Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthew Brost | 1182 | 76.50% | 4 | 25.00% |
José Roberto de Souza | 180 | 11.65% | 1 | 6.25% |
Francois Dugast | 62 | 4.01% | 3 | 18.75% |
Thomas Hellstrom | 61 | 3.95% | 2 | 12.50% |
Matthew Auld | 18 | 1.17% | 1 | 6.25% |
Daniele Ceraolo Spurio | 18 | 1.17% | 1 | 6.25% |
Nirmoy Das | 12 | 0.78% | 1 | 6.25% |
Rodrigo Vivi | 11 | 0.71% | 2 | 12.50% |
Matt Roper | 1 | 0.06% | 1 | 6.25% |
Total | 1545 | 16 |
// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include "xe_sched_job.h" #include <drm/xe_drm.h> #include <linux/dma-fence-array.h> #include <linux/slab.h> #include "xe_device.h" #include "xe_exec_queue.h" #include "xe_gt.h" #include "xe_hw_engine_types.h" #include "xe_hw_fence.h" #include "xe_lrc.h" #include "xe_macros.h" #include "xe_pm.h" #include "xe_sync_types.h" #include "xe_trace.h" #include "xe_vm.h" static struct kmem_cache *xe_sched_job_slab; static struct kmem_cache *xe_sched_job_parallel_slab; int __init xe_sched_job_module_init(void) { xe_sched_job_slab = kmem_cache_create("xe_sched_job", sizeof(struct xe_sched_job) + sizeof(u64), 0, SLAB_HWCACHE_ALIGN, NULL); if (!xe_sched_job_slab) return -ENOMEM; xe_sched_job_parallel_slab = kmem_cache_create("xe_sched_job_parallel", sizeof(struct xe_sched_job) + sizeof(u64) * XE_HW_ENGINE_MAX_INSTANCE, 0, SLAB_HWCACHE_ALIGN, NULL); if (!xe_sched_job_parallel_slab) { kmem_cache_destroy(xe_sched_job_slab); return -ENOMEM; } return 0; } void xe_sched_job_module_exit(void) { kmem_cache_destroy(xe_sched_job_slab); kmem_cache_destroy(xe_sched_job_parallel_slab); } static struct xe_sched_job *job_alloc(bool parallel) { return kmem_cache_zalloc(parallel ? xe_sched_job_parallel_slab : xe_sched_job_slab, GFP_KERNEL); } bool xe_sched_job_is_migration(struct xe_exec_queue *q) { return q->vm && (q->vm->flags & XE_VM_FLAG_MIGRATION); } static void job_free(struct xe_sched_job *job) { struct xe_exec_queue *q = job->q; bool is_migration = xe_sched_job_is_migration(q); kmem_cache_free(xe_exec_queue_is_parallel(job->q) || is_migration ? xe_sched_job_parallel_slab : xe_sched_job_slab, job); } static struct xe_device *job_to_xe(struct xe_sched_job *job) { return gt_to_xe(job->q->gt); } struct xe_sched_job *xe_sched_job_create(struct xe_exec_queue *q, u64 *batch_addr) { struct xe_sched_job *job; struct dma_fence **fences; bool is_migration = xe_sched_job_is_migration(q); int err; int i, j; u32 width; /* only a kernel context can submit a vm-less job */ XE_WARN_ON(!q->vm && !(q->flags & EXEC_QUEUE_FLAG_KERNEL)); /* Migration and kernel engines have their own locking */ if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) { lockdep_assert_held(&q->vm->lock); if (!xe_vm_in_lr_mode(q->vm)) xe_vm_assert_held(q->vm); } job = job_alloc(xe_exec_queue_is_parallel(q) || is_migration); if (!job) return ERR_PTR(-ENOMEM); job->q = q; kref_init(&job->refcount); xe_exec_queue_get(job->q); err = drm_sched_job_init(&job->drm, q->entity, 1, NULL); if (err) goto err_free; if (!xe_exec_queue_is_parallel(q)) { job->fence = xe_lrc_create_seqno_fence(q->lrc); if (IS_ERR(job->fence)) { err = PTR_ERR(job->fence); goto err_sched_job; } } else { struct dma_fence_array *cf; fences = kmalloc_array(q->width, sizeof(*fences), GFP_KERNEL); if (!fences) { err = -ENOMEM; goto err_sched_job; } for (j = 0; j < q->width; ++j) { fences[j] = xe_lrc_create_seqno_fence(q->lrc + j); if (IS_ERR(fences[j])) { err = PTR_ERR(fences[j]); goto err_fences; } } cf = dma_fence_array_create(q->width, fences, q->parallel.composite_fence_ctx, q->parallel.composite_fence_seqno++, false); if (!cf) { --q->parallel.composite_fence_seqno; err = -ENOMEM; goto err_fences; } /* Sanity check */ for (j = 0; j < q->width; ++j) xe_assert(job_to_xe(job), cf->base.seqno == fences[j]->seqno); job->fence = &cf->base; } width = q->width; if (is_migration) width = 2; for (i = 0; i < width; ++i) job->batch_addr[i] = batch_addr[i]; /* All other jobs require a VM to be open which has a ref */ if (unlikely(q->flags & EXEC_QUEUE_FLAG_KERNEL)) xe_pm_runtime_get_noresume(job_to_xe(job)); xe_device_assert_mem_access(job_to_xe(job)); trace_xe_sched_job_create(job); return job; err_fences: for (j = j - 1; j >= 0; --j) { --q->lrc[j].fence_ctx.next_seqno; dma_fence_put(fences[j]); } kfree(fences); err_sched_job: drm_sched_job_cleanup(&job->drm); err_free: xe_exec_queue_put(q); job_free(job); return ERR_PTR(err); } /** * xe_sched_job_destroy - Destroy XE schedule job * @ref: reference to XE schedule job * * Called when ref == 0, drop a reference to job's xe_engine + fence, cleanup * base DRM schedule job, and free memory for XE schedule job. */ void xe_sched_job_destroy(struct kref *ref) { struct xe_sched_job *job = container_of(ref, struct xe_sched_job, refcount); if (unlikely(job->q->flags & EXEC_QUEUE_FLAG_KERNEL)) xe_pm_runtime_put(job_to_xe(job)); xe_exec_queue_put(job->q); dma_fence_put(job->fence); drm_sched_job_cleanup(&job->drm); job_free(job); } void xe_sched_job_set_error(struct xe_sched_job *job, int error) { if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) return; dma_fence_set_error(job->fence, error); if (dma_fence_is_array(job->fence)) { struct dma_fence_array *array = to_dma_fence_array(job->fence); struct dma_fence **child = array->fences; unsigned int nchild = array->num_fences; do { struct dma_fence *current_fence = *child++; if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, ¤t_fence->flags)) continue; dma_fence_set_error(current_fence, error); } while (--nchild); } trace_xe_sched_job_set_error(job); dma_fence_enable_sw_signaling(job->fence); xe_hw_fence_irq_run(job->q->fence_irq); } bool xe_sched_job_started(struct xe_sched_job *job) { struct xe_lrc *lrc = job->q->lrc; return !__dma_fence_is_later(xe_sched_job_seqno(job), xe_lrc_start_seqno(lrc), job->fence->ops); } bool xe_sched_job_completed(struct xe_sched_job *job) { struct xe_lrc *lrc = job->q->lrc; /* * Can safely check just LRC[0] seqno as that is last seqno written when * parallel handshake is done. */ return !__dma_fence_is_later(xe_sched_job_seqno(job), xe_lrc_seqno(lrc), job->fence->ops); } void xe_sched_job_arm(struct xe_sched_job *job) { struct xe_exec_queue *q = job->q; struct xe_vm *vm = q->vm; if (vm && !xe_sched_job_is_migration(q) && !xe_vm_in_lr_mode(vm) && (vm->batch_invalidate_tlb || vm->tlb_flush_seqno != q->tlb_flush_seqno)) { xe_vm_assert_held(vm); q->tlb_flush_seqno = vm->tlb_flush_seqno; job->ring_ops_flush_tlb = true; } drm_sched_job_arm(&job->drm); } void xe_sched_job_push(struct xe_sched_job *job) { xe_sched_job_get(job); trace_xe_sched_job_exec(job); drm_sched_entity_push_job(&job->drm); xe_sched_job_put(job); } /** * xe_sched_job_last_fence_add_dep - Add last fence dependency to job * @job:job to add the last fence dependency to * @vm: virtual memory job belongs to * * Returns: * 0 on success, or an error on failing to expand the array. */ int xe_sched_job_last_fence_add_dep(struct xe_sched_job *job, struct xe_vm *vm) { struct dma_fence *fence; fence = xe_exec_queue_last_fence_get(job->q, vm); return drm_sched_job_add_dependency(&job->drm, fence); } /** * xe_sched_job_init_user_fence - Initialize user_fence for the job * @job: job whose user_fence needs an init * @sync: sync to be use to init user_fence */ void xe_sched_job_init_user_fence(struct xe_sched_job *job, struct xe_sync_entry *sync) { if (sync->type != DRM_XE_SYNC_TYPE_USER_FENCE) return; job->user_fence.used = true; job->user_fence.addr = sync->addr; job->user_fence.value = sync->timeline_value; } struct xe_sched_job_snapshot * xe_sched_job_snapshot_capture(struct xe_sched_job *job) { struct xe_exec_queue *q = job->q; struct xe_device *xe = q->gt->tile->xe; struct xe_sched_job_snapshot *snapshot; size_t len = sizeof(*snapshot) + (sizeof(u64) * q->width); u16 i; snapshot = kzalloc(len, GFP_ATOMIC); if (!snapshot) return NULL; snapshot->batch_addr_len = q->width; for (i = 0; i < q->width; i++) snapshot->batch_addr[i] = xe_device_uncanonicalize_addr(xe, job->batch_addr[i]); return snapshot; } void xe_sched_job_snapshot_free(struct xe_sched_job_snapshot *snapshot) { kfree(snapshot); } void xe_sched_job_snapshot_print(struct xe_sched_job_snapshot *snapshot, struct drm_printer *p) { u16 i; if (!snapshot) return; for (i = 0; i < snapshot->batch_addr_len; i++) drm_printf(p, "batch_addr[%u]: 0x%016llx\n", i, snapshot->batch_addr[i]); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1