start + config->ggtt_region.size - 1, buf); } return 0; } /** * xe_gt_sriov_pf_config_print_ctxs - Print GuC context IDs configurations. * @gt: the &xe_gt * @p: the &drm_printer * * Print GuC context ID allocations across all VFs. * VFs without GuC context IDs are skipped. * * This function can only be called on PF. * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_print_ctxs(struct xe_gt *gt, struct drm_printer *p) { unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(gt_to_xe(gt)); const struct xe_gt_sriov_config *config; xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); for (n = 1; n <= total_vfs; n++) { config = >->sriov.pf.vfs[n].config; if (!config->num_ctxs) continue; drm_printf(p, "VF%u:\t%u-%u\t(%u)\n", n, config->begin_ctx, config->begin_ctx + config->num_ctxs - 1, config->num_ctxs); } mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return 0; } /** * xe_gt_sriov_pf_config_print_dbs - Print GuC doorbell ID configurations. * @gt: the &xe_gt * @p: the &drm_printer * * Print GuC doorbell IDs allocations across all VFs. * VFs without GuC doorbell IDs are skipped. * * This function can only be called on PF. * Return: 0 on success or a negative error code on failure. */ int xe_gt_sriov_pf_config_print_dbs(struct xe_gt *gt, struct drm_printer *p) { unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(gt_to_xe(gt)); const struct xe_gt_sriov_config *config; xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); for (n = 1; n <= total_vfs; n++) { config = >->sriov.pf.vfs[n].config; if (!config->num_dbs) continue; drm_printf(p, "VF%u:\t%u-%u\t(%u)\n", n, config->begin_db, config->begin_db + config->num_dbs - 1, config->num_dbs); } mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); return 0; } /** * xe_gt_sriov_pf_config_print_available_ggtt - Print available GGTT ranges. * @gt: the &xe_gt * @p: the &drm_printer * * Print GGTT ranges that are available for the provisioning. * * This function can only be called on PF. */ int xe_gt_sriov_pf_config_print_available_ggtt(struct xe_gt *gt, struct drm_printer *p) { struct xe_ggtt *ggtt = gt_to_tile(gt)->mem.ggtt; const struct drm_mm *mm = &ggtt->mm; const struct drm_mm_node *entry; u64 alignment = pf_get_ggtt_alignment(gt); u64 hole_min_start = xe_wopcm_size(gt_to_xe(gt)); u64 hole_start, hole_end, hole_size; u64 spare, avail, total = 0; char buf[10]; xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt))); mutex_lock(xe_gt_sriov_pf_master_mutex(gt)); spare = pf_get_spare_ggtt(gt); mutex_lock(&ggtt->lock); drm_mm_for_each_hole(entry, mm, hole_start, hole_end) { hole_start = max(hole_start, hole_min_start); hole_start = ALIGN(hole_start, alignment); hole_end = ALIGN_DOWN(hole_end, alignment); if (hole_start >= hole_end) continue; hole_size = hole_end - hole_start; total += hole_size; string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf)); drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n", hole_start, hole_end - 1, buf); } mutex_unlock(&ggtt->lock); mutex_unlock(xe_gt_sriov_pf_master_mutex(gt)); string_get_size(total, 1, STRING_UNITS_2, buf, sizeof(buf)); drm_printf(p, "total:\t%llu\t(%s)\n", total, buf); string_get_size(spare, 1, STRING_UNITS_2, buf, sizeof(buf)); drm_printf(p, "spare:\t%llu\t(%s)\n", spare, buf); avail = total > spare ? total - spare : 0; string_get_size(avail, 1, STRING_UNITS_2, buf, sizeof(buf)); drm_printf(p, "avail:\t%llu\t(%s)\n", avail, buf); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1