Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthew Brost | 912 | 77.22% | 1 | 6.67% |
Rodrigo Vivi | 148 | 12.53% | 3 | 20.00% |
Riana Tauro | 71 | 6.01% | 1 | 6.67% |
Koby Elbaz | 24 | 2.03% | 1 | 6.67% |
Matt Roper | 12 | 1.02% | 2 | 13.33% |
Lucas De Marchi | 6 | 0.51% | 1 | 6.67% |
Bommithi Sakeena | 2 | 0.17% | 1 | 6.67% |
Himal Prasad Ghimiray | 2 | 0.17% | 2 | 13.33% |
Anshuman Gupta | 2 | 0.17% | 1 | 6.67% |
Jani Nikula | 1 | 0.08% | 1 | 6.67% |
Matthew Auld | 1 | 0.08% | 1 | 6.67% |
Total | 1181 | 15 |
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "xe_pcode.h" #include <linux/delay.h> #include <linux/errno.h> #include <drm/drm_managed.h> #include "xe_device.h" #include "xe_gt.h" #include "xe_mmio.h" #include "xe_pcode_api.h" /** * DOC: PCODE * * Xe PCODE is the component responsible for interfacing with the PCODE * firmware. * It shall provide a very simple ABI to other Xe components, but be the * single and consolidated place that will communicate with PCODE. All read * and write operations to PCODE will be internal and private to this component. * * What's next: * - PCODE hw metrics * - PCODE for display operations */ static int pcode_mailbox_status(struct xe_gt *gt) { u32 err; static const struct pcode_err_decode err_decode[] = { [PCODE_ILLEGAL_CMD] = {-ENXIO, "Illegal Command"}, [PCODE_TIMEOUT] = {-ETIMEDOUT, "Timed out"}, [PCODE_ILLEGAL_DATA] = {-EINVAL, "Illegal Data"}, [PCODE_ILLEGAL_SUBCOMMAND] = {-ENXIO, "Illegal Subcommand"}, [PCODE_LOCKED] = {-EBUSY, "PCODE Locked"}, [PCODE_GT_RATIO_OUT_OF_RANGE] = {-EOVERFLOW, "GT ratio out of range"}, [PCODE_REJECTED] = {-EACCES, "PCODE Rejected"}, [PCODE_ERROR_MASK] = {-EPROTO, "Unknown"}, }; err = xe_mmio_read32(gt, PCODE_MAILBOX) & PCODE_ERROR_MASK; if (err) { drm_err(>_to_xe(gt)->drm, "PCODE Mailbox failed: %d %s", err, err_decode[err].str ?: "Unknown"); return err_decode[err].errno ?: -EPROTO; } return 0; } static int __pcode_mailbox_rw(struct xe_gt *gt, u32 mbox, u32 *data0, u32 *data1, unsigned int timeout_ms, bool return_data, bool atomic) { int err; if (gt_to_xe(gt)->info.skip_pcode) return 0; if ((xe_mmio_read32(gt, PCODE_MAILBOX) & PCODE_READY) != 0) return -EAGAIN; xe_mmio_write32(gt, PCODE_DATA0, *data0); xe_mmio_write32(gt, PCODE_DATA1, data1 ? *data1 : 0); xe_mmio_write32(gt, PCODE_MAILBOX, PCODE_READY | mbox); err = xe_mmio_wait32(gt, PCODE_MAILBOX, PCODE_READY, 0, timeout_ms * USEC_PER_MSEC, NULL, atomic); if (err) return err; if (return_data) { *data0 = xe_mmio_read32(gt, PCODE_DATA0); if (data1) *data1 = xe_mmio_read32(gt, PCODE_DATA1); } return pcode_mailbox_status(gt); } static int pcode_mailbox_rw(struct xe_gt *gt, u32 mbox, u32 *data0, u32 *data1, unsigned int timeout_ms, bool return_data, bool atomic) { if (gt_to_xe(gt)->info.skip_pcode) return 0; lockdep_assert_held(>->pcode.lock); return __pcode_mailbox_rw(gt, mbox, data0, data1, timeout_ms, return_data, atomic); } int xe_pcode_write_timeout(struct xe_gt *gt, u32 mbox, u32 data, int timeout) { int err; mutex_lock(>->pcode.lock); err = pcode_mailbox_rw(gt, mbox, &data, NULL, timeout, false, false); mutex_unlock(>->pcode.lock); return err; } int xe_pcode_read(struct xe_gt *gt, u32 mbox, u32 *val, u32 *val1) { int err; mutex_lock(>->pcode.lock); err = pcode_mailbox_rw(gt, mbox, val, val1, 1, true, false); mutex_unlock(>->pcode.lock); return err; } static int pcode_try_request(struct xe_gt *gt, u32 mbox, u32 request, u32 reply_mask, u32 reply, u32 *status, bool atomic, int timeout_us, bool locked) { int slept, wait = 10; for (slept = 0; slept < timeout_us; slept += wait) { if (locked) *status = pcode_mailbox_rw(gt, mbox, &request, NULL, 1, true, atomic); else *status = __pcode_mailbox_rw(gt, mbox, &request, NULL, 1, true, atomic); if ((*status == 0) && ((request & reply_mask) == reply)) return 0; if (atomic) udelay(wait); else usleep_range(wait, wait << 1); wait <<= 1; } return -ETIMEDOUT; } /** * xe_pcode_request - send PCODE request until acknowledgment * @gt: gt * @mbox: PCODE mailbox ID the request is targeted for * @request: request ID * @reply_mask: mask used to check for request acknowledgment * @reply: value used to check for request acknowledgment * @timeout_base_ms: timeout for polling with preemption enabled * * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE * reports an error or an overall timeout of @timeout_base_ms+50 ms expires. * The request is acknowledged once the PCODE reply dword equals @reply after * applying @reply_mask. Polling is first attempted with preemption enabled * for @timeout_base_ms and if this times out for another 50 ms with * preemption disabled. * * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some * other error as reported by PCODE. */ int xe_pcode_request(struct xe_gt *gt, u32 mbox, u32 request, u32 reply_mask, u32 reply, int timeout_base_ms) { u32 status; int ret; mutex_lock(>->pcode.lock); ret = pcode_try_request(gt, mbox, request, reply_mask, reply, &status, false, timeout_base_ms * 1000, true); if (!ret) goto out; /* * The above can time out if the number of requests was low (2 in the * worst case) _and_ PCODE was busy for some reason even after a * (queued) request and @timeout_base_ms delay. As a workaround retry * the poll with preemption disabled to maximize the number of * requests. Increase the timeout from @timeout_base_ms to 50ms to * account for interrupts that could reduce the number of these * requests, and for any quirks of the PCODE firmware that delays * the request completion. */ drm_err(>_to_xe(gt)->drm, "PCODE timeout, retrying with preemption disabled\n"); drm_WARN_ON_ONCE(>_to_xe(gt)->drm, timeout_base_ms > 1); preempt_disable(); ret = pcode_try_request(gt, mbox, request, reply_mask, reply, &status, true, 50 * 1000, true); preempt_enable(); out: mutex_unlock(>->pcode.lock); return status ? status : ret; } /** * xe_pcode_init_min_freq_table - Initialize PCODE's QOS frequency table * @gt: gt instance * @min_gt_freq: Minimal (RPn) GT frequency in units of 50MHz. * @max_gt_freq: Maximal (RP0) GT frequency in units of 50MHz. * * This function initialize PCODE's QOS frequency table for a proper minimal * frequency/power steering decision, depending on the current requested GT * frequency. For older platforms this was a more complete table including * the IA freq. However for the latest platforms this table become a simple * 1-1 Ring vs GT frequency. Even though, without setting it, PCODE might * not take the right decisions for some memory frequencies and affect latency. * * It returns 0 on success, and -ERROR number on failure, -EINVAL if max * frequency is higher then the minimal, and other errors directly translated * from the PCODE Error returs: * - -ENXIO: "Illegal Command" * - -ETIMEDOUT: "Timed out" * - -EINVAL: "Illegal Data" * - -ENXIO, "Illegal Subcommand" * - -EBUSY: "PCODE Locked" * - -EOVERFLOW, "GT ratio out of range" * - -EACCES, "PCODE Rejected" * - -EPROTO, "Unknown" */ int xe_pcode_init_min_freq_table(struct xe_gt *gt, u32 min_gt_freq, u32 max_gt_freq) { int ret; u32 freq; if (!gt_to_xe(gt)->info.has_llc) return 0; if (max_gt_freq <= min_gt_freq) return -EINVAL; mutex_lock(>->pcode.lock); for (freq = min_gt_freq; freq <= max_gt_freq; freq++) { u32 data = freq << PCODE_FREQ_RING_RATIO_SHIFT | freq; ret = pcode_mailbox_rw(gt, PCODE_WRITE_MIN_FREQ_TABLE, &data, NULL, 1, false, false); if (ret) goto unlock; } unlock: mutex_unlock(>->pcode.lock); return ret; } /** * xe_pcode_ready - Ensure PCODE is initialized * @xe: xe instance * @locked: true if lock held, false otherwise * * PCODE init mailbox is polled only on root gt of root tile * as the root tile provides the initialization is complete only * after all the tiles have completed the initialization. * Called only on early probe without locks and with locks in * resume path. * * Returns 0 on success, and -error number on failure. */ int xe_pcode_ready(struct xe_device *xe, bool locked) { u32 status, request = DGFX_GET_INIT_STATUS; struct xe_gt *gt = xe_root_mmio_gt(xe); int timeout_us = 180000000; /* 3 min */ int ret; if (xe->info.skip_pcode) return 0; if (!IS_DGFX(xe)) return 0; if (locked) mutex_lock(>->pcode.lock); ret = pcode_try_request(gt, DGFX_PCODE_STATUS, request, DGFX_INIT_STATUS_COMPLETE, DGFX_INIT_STATUS_COMPLETE, &status, false, timeout_us, locked); if (locked) mutex_unlock(>->pcode.lock); if (ret) drm_err(&xe->drm, "PCODE initialization timedout after: 3 min\n"); return ret; } /** * xe_pcode_init: initialize components of PCODE * @gt: gt instance * * This function initializes the xe_pcode component. * To be called once only during probe. */ void xe_pcode_init(struct xe_gt *gt) { drmm_mutex_init(>_to_xe(gt)->drm, >->pcode.lock); } /** * xe_pcode_probe_early: initializes PCODE * @xe: xe instance * * This function checks the initialization status of PCODE * To be called once only during early probe without locks. * * Returns 0 on success, error code otherwise */ int xe_pcode_probe_early(struct xe_device *xe) { return xe_pcode_ready(xe, false); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1