Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthew Brost | 5329 | 78.96% | 8 | 17.78% |
Rodrigo Vivi | 611 | 9.05% | 3 | 6.67% |
Michal Wajdeczko | 374 | 5.54% | 10 | 22.22% |
Daniele Ceraolo Spurio | 135 | 2.00% | 2 | 4.44% |
Matthew Auld | 102 | 1.51% | 8 | 17.78% |
Balasubramani Vivekanandan | 60 | 0.89% | 1 | 2.22% |
Francois Dugast | 58 | 0.86% | 3 | 6.67% |
Alan Previn | 45 | 0.67% | 1 | 2.22% |
Matt Roper | 11 | 0.16% | 3 | 6.67% |
Niranjana Vishwanathapura | 9 | 0.13% | 1 | 2.22% |
Bommithi Sakeena | 6 | 0.09% | 1 | 2.22% |
Lucas De Marchi | 6 | 0.09% | 2 | 4.44% |
José Roberto de Souza | 2 | 0.03% | 1 | 2.22% |
Michał Winiarski | 1 | 0.01% | 1 | 2.22% |
Total | 6749 | 45 |
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "xe_guc_ct.h" #include <linux/bitfield.h> #include <linux/circ_buf.h> #include <linux/delay.h> #include <kunit/static_stub.h> #include <drm/drm_managed.h> #include "abi/guc_actions_abi.h" #include "abi/guc_actions_sriov_abi.h" #include "abi/guc_klvs_abi.h" #include "xe_bo.h" #include "xe_device.h" #include "xe_gt.h" #include "xe_gt_pagefault.h" #include "xe_gt_printk.h" #include "xe_gt_sriov_pf_control.h" #include "xe_gt_tlb_invalidation.h" #include "xe_guc.h" #include "xe_guc_relay.h" #include "xe_guc_submit.h" #include "xe_map.h" #include "xe_pm.h" #include "xe_trace.h" /* Used when a CT send wants to block and / or receive data */ struct g2h_fence { u32 *response_buffer; u32 seqno; u32 response_data; u16 response_len; u16 error; u16 hint; u16 reason; bool retry; bool fail; bool done; }; static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer) { g2h_fence->response_buffer = response_buffer; g2h_fence->response_data = 0; g2h_fence->response_len = 0; g2h_fence->fail = false; g2h_fence->retry = false; g2h_fence->done = false; g2h_fence->seqno = ~0x0; } static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence) { return g2h_fence->seqno == ~0x0; } static struct xe_guc * ct_to_guc(struct xe_guc_ct *ct) { return container_of(ct, struct xe_guc, ct); } static struct xe_gt * ct_to_gt(struct xe_guc_ct *ct) { return container_of(ct, struct xe_gt, uc.guc.ct); } static struct xe_device * ct_to_xe(struct xe_guc_ct *ct) { return gt_to_xe(ct_to_gt(ct)); } /** * DOC: GuC CTB Blob * * We allocate single blob to hold both CTB descriptors and buffers: * * +--------+-----------------------------------------------+------+ * | offset | contents | size | * +========+===============================================+======+ * | 0x0000 | H2G CTB Descriptor (send) | | * +--------+-----------------------------------------------+ 4K | * | 0x0800 | G2H CTB Descriptor (g2h) | | * +--------+-----------------------------------------------+------+ * | 0x1000 | H2G CT Buffer (send) | n*4K | * | | | | * +--------+-----------------------------------------------+------+ * | 0x1000 | G2H CT Buffer (g2h) | m*4K | * | + n*4K | | | * +--------+-----------------------------------------------+------+ * * Size of each ``CT Buffer`` must be multiple of 4K. * We don't expect too many messages in flight at any time, unless we are * using the GuC submission. In that case each request requires a minimum * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this * enough space to avoid backpressure on the driver. We increase the size * of the receive buffer (relative to the send) to ensure a G2H response * CTB has a landing spot. */ #define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K) #define CTB_H2G_BUFFER_SIZE (SZ_4K) #define CTB_G2H_BUFFER_SIZE (4 * CTB_H2G_BUFFER_SIZE) #define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 4) static size_t guc_ct_size(void) { return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + CTB_G2H_BUFFER_SIZE; } static void guc_ct_fini(struct drm_device *drm, void *arg) { struct xe_guc_ct *ct = arg; destroy_workqueue(ct->g2h_wq); xa_destroy(&ct->fence_lookup); } static void g2h_worker_func(struct work_struct *w); static void primelockdep(struct xe_guc_ct *ct) { if (!IS_ENABLED(CONFIG_LOCKDEP)) return; fs_reclaim_acquire(GFP_KERNEL); might_lock(&ct->lock); fs_reclaim_release(GFP_KERNEL); } int xe_guc_ct_init(struct xe_guc_ct *ct) { struct xe_device *xe = ct_to_xe(ct); struct xe_gt *gt = ct_to_gt(ct); struct xe_tile *tile = gt_to_tile(gt); struct xe_bo *bo; int err; xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE)); ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0); if (!ct->g2h_wq) return -ENOMEM; spin_lock_init(&ct->fast_lock); xa_init(&ct->fence_lookup); INIT_WORK(&ct->g2h_worker, g2h_worker_func); init_waitqueue_head(&ct->wq); init_waitqueue_head(&ct->g2h_fence_wq); err = drmm_mutex_init(&xe->drm, &ct->lock); if (err) return err; primelockdep(ct); bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(), XE_BO_FLAG_SYSTEM | XE_BO_FLAG_GGTT | XE_BO_FLAG_GGTT_INVALIDATE); if (IS_ERR(bo)) return PTR_ERR(bo); ct->bo = bo; err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct); if (err) return err; xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED); ct->state = XE_GUC_CT_STATE_DISABLED; return 0; } #define desc_read(xe_, guc_ctb__, field_) \ xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \ struct guc_ct_buffer_desc, field_) #define desc_write(xe_, guc_ctb__, field_, val_) \ xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \ struct guc_ct_buffer_desc, field_, val_) static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g, struct iosys_map *map) { h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32); h2g->info.resv_space = 0; h2g->info.tail = 0; h2g->info.head = 0; h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, h2g->info.size) - h2g->info.resv_space; h2g->info.broken = false; h2g->desc = *map; xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2); } static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h, struct iosys_map *map) { g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32); g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32); g2h->info.head = 0; g2h->info.tail = 0; g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head, g2h->info.size) - g2h->info.resv_space; g2h->info.broken = false; g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE); xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 + CTB_H2G_BUFFER_SIZE); } static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct) { struct xe_guc *guc = ct_to_guc(ct); u32 desc_addr, ctb_addr, size; int err; desc_addr = xe_bo_ggtt_addr(ct->bo); ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2; size = ct->ctbs.h2g.info.size * sizeof(u32); err = xe_guc_self_cfg64(guc, GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY, desc_addr); if (err) return err; err = xe_guc_self_cfg64(guc, GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY, ctb_addr); if (err) return err; return xe_guc_self_cfg32(guc, GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY, size); } static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct) { struct xe_guc *guc = ct_to_guc(ct); u32 desc_addr, ctb_addr, size; int err; desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE; ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 + CTB_H2G_BUFFER_SIZE; size = ct->ctbs.g2h.info.size * sizeof(u32); err = xe_guc_self_cfg64(guc, GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY, desc_addr); if (err) return err; err = xe_guc_self_cfg64(guc, GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY, ctb_addr); if (err) return err; return xe_guc_self_cfg32(guc, GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY, size); } static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable) { u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = { FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_CONTROL_CTB), FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, enable ? GUC_CTB_CONTROL_ENABLE : GUC_CTB_CONTROL_DISABLE), }; int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request)); return ret > 0 ? -EPROTO : ret; } static void xe_guc_ct_set_state(struct xe_guc_ct *ct, enum xe_guc_ct_state state) { mutex_lock(&ct->lock); /* Serialise dequeue_one_g2h() */ spin_lock_irq(&ct->fast_lock); /* Serialise CT fast-path */ xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 || state == XE_GUC_CT_STATE_STOPPED); ct->g2h_outstanding = 0; ct->state = state; spin_unlock_irq(&ct->fast_lock); /* * Lockdep doesn't like this under the fast lock and he destroy only * needs to be serialized with the send path which ct lock provides. */ xa_destroy(&ct->fence_lookup); mutex_unlock(&ct->lock); } int xe_guc_ct_enable(struct xe_guc_ct *ct) { struct xe_device *xe = ct_to_xe(ct); struct xe_gt *gt = ct_to_gt(ct); int err; xe_gt_assert(gt, !xe_guc_ct_enabled(ct)); guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap); guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap); err = guc_ct_ctb_h2g_register(ct); if (err) goto err_out; err = guc_ct_ctb_g2h_register(ct); if (err) goto err_out; err = guc_ct_control_toggle(ct, true); if (err) goto err_out; xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED); smp_mb(); wake_up_all(&ct->wq); xe_gt_dbg(gt, "GuC CT communication channel enabled\n"); return 0; err_out: xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err)); return err; } static void stop_g2h_handler(struct xe_guc_ct *ct) { cancel_work_sync(&ct->g2h_worker); } /** * xe_guc_ct_disable - Set GuC to disabled state * @ct: the &xe_guc_ct * * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected * in this transition. */ void xe_guc_ct_disable(struct xe_guc_ct *ct) { xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED); stop_g2h_handler(ct); } /** * xe_guc_ct_stop - Set GuC to stopped state * @ct: the &xe_guc_ct * * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h */ void xe_guc_ct_stop(struct xe_guc_ct *ct) { xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED); stop_g2h_handler(ct); } static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len) { struct guc_ctb *h2g = &ct->ctbs.h2g; lockdep_assert_held(&ct->lock); if (cmd_len > h2g->info.space) { h2g->info.head = desc_read(ct_to_xe(ct), h2g, head); h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, h2g->info.size) - h2g->info.resv_space; if (cmd_len > h2g->info.space) return false; } return true; } static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len) { if (!g2h_len) return true; lockdep_assert_held(&ct->fast_lock); return ct->ctbs.g2h.info.space > g2h_len; } static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len) { lockdep_assert_held(&ct->lock); if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len)) return -EBUSY; return 0; } static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len) { lockdep_assert_held(&ct->lock); ct->ctbs.h2g.info.space -= cmd_len; } static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h) { xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space); if (g2h_len) { lockdep_assert_held(&ct->fast_lock); ct->ctbs.g2h.info.space -= g2h_len; ct->g2h_outstanding += num_g2h; } } static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) { lockdep_assert_held(&ct->fast_lock); xe_gt_assert(ct_to_gt(ct), ct->ctbs.g2h.info.space + g2h_len <= ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space); ct->ctbs.g2h.info.space += g2h_len; --ct->g2h_outstanding; } static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) { spin_lock_irq(&ct->fast_lock); __g2h_release_space(ct, g2h_len); spin_unlock_irq(&ct->fast_lock); } #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */ static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 ct_fence_value, bool want_response) { struct xe_device *xe = ct_to_xe(ct); struct xe_gt *gt = ct_to_gt(ct); struct guc_ctb *h2g = &ct->ctbs.h2g; u32 cmd[H2G_CT_HEADERS]; u32 tail = h2g->info.tail; u32 full_len; struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds, tail * sizeof(u32)); full_len = len + GUC_CTB_HDR_LEN; lockdep_assert_held(&ct->lock); xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN); xe_gt_assert(gt, tail <= h2g->info.size); /* Command will wrap, zero fill (NOPs), return and check credits again */ if (tail + full_len > h2g->info.size) { xe_map_memset(xe, &map, 0, 0, (h2g->info.size - tail) * sizeof(u32)); h2g_reserve_space(ct, (h2g->info.size - tail)); h2g->info.tail = 0; desc_write(xe, h2g, tail, h2g->info.tail); return -EAGAIN; } /* * dw0: CT header (including fence) * dw1: HXG header (including action code) * dw2+: action data */ cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) | FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) | FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value); if (want_response) { cmd[1] = FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | GUC_HXG_EVENT_MSG_0_DATA0, action[0]); } else { cmd[1] = FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) | FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | GUC_HXG_EVENT_MSG_0_DATA0, action[0]); } /* H2G header in cmd[1] replaces action[0] so: */ --len; ++action; /* Write H2G ensuring visable before descriptor update */ xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32)); xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32)); xe_device_wmb(xe); /* Update local copies */ h2g->info.tail = (tail + full_len) % h2g->info.size; h2g_reserve_space(ct, full_len); /* Update descriptor */ desc_write(xe, h2g, tail, h2g->info.tail); trace_xe_guc_ctb_h2g(gt->info.id, *(action - 1), full_len, desc_read(xe, h2g, head), h2g->info.tail); return 0; } /* * The CT protocol accepts a 16 bits fence. This field is fully owned by the * driver, the GuC will just copy it to the reply message. Since we need to * be able to distinguish between replies to REQUEST and FAST_REQUEST messages, * we use one bit of the seqno as an indicator for that and a rolling counter * for the remaining 15 bits. */ #define CT_SEQNO_MASK GENMASK(14, 0) #define CT_SEQNO_UNTRACKED BIT(15) static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence) { u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK; if (!is_g2h_fence) seqno |= CT_SEQNO_UNTRACKED; return seqno; } static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) { struct xe_gt *gt __maybe_unused = ct_to_gt(ct); u16 seqno; int ret; xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); xe_gt_assert(gt, !g2h_len || !g2h_fence); xe_gt_assert(gt, !num_g2h || !g2h_fence); xe_gt_assert(gt, !g2h_len || num_g2h); xe_gt_assert(gt, g2h_len || !num_g2h); lockdep_assert_held(&ct->lock); if (unlikely(ct->ctbs.h2g.info.broken)) { ret = -EPIPE; goto out; } if (ct->state == XE_GUC_CT_STATE_DISABLED) { ret = -ENODEV; goto out; } if (ct->state == XE_GUC_CT_STATE_STOPPED) { ret = -ECANCELED; goto out; } xe_gt_assert(gt, xe_guc_ct_enabled(ct)); if (g2h_fence) { g2h_len = GUC_CTB_HXG_MSG_MAX_LEN; num_g2h = 1; if (g2h_fence_needs_alloc(g2h_fence)) { void *ptr; g2h_fence->seqno = next_ct_seqno(ct, true); ptr = xa_store(&ct->fence_lookup, g2h_fence->seqno, g2h_fence, GFP_ATOMIC); if (IS_ERR(ptr)) { ret = PTR_ERR(ptr); goto out; } } seqno = g2h_fence->seqno; } else { seqno = next_ct_seqno(ct, false); } if (g2h_len) spin_lock_irq(&ct->fast_lock); retry: ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len); if (unlikely(ret)) goto out_unlock; ret = h2g_write(ct, action, len, seqno, !!g2h_fence); if (unlikely(ret)) { if (ret == -EAGAIN) goto retry; goto out_unlock; } __g2h_reserve_space(ct, g2h_len, num_g2h); xe_guc_notify(ct_to_guc(ct)); out_unlock: if (g2h_len) spin_unlock_irq(&ct->fast_lock); out: return ret; } static void kick_reset(struct xe_guc_ct *ct) { xe_gt_reset_async(ct_to_gt(ct)); } static int dequeue_one_g2h(struct xe_guc_ct *ct); static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) { struct xe_gt *gt = ct_to_gt(ct); struct drm_printer p = xe_gt_info_printer(gt); unsigned int sleep_period_ms = 1; int ret; xe_gt_assert(gt, !g2h_len || !g2h_fence); lockdep_assert_held(&ct->lock); xe_device_assert_mem_access(ct_to_xe(ct)); try_again: ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence); /* * We wait to try to restore credits for about 1 second before bailing. * In the case of H2G credits we have no choice but just to wait for the * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In * the case of G2H we process any G2H in the channel, hopefully freeing * credits as we consume the G2H messages. */ if (unlikely(ret == -EBUSY && !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) { struct guc_ctb *h2g = &ct->ctbs.h2g; if (sleep_period_ms == 1024) goto broken; trace_xe_guc_ct_h2g_flow_control(h2g->info.head, h2g->info.tail, h2g->info.size, h2g->info.space, len + GUC_CTB_HDR_LEN); msleep(sleep_period_ms); sleep_period_ms <<= 1; goto try_again; } else if (unlikely(ret == -EBUSY)) { struct xe_device *xe = ct_to_xe(ct); struct guc_ctb *g2h = &ct->ctbs.g2h; trace_xe_guc_ct_g2h_flow_control(g2h->info.head, desc_read(xe, g2h, tail), g2h->info.size, g2h->info.space, g2h_fence ? GUC_CTB_HXG_MSG_MAX_LEN : g2h_len); #define g2h_avail(ct) \ (desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head) if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding || g2h_avail(ct), HZ)) goto broken; #undef g2h_avail if (dequeue_one_g2h(ct) < 0) goto broken; goto try_again; } return ret; broken: xe_gt_err(gt, "No forward process on H2G, reset required\n"); xe_guc_ct_print(ct, &p, true); ct->ctbs.h2g.info.broken = true; return -EDEADLK; } static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) { int ret; xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence); mutex_lock(&ct->lock); ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence); mutex_unlock(&ct->lock); return ret; } int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 g2h_len, u32 num_g2h) { int ret; ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL); if (ret == -EDEADLK) kick_reset(ct); return ret; } int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 g2h_len, u32 num_g2h) { int ret; ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL); if (ret == -EDEADLK) kick_reset(ct); return ret; } int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len) { int ret; lockdep_assert_held(&ct->lock); ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL); if (ret == -EDEADLK) kick_reset(ct); return ret; } /* * Check if a GT reset is in progress or will occur and if GT reset brought the * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset. */ static bool retry_failure(struct xe_guc_ct *ct, int ret) { if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV)) return false; #define ct_alive(ct) \ (xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \ !ct->ctbs.g2h.info.broken) if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5)) return false; #undef ct_alive return true; } static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 *response_buffer, bool no_fail) { struct xe_gt *gt = ct_to_gt(ct); struct g2h_fence g2h_fence; int ret = 0; /* * We use a fence to implement blocking sends / receiving response data. * The seqno of the fence is sent in the H2G, returned in the G2H, and * an xarray is used as storage media with the seqno being to key. * Fields in the fence hold success, failure, retry status and the * response data. Safe to allocate on the stack as the xarray is the * only reference and it cannot be present after this function exits. */ retry: g2h_fence_init(&g2h_fence, response_buffer); retry_same_fence: ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence); if (unlikely(ret == -ENOMEM)) { void *ptr; /* Retry allocation /w GFP_KERNEL */ ptr = xa_store(&ct->fence_lookup, g2h_fence.seqno, &g2h_fence, GFP_KERNEL); if (IS_ERR(ptr)) return PTR_ERR(ptr); goto retry_same_fence; } else if (unlikely(ret)) { if (ret == -EDEADLK) kick_reset(ct); if (no_fail && retry_failure(ct, ret)) goto retry_same_fence; if (!g2h_fence_needs_alloc(&g2h_fence)) xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno); return ret; } ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ); if (!ret) { xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x", g2h_fence.seqno, action[0]); xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno); return -ETIME; } if (g2h_fence.retry) { xe_gt_warn(gt, "H2G retry, action 0x%04x, reason %u", action[0], g2h_fence.reason); goto retry; } if (g2h_fence.fail) { xe_gt_err(gt, "H2G send failed, action 0x%04x, error %d, hint %u", action[0], g2h_fence.error, g2h_fence.hint); ret = -EIO; } return ret > 0 ? response_buffer ? g2h_fence.response_len : g2h_fence.response_data : ret; } /** * xe_guc_ct_send_recv - Send and receive HXG to the GuC * @ct: the &xe_guc_ct * @action: the dword array with `HXG Request`_ message (can't be NULL) * @len: length of the `HXG Request`_ message (in dwords, can't be 0) * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL) * * Send a `HXG Request`_ message to the GuC over CT communication channel and * blocks until GuC replies with a `HXG Response`_ message. * * For non-blocking communication with GuC use xe_guc_ct_send(). * * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_. * * Return: response length (in dwords) if &response_buffer was not NULL, or * DATA0 from `HXG Response`_ if &response_buffer was NULL, or * a negative error code on failure. */ int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 *response_buffer) { KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer); return guc_ct_send_recv(ct, action, len, response_buffer, false); } int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 *response_buffer) { return guc_ct_send_recv(ct, action, len, response_buffer, true); } static u32 *msg_to_hxg(u32 *msg) { return msg + GUC_CTB_MSG_MIN_LEN; } static u32 msg_len_to_hxg_len(u32 len) { return len - GUC_CTB_MSG_MIN_LEN; } static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len) { u32 *hxg = msg_to_hxg(msg); u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); lockdep_assert_held(&ct->lock); switch (action) { case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: case XE_GUC_ACTION_TLB_INVALIDATION_DONE: g2h_release_space(ct, len); } return 0; } static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len) { struct xe_gt *gt = ct_to_gt(ct); u32 *hxg = msg_to_hxg(msg); u32 hxg_len = msg_len_to_hxg_len(len); u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]); u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); struct g2h_fence *g2h_fence; lockdep_assert_held(&ct->lock); /* * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup. * Those messages should never fail, so if we do get an error back it * means we're likely doing an illegal operation and the GuC is * rejecting it. We have no way to inform the code that submitted the * H2G that the message was rejected, so we need to escalate the * failure to trigger a reset. */ if (fence & CT_SEQNO_UNTRACKED) { if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n", fence, FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]), FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0])); else xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n", type, fence); return -EPROTO; } g2h_fence = xa_erase(&ct->fence_lookup, fence); if (unlikely(!g2h_fence)) { /* Don't tear down channel, as send could've timed out */ xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence); g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); return 0; } xe_gt_assert(gt, fence == g2h_fence->seqno); if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) { g2h_fence->fail = true; g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]); g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]); } else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { g2h_fence->retry = true; g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]); } else if (g2h_fence->response_buffer) { g2h_fence->response_len = hxg_len; memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32)); } else { g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]); } g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); g2h_fence->done = true; smp_mb(); wake_up_all(&ct->g2h_fence_wq); return 0; } static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) { struct xe_gt *gt = ct_to_gt(ct); u32 *hxg = msg_to_hxg(msg); u32 origin, type; int ret; lockdep_assert_held(&ct->lock); origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]); if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) { xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n", origin); ct->ctbs.g2h.info.broken = true; return -EPROTO; } type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); switch (type) { case GUC_HXG_TYPE_EVENT: ret = parse_g2h_event(ct, msg, len); break; case GUC_HXG_TYPE_RESPONSE_SUCCESS: case GUC_HXG_TYPE_RESPONSE_FAILURE: case GUC_HXG_TYPE_NO_RESPONSE_RETRY: ret = parse_g2h_response(ct, msg, len); break; default: xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n", type); ct->ctbs.g2h.info.broken = true; ret = -EOPNOTSUPP; } return ret; } static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) { struct xe_guc *guc = ct_to_guc(ct); struct xe_gt *gt = ct_to_gt(ct); u32 hxg_len = msg_len_to_hxg_len(len); u32 *hxg = msg_to_hxg(msg); u32 action, adj_len; u32 *payload; int ret = 0; if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) return 0; action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN; adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN; switch (action) { case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: ret = xe_guc_sched_done_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: ret = xe_guc_deregister_done_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION: ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION: ret = xe_guc_exec_queue_reset_failure_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: /* Selftest only at the moment */ break; case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION: case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE: /* FIXME: Handle this */ break; case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR: ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: ret = xe_guc_pagefault_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_TLB_INVALIDATION_DONE: ret = xe_guc_tlb_invalidation_done_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY: ret = xe_guc_access_counter_notify_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF: ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len); break; case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF: ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len); break; case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY: ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len); break; default: xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action); } if (ret) xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n", action, ERR_PTR(ret)); return 0; } static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path) { struct xe_device *xe = ct_to_xe(ct); struct xe_gt *gt = ct_to_gt(ct); struct guc_ctb *g2h = &ct->ctbs.g2h; u32 tail, head, len; s32 avail; u32 action; u32 *hxg; xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); lockdep_assert_held(&ct->fast_lock); if (ct->state == XE_GUC_CT_STATE_DISABLED) return -ENODEV; if (ct->state == XE_GUC_CT_STATE_STOPPED) return -ECANCELED; if (g2h->info.broken) return -EPIPE; xe_gt_assert(gt, xe_guc_ct_enabled(ct)); /* Calculate DW available to read */ tail = desc_read(xe, g2h, tail); avail = tail - g2h->info.head; if (unlikely(avail == 0)) return 0; if (avail < 0) avail += g2h->info.size; /* Read header */ xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head, sizeof(u32)); len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN; if (len > avail) { xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n", avail, len); g2h->info.broken = true; return -EPROTO; } head = (g2h->info.head + 1) % g2h->info.size; avail = len - 1; /* Read G2H message */ if (avail + head > g2h->info.size) { u32 avail_til_wrap = g2h->info.size - head; xe_map_memcpy_from(xe, msg + 1, &g2h->cmds, sizeof(u32) * head, avail_til_wrap * sizeof(u32)); xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap, &g2h->cmds, 0, (avail - avail_til_wrap) * sizeof(u32)); } else { xe_map_memcpy_from(xe, msg + 1, &g2h->cmds, sizeof(u32) * head, avail * sizeof(u32)); } hxg = msg_to_hxg(msg); action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); if (fast_path) { if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) return 0; switch (action) { case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: case XE_GUC_ACTION_TLB_INVALIDATION_DONE: break; /* Process these in fast-path */ default: return 0; } } /* Update local / descriptor header */ g2h->info.head = (head + avail) % g2h->info.size; desc_write(xe, g2h, head, g2h->info.head); trace_xe_guc_ctb_g2h(ct_to_gt(ct)->info.id, action, len, g2h->info.head, tail); return len; } static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len) { struct xe_gt *gt = ct_to_gt(ct); struct xe_guc *guc = ct_to_guc(ct); u32 hxg_len = msg_len_to_hxg_len(len); u32 *hxg = msg_to_hxg(msg); u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN; u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN; int ret = 0; switch (action) { case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: ret = xe_guc_pagefault_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_TLB_INVALIDATION_DONE: __g2h_release_space(ct, len); ret = xe_guc_tlb_invalidation_done_handler(guc, payload, adj_len); break; default: xe_gt_warn(gt, "NOT_POSSIBLE"); } if (ret) xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n", action, ERR_PTR(ret)); } /** * xe_guc_ct_fast_path - process critical G2H in the IRQ handler * @ct: GuC CT object * * Anything related to page faults is critical for performance, process these * critical G2H in the IRQ. This is safe as these handlers either just wake up * waiters or queue another worker. */ void xe_guc_ct_fast_path(struct xe_guc_ct *ct) { struct xe_device *xe = ct_to_xe(ct); bool ongoing; int len; ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct)); if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) return; spin_lock(&ct->fast_lock); do { len = g2h_read(ct, ct->fast_msg, true); if (len > 0) g2h_fast_path(ct, ct->fast_msg, len); } while (len > 0); spin_unlock(&ct->fast_lock); if (ongoing) xe_pm_runtime_put(xe); } /* Returns less than zero on error, 0 on done, 1 on more available */ static int dequeue_one_g2h(struct xe_guc_ct *ct) { int len; int ret; lockdep_assert_held(&ct->lock); spin_lock_irq(&ct->fast_lock); len = g2h_read(ct, ct->msg, false); spin_unlock_irq(&ct->fast_lock); if (len <= 0) return len; ret = parse_g2h_msg(ct, ct->msg, len); if (unlikely(ret < 0)) return ret; ret = process_g2h_msg(ct, ct->msg, len); if (unlikely(ret < 0)) return ret; return 1; } static void g2h_worker_func(struct work_struct *w) { struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker); struct xe_gt *gt = ct_to_gt(ct); bool ongoing; int ret; /* * Normal users must always hold mem_access.ref around CT calls. However * during the runtime pm callbacks we rely on CT to talk to the GuC, but * at this stage we can't rely on mem_access.ref and even the * callback_task will be different than current. For such cases we just * need to ensure we always process the responses from any blocking * ct_send requests or where we otherwise expect some response when * initiated from those callbacks (which will need to wait for the below * dequeue_one_g2h()). The dequeue_one_g2h() will gracefully fail if * the device has suspended to the point that the CT communication has * been disabled. * * If we are inside the runtime pm callback, we can be the only task * still issuing CT requests (since that requires having the * mem_access.ref). It seems like it might in theory be possible to * receive unsolicited events from the GuC just as we are * suspending-resuming, but those will currently anyway be lost when * eventually exiting from suspend, hence no need to wake up the device * here. If we ever need something stronger than get_if_ongoing() then * we need to be careful with blocking the pm callbacks from getting CT * responses, if the worker here is blocked on those callbacks * completing, creating a deadlock. */ ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct)); if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) return; do { mutex_lock(&ct->lock); ret = dequeue_one_g2h(ct); mutex_unlock(&ct->lock); if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) { struct drm_printer p = xe_gt_info_printer(gt); xe_guc_ct_print(ct, &p, false); kick_reset(ct); } } while (ret == 1); if (ongoing) xe_pm_runtime_put(ct_to_xe(ct)); } static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb, struct guc_ctb_snapshot *snapshot, bool atomic) { u32 head, tail; xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0, sizeof(struct guc_ct_buffer_desc)); memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info)); snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32), atomic ? GFP_ATOMIC : GFP_KERNEL); if (!snapshot->cmds) { drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n"); return; } head = snapshot->desc.head; tail = snapshot->desc.tail; if (head != tail) { struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32)); while (head != tail) { snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32); ++head; if (head == ctb->info.size) { head = 0; map = ctb->cmds; } else { iosys_map_incr(&map, sizeof(u32)); } } } } static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot, struct drm_printer *p) { u32 head, tail; drm_printf(p, "\tsize: %d\n", snapshot->info.size); drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space); drm_printf(p, "\thead: %d\n", snapshot->info.head); drm_printf(p, "\ttail: %d\n", snapshot->info.tail); drm_printf(p, "\tspace: %d\n", snapshot->info.space); drm_printf(p, "\tbroken: %d\n", snapshot->info.broken); drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head); drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail); drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status); if (!snapshot->cmds) return; head = snapshot->desc.head; tail = snapshot->desc.tail; while (head != tail) { drm_printf(p, "\tcmd[%d]: 0x%08x\n", head, snapshot->cmds[head]); ++head; if (head == snapshot->info.size) head = 0; } } static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot) { kfree(snapshot->cmds); } /** * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state. * @ct: GuC CT object. * @atomic: Boolean to indicate if this is called from atomic context like * reset or CTB handler or from some regular path like debugfs. * * This can be printed out in a later stage like during dev_coredump * analysis. * * Returns: a GuC CT snapshot object that must be freed by the caller * by using `xe_guc_ct_snapshot_free`. */ struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct, bool atomic) { struct xe_device *xe = ct_to_xe(ct); struct xe_guc_ct_snapshot *snapshot; snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL); if (!snapshot) { drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n"); return NULL; } if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) { snapshot->ct_enabled = true; snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding); guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g, atomic); guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h, atomic); } return snapshot; } /** * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot. * @snapshot: GuC CT snapshot object. * @p: drm_printer where it will be printed out. * * This function prints out a given GuC CT snapshot object. */ void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot, struct drm_printer *p) { if (!snapshot) return; if (snapshot->ct_enabled) { drm_puts(p, "H2G CTB (all sizes in DW):\n"); guc_ctb_snapshot_print(&snapshot->h2g, p); drm_puts(p, "\nG2H CTB (all sizes in DW):\n"); guc_ctb_snapshot_print(&snapshot->g2h, p); drm_printf(p, "\tg2h outstanding: %d\n", snapshot->g2h_outstanding); } else { drm_puts(p, "CT disabled\n"); } } /** * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot. * @snapshot: GuC CT snapshot object. * * This function free all the memory that needed to be allocated at capture * time. */ void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot) { if (!snapshot) return; guc_ctb_snapshot_free(&snapshot->h2g); guc_ctb_snapshot_free(&snapshot->g2h); kfree(snapshot); } /** * xe_guc_ct_print - GuC CT Print. * @ct: GuC CT. * @p: drm_printer where it will be printed out. * @atomic: Boolean to indicate if this is called from atomic context like * reset or CTB handler or from some regular path like debugfs. * * This function quickly capture a snapshot and immediately print it out. */ void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic) { struct xe_guc_ct_snapshot *snapshot; snapshot = xe_guc_ct_snapshot_capture(ct, atomic); xe_guc_ct_snapshot_print(snapshot, p); xe_guc_ct_snapshot_free(snapshot); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1