Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Uwe Kleine-König | 7313 | 48.09% | 2 | 2.56% |
Hans de Goede | 5505 | 36.20% | 39 | 50.00% |
Mark van Doesburg | 1308 | 8.60% | 3 | 3.85% |
Jean Delvare | 360 | 2.37% | 8 | 10.26% |
Ji-Ze Hong (Peter Hong) | 275 | 1.81% | 3 | 3.85% |
Giel van Schijndel | 206 | 1.35% | 4 | 5.13% |
George Joseph | 85 | 0.56% | 1 | 1.28% |
Joe Perches | 55 | 0.36% | 1 | 1.28% |
Guenter Roeck | 41 | 0.27% | 4 | 5.13% |
Nikita Zhandarovich | 17 | 0.11% | 1 | 1.28% |
Aleksander Mazur | 8 | 0.05% | 1 | 1.28% |
Menghui Wu | 8 | 0.05% | 1 | 1.28% |
Frans Meulenbroeks | 6 | 0.04% | 2 | 2.56% |
Bernhard C. Schrenk | 5 | 0.03% | 1 | 1.28% |
Greg Kroah-Hartman | 4 | 0.03% | 2 | 2.56% |
Tony Jones | 4 | 0.03% | 1 | 1.28% |
Paul Fertser | 2 | 0.01% | 1 | 1.28% |
Thomas Gleixner | 2 | 0.01% | 1 | 1.28% |
Jingoo Han | 2 | 0.01% | 1 | 1.28% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 1.28% |
Total | 15207 | 78 |
// SPDX-License-Identifier: GPL-2.0-or-later /*************************************************************************** * Copyright (C) 2006 by Hans Edgington <hans@edgington.nl> * * Copyright (C) 2007-2011 Hans de Goede <hdegoede@redhat.com> * * * ***************************************************************************/ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/platform_device.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/io.h> #include <linux/acpi.h> #define DRVNAME "f71882fg" #define SIO_F71858FG_LD_HWM 0x02 /* Hardware monitor logical device */ #define SIO_F71882FG_LD_HWM 0x04 /* Hardware monitor logical device */ #define SIO_UNLOCK_KEY 0x87 /* Key to enable Super-I/O */ #define SIO_LOCK_KEY 0xAA /* Key to disable Super-I/O */ #define SIO_REG_LDSEL 0x07 /* Logical device select */ #define SIO_REG_DEVID 0x20 /* Device ID (2 bytes) */ #define SIO_REG_DEVREV 0x22 /* Device revision */ #define SIO_REG_MANID 0x23 /* Fintek ID (2 bytes) */ #define SIO_REG_ENABLE 0x30 /* Logical device enable */ #define SIO_REG_ADDR 0x60 /* Logical device address (2 bytes) */ #define SIO_FINTEK_ID 0x1934 /* Manufacturers ID */ #define SIO_F71808E_ID 0x0901 /* Chipset ID */ #define SIO_F71808A_ID 0x1001 /* Chipset ID */ #define SIO_F71858_ID 0x0507 /* Chipset ID */ #define SIO_F71862_ID 0x0601 /* Chipset ID */ #define SIO_F71868_ID 0x1106 /* Chipset ID */ #define SIO_F71869_ID 0x0814 /* Chipset ID */ #define SIO_F71869A_ID 0x1007 /* Chipset ID */ #define SIO_F71882_ID 0x0541 /* Chipset ID */ #define SIO_F71889_ID 0x0723 /* Chipset ID */ #define SIO_F71889E_ID 0x0909 /* Chipset ID */ #define SIO_F71889A_ID 0x1005 /* Chipset ID */ #define SIO_F8000_ID 0x0581 /* Chipset ID */ #define SIO_F81768D_ID 0x1210 /* Chipset ID */ #define SIO_F81865_ID 0x0704 /* Chipset ID */ #define SIO_F81866_ID 0x1010 /* Chipset ID */ #define SIO_F71858AD_ID 0x0903 /* Chipset ID */ #define SIO_F81966_ID 0x1502 /* Chipset ID */ #define REGION_LENGTH 8 #define ADDR_REG_OFFSET 5 #define DATA_REG_OFFSET 6 #define F71882FG_REG_IN_STATUS 0x12 /* f7188x only */ #define F71882FG_REG_IN_BEEP 0x13 /* f7188x only */ #define F71882FG_REG_IN(nr) (0x20 + (nr)) #define F71882FG_REG_IN1_HIGH 0x32 /* f7188x only */ #define F81866_REG_IN_STATUS 0x16 /* F81866 only */ #define F81866_REG_IN_BEEP 0x17 /* F81866 only */ #define F81866_REG_IN1_HIGH 0x3a /* F81866 only */ #define F71882FG_REG_FAN(nr) (0xA0 + (16 * (nr))) #define F71882FG_REG_FAN_TARGET(nr) (0xA2 + (16 * (nr))) #define F71882FG_REG_FAN_FULL_SPEED(nr) (0xA4 + (16 * (nr))) #define F71882FG_REG_FAN_STATUS 0x92 #define F71882FG_REG_FAN_BEEP 0x93 #define F71882FG_REG_TEMP(nr) (0x70 + 2 * (nr)) #define F71882FG_REG_TEMP_OVT(nr) (0x80 + 2 * (nr)) #define F71882FG_REG_TEMP_HIGH(nr) (0x81 + 2 * (nr)) #define F71882FG_REG_TEMP_STATUS 0x62 #define F71882FG_REG_TEMP_BEEP 0x63 #define F71882FG_REG_TEMP_CONFIG 0x69 #define F71882FG_REG_TEMP_HYST(nr) (0x6C + (nr)) #define F71882FG_REG_TEMP_TYPE 0x6B #define F71882FG_REG_TEMP_DIODE_OPEN 0x6F #define F71882FG_REG_PWM(nr) (0xA3 + (16 * (nr))) #define F71882FG_REG_PWM_TYPE 0x94 #define F71882FG_REG_PWM_ENABLE 0x96 #define F71882FG_REG_FAN_HYST(nr) (0x98 + (nr)) #define F71882FG_REG_FAN_FAULT_T 0x9F #define F71882FG_FAN_NEG_TEMP_EN 0x20 #define F71882FG_FAN_PROG_SEL 0x80 #define F71882FG_REG_POINT_PWM(pwm, point) (0xAA + (point) + (16 * (pwm))) #define F71882FG_REG_POINT_TEMP(pwm, point) (0xA6 + (point) + (16 * (pwm))) #define F71882FG_REG_POINT_MAPPING(nr) (0xAF + 16 * (nr)) #define F71882FG_REG_START 0x01 #define F71882FG_MAX_INS 11 #define FAN_MIN_DETECT 366 /* Lowest detectable fanspeed */ static unsigned short force_id; module_param(force_id, ushort, 0); MODULE_PARM_DESC(force_id, "Override the detected device ID"); enum chips { f71808e, f71808a, f71858fg, f71862fg, f71868a, f71869, f71869a, f71882fg, f71889fg, f71889ed, f71889a, f8000, f81768d, f81865f, f81866a}; static const char *const f71882fg_names[] = { "f71808e", "f71808a", "f71858fg", "f71862fg", "f71868a", "f71869", /* Both f71869f and f71869e, reg. compatible and same id */ "f71869a", "f71882fg", "f71889fg", /* f81801u too, same id */ "f71889ed", "f71889a", "f8000", "f81768d", "f81865f", "f81866a", }; static const char f71882fg_has_in[][F71882FG_MAX_INS] = { [f71808e] = { 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0 }, [f71808a] = { 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0 }, [f71858fg] = { 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 }, [f71862fg] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 }, [f71868a] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 }, [f71869] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 }, [f71869a] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 }, [f71882fg] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 }, [f71889fg] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 }, [f71889ed] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 }, [f71889a] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 }, [f8000] = { 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 }, [f81768d] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, [f81865f] = { 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 }, [f81866a] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0 }, }; static const char f71882fg_has_in1_alarm[] = { [f71808e] = 0, [f71808a] = 0, [f71858fg] = 0, [f71862fg] = 0, [f71868a] = 0, [f71869] = 0, [f71869a] = 0, [f71882fg] = 1, [f71889fg] = 1, [f71889ed] = 1, [f71889a] = 1, [f8000] = 0, [f81768d] = 1, [f81865f] = 1, [f81866a] = 1, }; static const char f71882fg_fan_has_beep[] = { [f71808e] = 0, [f71808a] = 0, [f71858fg] = 0, [f71862fg] = 1, [f71868a] = 1, [f71869] = 1, [f71869a] = 1, [f71882fg] = 1, [f71889fg] = 1, [f71889ed] = 1, [f71889a] = 1, [f8000] = 0, [f81768d] = 1, [f81865f] = 1, [f81866a] = 1, }; static const char f71882fg_nr_fans[] = { [f71808e] = 3, [f71808a] = 2, /* +1 fan which is monitor + simple pwm only */ [f71858fg] = 3, [f71862fg] = 3, [f71868a] = 3, [f71869] = 3, [f71869a] = 3, [f71882fg] = 4, [f71889fg] = 3, [f71889ed] = 3, [f71889a] = 3, [f8000] = 3, /* +1 fan which is monitor only */ [f81768d] = 3, [f81865f] = 2, [f81866a] = 3, }; static const char f71882fg_temp_has_beep[] = { [f71808e] = 0, [f71808a] = 1, [f71858fg] = 0, [f71862fg] = 1, [f71868a] = 1, [f71869] = 1, [f71869a] = 1, [f71882fg] = 1, [f71889fg] = 1, [f71889ed] = 1, [f71889a] = 1, [f8000] = 0, [f81768d] = 1, [f81865f] = 1, [f81866a] = 1, }; static const char f71882fg_nr_temps[] = { [f71808e] = 2, [f71808a] = 2, [f71858fg] = 3, [f71862fg] = 3, [f71868a] = 3, [f71869] = 3, [f71869a] = 3, [f71882fg] = 3, [f71889fg] = 3, [f71889ed] = 3, [f71889a] = 3, [f8000] = 3, [f81768d] = 3, [f81865f] = 2, [f81866a] = 3, }; static struct platform_device *f71882fg_pdev; struct f71882fg_sio_data { enum chips type; }; struct f71882fg_data { unsigned short addr; enum chips type; struct device *hwmon_dev; struct mutex update_lock; int temp_start; /* temp numbering start (0 or 1) */ bool valid; /* true if following fields are valid */ char auto_point_temp_signed; unsigned long last_updated; /* In jiffies */ unsigned long last_limits; /* In jiffies */ /* Register Values */ u8 in[F71882FG_MAX_INS]; u8 in1_max; u8 in_status; u8 in_beep; u16 fan[4]; u16 fan_target[4]; u16 fan_full_speed[4]; u8 fan_status; u8 fan_beep; /* * Note: all models have max 3 temperature channels, but on some * they are addressed as 0-2 and on others as 1-3, so for coding * convenience we reserve space for 4 channels */ u16 temp[4]; u8 temp_ovt[4]; u8 temp_high[4]; u8 temp_hyst[2]; /* 2 hysts stored per reg */ u8 temp_type[4]; u8 temp_status; u8 temp_beep; u8 temp_diode_open; u8 temp_config; u8 pwm[4]; u8 pwm_enable; u8 pwm_auto_point_hyst[2]; u8 pwm_auto_point_mapping[4]; u8 pwm_auto_point_pwm[4][5]; s8 pwm_auto_point_temp[4][4]; }; static u8 f71882fg_read8(struct f71882fg_data *data, u8 reg) { u8 val; outb(reg, data->addr + ADDR_REG_OFFSET); val = inb(data->addr + DATA_REG_OFFSET); return val; } static u16 f71882fg_read16(struct f71882fg_data *data, u8 reg) { u16 val; val = f71882fg_read8(data, reg) << 8; val |= f71882fg_read8(data, reg + 1); return val; } static inline int fan_from_reg(u16 reg) { return reg ? (1500000 / reg) : 0; } static inline u16 fan_to_reg(int fan) { return fan ? (1500000 / fan) : 0; } static void f71882fg_write8(struct f71882fg_data *data, u8 reg, u8 val) { outb(reg, data->addr + ADDR_REG_OFFSET); outb(val, data->addr + DATA_REG_OFFSET); } static void f71882fg_write16(struct f71882fg_data *data, u8 reg, u16 val) { f71882fg_write8(data, reg, val >> 8); f71882fg_write8(data, reg + 1, val & 0xff); } static u16 f71882fg_read_temp(struct f71882fg_data *data, int nr) { if (data->type == f71858fg) return f71882fg_read16(data, F71882FG_REG_TEMP(nr)); else return f71882fg_read8(data, F71882FG_REG_TEMP(nr)); } static struct f71882fg_data *f71882fg_update_device(struct device *dev) { struct f71882fg_data *data = dev_get_drvdata(dev); int nr_fans = f71882fg_nr_fans[data->type]; int nr_temps = f71882fg_nr_temps[data->type]; int nr, reg, point; mutex_lock(&data->update_lock); /* Update once every 60 seconds */ if (time_after(jiffies, data->last_limits + 60 * HZ) || !data->valid) { if (f71882fg_has_in1_alarm[data->type]) { if (data->type == f81866a) { data->in1_max = f71882fg_read8(data, F81866_REG_IN1_HIGH); data->in_beep = f71882fg_read8(data, F81866_REG_IN_BEEP); } else { data->in1_max = f71882fg_read8(data, F71882FG_REG_IN1_HIGH); data->in_beep = f71882fg_read8(data, F71882FG_REG_IN_BEEP); } } /* Get High & boundary temps*/ for (nr = data->temp_start; nr < nr_temps + data->temp_start; nr++) { data->temp_ovt[nr] = f71882fg_read8(data, F71882FG_REG_TEMP_OVT(nr)); data->temp_high[nr] = f71882fg_read8(data, F71882FG_REG_TEMP_HIGH(nr)); } if (data->type != f8000) { data->temp_hyst[0] = f71882fg_read8(data, F71882FG_REG_TEMP_HYST(0)); data->temp_hyst[1] = f71882fg_read8(data, F71882FG_REG_TEMP_HYST(1)); } /* All but the f71858fg / f8000 have this register */ if ((data->type != f71858fg) && (data->type != f8000)) { reg = f71882fg_read8(data, F71882FG_REG_TEMP_TYPE); data->temp_type[1] = (reg & 0x02) ? 2 : 4; data->temp_type[2] = (reg & 0x04) ? 2 : 4; data->temp_type[3] = (reg & 0x08) ? 2 : 4; } if (f71882fg_fan_has_beep[data->type]) data->fan_beep = f71882fg_read8(data, F71882FG_REG_FAN_BEEP); if (f71882fg_temp_has_beep[data->type]) data->temp_beep = f71882fg_read8(data, F71882FG_REG_TEMP_BEEP); data->pwm_enable = f71882fg_read8(data, F71882FG_REG_PWM_ENABLE); data->pwm_auto_point_hyst[0] = f71882fg_read8(data, F71882FG_REG_FAN_HYST(0)); data->pwm_auto_point_hyst[1] = f71882fg_read8(data, F71882FG_REG_FAN_HYST(1)); for (nr = 0; nr < nr_fans; nr++) { data->pwm_auto_point_mapping[nr] = f71882fg_read8(data, F71882FG_REG_POINT_MAPPING(nr)); switch (data->type) { default: for (point = 0; point < 5; point++) { data->pwm_auto_point_pwm[nr][point] = f71882fg_read8(data, F71882FG_REG_POINT_PWM (nr, point)); } for (point = 0; point < 4; point++) { data->pwm_auto_point_temp[nr][point] = f71882fg_read8(data, F71882FG_REG_POINT_TEMP (nr, point)); } break; case f71808e: case f71869: data->pwm_auto_point_pwm[nr][0] = f71882fg_read8(data, F71882FG_REG_POINT_PWM(nr, 0)); fallthrough; case f71862fg: data->pwm_auto_point_pwm[nr][1] = f71882fg_read8(data, F71882FG_REG_POINT_PWM (nr, 1)); data->pwm_auto_point_pwm[nr][4] = f71882fg_read8(data, F71882FG_REG_POINT_PWM (nr, 4)); data->pwm_auto_point_temp[nr][0] = f71882fg_read8(data, F71882FG_REG_POINT_TEMP (nr, 0)); data->pwm_auto_point_temp[nr][3] = f71882fg_read8(data, F71882FG_REG_POINT_TEMP (nr, 3)); break; } } data->last_limits = jiffies; } /* Update every second */ if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { data->temp_status = f71882fg_read8(data, F71882FG_REG_TEMP_STATUS); data->temp_diode_open = f71882fg_read8(data, F71882FG_REG_TEMP_DIODE_OPEN); for (nr = data->temp_start; nr < nr_temps + data->temp_start; nr++) data->temp[nr] = f71882fg_read_temp(data, nr); data->fan_status = f71882fg_read8(data, F71882FG_REG_FAN_STATUS); for (nr = 0; nr < nr_fans; nr++) { data->fan[nr] = f71882fg_read16(data, F71882FG_REG_FAN(nr)); data->fan_target[nr] = f71882fg_read16(data, F71882FG_REG_FAN_TARGET(nr)); data->fan_full_speed[nr] = f71882fg_read16(data, F71882FG_REG_FAN_FULL_SPEED(nr)); data->pwm[nr] = f71882fg_read8(data, F71882FG_REG_PWM(nr)); } /* Some models have 1 more fan with limited capabilities */ if (data->type == f71808a) { data->fan[2] = f71882fg_read16(data, F71882FG_REG_FAN(2)); data->pwm[2] = f71882fg_read8(data, F71882FG_REG_PWM(2)); } if (data->type == f8000) data->fan[3] = f71882fg_read16(data, F71882FG_REG_FAN(3)); if (f71882fg_has_in1_alarm[data->type]) { if (data->type == f81866a) data->in_status = f71882fg_read8(data, F81866_REG_IN_STATUS); else data->in_status = f71882fg_read8(data, F71882FG_REG_IN_STATUS); } for (nr = 0; nr < F71882FG_MAX_INS; nr++) if (f71882fg_has_in[data->type][nr]) data->in[nr] = f71882fg_read8(data, F71882FG_REG_IN(nr)); data->last_updated = jiffies; data->valid = true; } mutex_unlock(&data->update_lock); return data; } static ssize_t name_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = dev_get_drvdata(dev); return sprintf(buf, "%s\n", f71882fg_names[data->type]); } static DEVICE_ATTR_RO(name); static ssize_t show_temp(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; int sign, temp; if (data->type == f71858fg) { /* TEMP_TABLE_SEL 1 or 3 ? */ if (data->temp_config & 1) { sign = data->temp[nr] & 0x0001; temp = (data->temp[nr] >> 5) & 0x7ff; } else { sign = data->temp[nr] & 0x8000; temp = (data->temp[nr] >> 5) & 0x3ff; } temp *= 125; if (sign) temp -= 128000; } else { temp = ((s8)data->temp[nr]) * 1000; } return sprintf(buf, "%d\n", temp); } static ssize_t show_temp_max(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; return sprintf(buf, "%d\n", data->temp_high[nr] * 1000); } static ssize_t store_temp_max(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; long val; err = kstrtol(buf, 10, &val); if (err) return err; val /= 1000; val = clamp_val(val, 0, 255); mutex_lock(&data->update_lock); f71882fg_write8(data, F71882FG_REG_TEMP_HIGH(nr), val); data->temp_high[nr] = val; mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp_max_hyst(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; int temp_max_hyst; mutex_lock(&data->update_lock); if (nr & 1) temp_max_hyst = data->temp_hyst[nr / 2] >> 4; else temp_max_hyst = data->temp_hyst[nr / 2] & 0x0f; temp_max_hyst = (data->temp_high[nr] - temp_max_hyst) * 1000; mutex_unlock(&data->update_lock); return sprintf(buf, "%d\n", temp_max_hyst); } static ssize_t store_temp_max_hyst(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; ssize_t ret = count; u8 reg; long val; err = kstrtol(buf, 10, &val); if (err) return err; val /= 1000; mutex_lock(&data->update_lock); /* convert abs to relative and check */ data->temp_high[nr] = f71882fg_read8(data, F71882FG_REG_TEMP_HIGH(nr)); val = clamp_val(val, data->temp_high[nr] - 15, data->temp_high[nr]); val = data->temp_high[nr] - val; /* convert value to register contents */ reg = f71882fg_read8(data, F71882FG_REG_TEMP_HYST(nr / 2)); if (nr & 1) reg = (reg & 0x0f) | (val << 4); else reg = (reg & 0xf0) | val; f71882fg_write8(data, F71882FG_REG_TEMP_HYST(nr / 2), reg); data->temp_hyst[nr / 2] = reg; mutex_unlock(&data->update_lock); return ret; } static ssize_t show_temp_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; if (data->temp_status & (1 << nr)) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static ssize_t show_temp_crit(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; return sprintf(buf, "%d\n", data->temp_ovt[nr] * 1000); } static ssize_t store_temp_crit(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; long val; err = kstrtol(buf, 10, &val); if (err) return err; val /= 1000; val = clamp_val(val, 0, 255); mutex_lock(&data->update_lock); f71882fg_write8(data, F71882FG_REG_TEMP_OVT(nr), val); data->temp_ovt[nr] = val; mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp_crit_hyst(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; int temp_crit_hyst; mutex_lock(&data->update_lock); if (nr & 1) temp_crit_hyst = data->temp_hyst[nr / 2] >> 4; else temp_crit_hyst = data->temp_hyst[nr / 2] & 0x0f; temp_crit_hyst = (data->temp_ovt[nr] - temp_crit_hyst) * 1000; mutex_unlock(&data->update_lock); return sprintf(buf, "%d\n", temp_crit_hyst); } static ssize_t show_temp_fault(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; if (data->temp_diode_open & (1 << nr)) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } /* * Temp attr for the f71858fg, the f71858fg is special as it has its * temperature indexes start at 0 (the others start at 1) */ static struct sensor_device_attribute_2 f71858fg_temp_attr[] = { SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp, NULL, 0, 0), SENSOR_ATTR_2(temp1_max, S_IRUGO|S_IWUSR, show_temp_max, store_temp_max, 0, 0), SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO|S_IWUSR, show_temp_max_hyst, store_temp_max_hyst, 0, 0), SENSOR_ATTR_2(temp1_max_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 0), SENSOR_ATTR_2(temp1_crit, S_IRUGO|S_IWUSR, show_temp_crit, store_temp_crit, 0, 0), SENSOR_ATTR_2(temp1_crit_hyst, S_IRUGO, show_temp_crit_hyst, NULL, 0, 0), SENSOR_ATTR_2(temp1_crit_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 4), SENSOR_ATTR_2(temp1_fault, S_IRUGO, show_temp_fault, NULL, 0, 0), SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp, NULL, 0, 1), SENSOR_ATTR_2(temp2_max, S_IRUGO|S_IWUSR, show_temp_max, store_temp_max, 0, 1), SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO|S_IWUSR, show_temp_max_hyst, store_temp_max_hyst, 0, 1), SENSOR_ATTR_2(temp2_max_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 1), SENSOR_ATTR_2(temp2_crit, S_IRUGO|S_IWUSR, show_temp_crit, store_temp_crit, 0, 1), SENSOR_ATTR_2(temp2_crit_hyst, S_IRUGO, show_temp_crit_hyst, NULL, 0, 1), SENSOR_ATTR_2(temp2_crit_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 5), SENSOR_ATTR_2(temp2_fault, S_IRUGO, show_temp_fault, NULL, 0, 1), SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp, NULL, 0, 2), SENSOR_ATTR_2(temp3_max, S_IRUGO|S_IWUSR, show_temp_max, store_temp_max, 0, 2), SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO|S_IWUSR, show_temp_max_hyst, store_temp_max_hyst, 0, 2), SENSOR_ATTR_2(temp3_max_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 2), SENSOR_ATTR_2(temp3_crit, S_IRUGO|S_IWUSR, show_temp_crit, store_temp_crit, 0, 2), SENSOR_ATTR_2(temp3_crit_hyst, S_IRUGO, show_temp_crit_hyst, NULL, 0, 2), SENSOR_ATTR_2(temp3_crit_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 6), SENSOR_ATTR_2(temp3_fault, S_IRUGO, show_temp_fault, NULL, 0, 2), }; static ssize_t show_temp_type(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; return sprintf(buf, "%d\n", data->temp_type[nr]); } /* Temp attr for the standard models */ static struct sensor_device_attribute_2 fxxxx_temp_attr[3][9] = { { SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp, NULL, 0, 1), SENSOR_ATTR_2(temp1_max, S_IRUGO|S_IWUSR, show_temp_max, store_temp_max, 0, 1), SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO|S_IWUSR, show_temp_max_hyst, store_temp_max_hyst, 0, 1), /* * Should really be temp1_max_alarm, but older versions did not handle * the max and crit alarms separately and lm_sensors v2 depends on the * presence of temp#_alarm files. The same goes for temp2/3 _alarm. */ SENSOR_ATTR_2(temp1_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 1), SENSOR_ATTR_2(temp1_crit, S_IRUGO|S_IWUSR, show_temp_crit, store_temp_crit, 0, 1), SENSOR_ATTR_2(temp1_crit_hyst, S_IRUGO, show_temp_crit_hyst, NULL, 0, 1), SENSOR_ATTR_2(temp1_crit_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 5), SENSOR_ATTR_2(temp1_type, S_IRUGO, show_temp_type, NULL, 0, 1), SENSOR_ATTR_2(temp1_fault, S_IRUGO, show_temp_fault, NULL, 0, 1), }, { SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp, NULL, 0, 2), SENSOR_ATTR_2(temp2_max, S_IRUGO|S_IWUSR, show_temp_max, store_temp_max, 0, 2), SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO|S_IWUSR, show_temp_max_hyst, store_temp_max_hyst, 0, 2), /* Should be temp2_max_alarm, see temp1_alarm note */ SENSOR_ATTR_2(temp2_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 2), SENSOR_ATTR_2(temp2_crit, S_IRUGO|S_IWUSR, show_temp_crit, store_temp_crit, 0, 2), SENSOR_ATTR_2(temp2_crit_hyst, S_IRUGO, show_temp_crit_hyst, NULL, 0, 2), SENSOR_ATTR_2(temp2_crit_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 6), SENSOR_ATTR_2(temp2_type, S_IRUGO, show_temp_type, NULL, 0, 2), SENSOR_ATTR_2(temp2_fault, S_IRUGO, show_temp_fault, NULL, 0, 2), }, { SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp, NULL, 0, 3), SENSOR_ATTR_2(temp3_max, S_IRUGO|S_IWUSR, show_temp_max, store_temp_max, 0, 3), SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO|S_IWUSR, show_temp_max_hyst, store_temp_max_hyst, 0, 3), /* Should be temp3_max_alarm, see temp1_alarm note */ SENSOR_ATTR_2(temp3_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 3), SENSOR_ATTR_2(temp3_crit, S_IRUGO|S_IWUSR, show_temp_crit, store_temp_crit, 0, 3), SENSOR_ATTR_2(temp3_crit_hyst, S_IRUGO, show_temp_crit_hyst, NULL, 0, 3), SENSOR_ATTR_2(temp3_crit_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 7), SENSOR_ATTR_2(temp3_type, S_IRUGO, show_temp_type, NULL, 0, 3), SENSOR_ATTR_2(temp3_fault, S_IRUGO, show_temp_fault, NULL, 0, 3), } }; static ssize_t show_temp_beep(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; if (data->temp_beep & (1 << nr)) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static ssize_t store_temp_beep(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; unsigned long val; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_beep = f71882fg_read8(data, F71882FG_REG_TEMP_BEEP); if (val) data->temp_beep |= 1 << nr; else data->temp_beep &= ~(1 << nr); f71882fg_write8(data, F71882FG_REG_TEMP_BEEP, data->temp_beep); mutex_unlock(&data->update_lock); return count; } /* Temp attr for models which can beep on temp alarm */ static struct sensor_device_attribute_2 fxxxx_temp_beep_attr[3][2] = { { SENSOR_ATTR_2(temp1_max_beep, S_IRUGO|S_IWUSR, show_temp_beep, store_temp_beep, 0, 1), SENSOR_ATTR_2(temp1_crit_beep, S_IRUGO|S_IWUSR, show_temp_beep, store_temp_beep, 0, 5), }, { SENSOR_ATTR_2(temp2_max_beep, S_IRUGO|S_IWUSR, show_temp_beep, store_temp_beep, 0, 2), SENSOR_ATTR_2(temp2_crit_beep, S_IRUGO|S_IWUSR, show_temp_beep, store_temp_beep, 0, 6), }, { SENSOR_ATTR_2(temp3_max_beep, S_IRUGO|S_IWUSR, show_temp_beep, store_temp_beep, 0, 3), SENSOR_ATTR_2(temp3_crit_beep, S_IRUGO|S_IWUSR, show_temp_beep, store_temp_beep, 0, 7), } }; static struct sensor_device_attribute_2 f81866_temp_beep_attr[3][2] = { { SENSOR_ATTR_2(temp1_max_beep, S_IRUGO|S_IWUSR, show_temp_beep, store_temp_beep, 0, 0), SENSOR_ATTR_2(temp1_crit_beep, S_IRUGO|S_IWUSR, show_temp_beep, store_temp_beep, 0, 4), }, { SENSOR_ATTR_2(temp2_max_beep, S_IRUGO|S_IWUSR, show_temp_beep, store_temp_beep, 0, 1), SENSOR_ATTR_2(temp2_crit_beep, S_IRUGO|S_IWUSR, show_temp_beep, store_temp_beep, 0, 5), }, { SENSOR_ATTR_2(temp3_max_beep, S_IRUGO|S_IWUSR, show_temp_beep, store_temp_beep, 0, 2), SENSOR_ATTR_2(temp3_crit_beep, S_IRUGO|S_IWUSR, show_temp_beep, store_temp_beep, 0, 6), } }; /* * Temp attr for the f8000 * Note on the f8000 temp_ovt (crit) is used as max, and temp_high (max) * is used as hysteresis value to clear alarms * Also like the f71858fg its temperature indexes start at 0 */ static struct sensor_device_attribute_2 f8000_temp_attr[] = { SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp, NULL, 0, 0), SENSOR_ATTR_2(temp1_max, S_IRUGO|S_IWUSR, show_temp_crit, store_temp_crit, 0, 0), SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO|S_IWUSR, show_temp_max, store_temp_max, 0, 0), SENSOR_ATTR_2(temp1_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 4), SENSOR_ATTR_2(temp1_fault, S_IRUGO, show_temp_fault, NULL, 0, 0), SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp, NULL, 0, 1), SENSOR_ATTR_2(temp2_max, S_IRUGO|S_IWUSR, show_temp_crit, store_temp_crit, 0, 1), SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO|S_IWUSR, show_temp_max, store_temp_max, 0, 1), SENSOR_ATTR_2(temp2_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 5), SENSOR_ATTR_2(temp2_fault, S_IRUGO, show_temp_fault, NULL, 0, 1), SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp, NULL, 0, 2), SENSOR_ATTR_2(temp3_max, S_IRUGO|S_IWUSR, show_temp_crit, store_temp_crit, 0, 2), SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO|S_IWUSR, show_temp_max, store_temp_max, 0, 2), SENSOR_ATTR_2(temp3_alarm, S_IRUGO, show_temp_alarm, NULL, 0, 6), SENSOR_ATTR_2(temp3_fault, S_IRUGO, show_temp_fault, NULL, 0, 2), }; static ssize_t show_in(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; return sprintf(buf, "%d\n", data->in[nr] * 8); } /* in attr for all models */ static struct sensor_device_attribute_2 fxxxx_in_attr[] = { SENSOR_ATTR_2(in0_input, S_IRUGO, show_in, NULL, 0, 0), SENSOR_ATTR_2(in1_input, S_IRUGO, show_in, NULL, 0, 1), SENSOR_ATTR_2(in2_input, S_IRUGO, show_in, NULL, 0, 2), SENSOR_ATTR_2(in3_input, S_IRUGO, show_in, NULL, 0, 3), SENSOR_ATTR_2(in4_input, S_IRUGO, show_in, NULL, 0, 4), SENSOR_ATTR_2(in5_input, S_IRUGO, show_in, NULL, 0, 5), SENSOR_ATTR_2(in6_input, S_IRUGO, show_in, NULL, 0, 6), SENSOR_ATTR_2(in7_input, S_IRUGO, show_in, NULL, 0, 7), SENSOR_ATTR_2(in8_input, S_IRUGO, show_in, NULL, 0, 8), SENSOR_ATTR_2(in9_input, S_IRUGO, show_in, NULL, 0, 9), SENSOR_ATTR_2(in10_input, S_IRUGO, show_in, NULL, 0, 10), }; static ssize_t show_in_max(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); return sprintf(buf, "%d\n", data->in1_max * 8); } static ssize_t store_in_max(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err; long val; err = kstrtol(buf, 10, &val); if (err) return err; val /= 8; val = clamp_val(val, 0, 255); mutex_lock(&data->update_lock); if (data->type == f81866a) f71882fg_write8(data, F81866_REG_IN1_HIGH, val); else f71882fg_write8(data, F71882FG_REG_IN1_HIGH, val); data->in1_max = val; mutex_unlock(&data->update_lock); return count; } static ssize_t show_in_beep(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; if (data->in_beep & (1 << nr)) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static ssize_t store_in_beep(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; unsigned long val; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); if (data->type == f81866a) data->in_beep = f71882fg_read8(data, F81866_REG_IN_BEEP); else data->in_beep = f71882fg_read8(data, F71882FG_REG_IN_BEEP); if (val) data->in_beep |= 1 << nr; else data->in_beep &= ~(1 << nr); if (data->type == f81866a) f71882fg_write8(data, F81866_REG_IN_BEEP, data->in_beep); else f71882fg_write8(data, F71882FG_REG_IN_BEEP, data->in_beep); mutex_unlock(&data->update_lock); return count; } static ssize_t show_in_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; if (data->in_status & (1 << nr)) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } /* For models with in1 alarm capability */ static struct sensor_device_attribute_2 fxxxx_in1_alarm_attr[] = { SENSOR_ATTR_2(in1_max, S_IRUGO|S_IWUSR, show_in_max, store_in_max, 0, 1), SENSOR_ATTR_2(in1_beep, S_IRUGO|S_IWUSR, show_in_beep, store_in_beep, 0, 1), SENSOR_ATTR_2(in1_alarm, S_IRUGO, show_in_alarm, NULL, 0, 1), }; static ssize_t show_fan(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; int speed = fan_from_reg(data->fan[nr]); if (speed == FAN_MIN_DETECT) speed = 0; return sprintf(buf, "%d\n", speed); } static ssize_t show_fan_full_speed(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; int speed = fan_from_reg(data->fan_full_speed[nr]); return sprintf(buf, "%d\n", speed); } static ssize_t store_fan_full_speed(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; long val; err = kstrtol(buf, 10, &val); if (err) return err; val = clamp_val(val, 23, 1500000); val = fan_to_reg(val); mutex_lock(&data->update_lock); f71882fg_write16(data, F71882FG_REG_FAN_FULL_SPEED(nr), val); data->fan_full_speed[nr] = val; mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; if (data->fan_status & (1 << nr)) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static ssize_t show_pwm(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int val, nr = to_sensor_dev_attr_2(devattr)->index; mutex_lock(&data->update_lock); if (data->pwm_enable & (1 << (2 * nr))) /* PWM mode */ val = data->pwm[nr]; else { /* RPM mode */ if (fan_from_reg(data->fan_full_speed[nr])) val = 255 * fan_from_reg(data->fan_target[nr]) / fan_from_reg(data->fan_full_speed[nr]); else val = 0; } mutex_unlock(&data->update_lock); return sprintf(buf, "%d\n", val); } static ssize_t store_pwm(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; long val; err = kstrtol(buf, 10, &val); if (err) return err; val = clamp_val(val, 0, 255); mutex_lock(&data->update_lock); data->pwm_enable = f71882fg_read8(data, F71882FG_REG_PWM_ENABLE); if ((data->type == f8000 && ((data->pwm_enable >> 2 * nr) & 3) != 2) || (data->type != f8000 && !((data->pwm_enable >> 2 * nr) & 2))) { count = -EROFS; goto leave; } if (data->pwm_enable & (1 << (2 * nr))) { /* PWM mode */ f71882fg_write8(data, F71882FG_REG_PWM(nr), val); data->pwm[nr] = val; } else { /* RPM mode */ int target, full_speed; full_speed = f71882fg_read16(data, F71882FG_REG_FAN_FULL_SPEED(nr)); target = fan_to_reg(val * fan_from_reg(full_speed) / 255); f71882fg_write16(data, F71882FG_REG_FAN_TARGET(nr), target); data->fan_target[nr] = target; data->fan_full_speed[nr] = full_speed; } leave: mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_enable(struct device *dev, struct device_attribute *devattr, char *buf) { int result = 0; struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; switch ((data->pwm_enable >> 2 * nr) & 3) { case 0: case 1: result = 2; /* Normal auto mode */ break; case 2: result = 1; /* Manual mode */ break; case 3: if (data->type == f8000) result = 3; /* Thermostat mode */ else result = 1; /* Manual mode */ break; } return sprintf(buf, "%d\n", result); } static ssize_t store_pwm_enable(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; long val; err = kstrtol(buf, 10, &val); if (err) return err; /* Special case for F8000 pwm channel 3 which only does auto mode */ if (data->type == f8000 && nr == 2 && val != 2) return -EINVAL; mutex_lock(&data->update_lock); data->pwm_enable = f71882fg_read8(data, F71882FG_REG_PWM_ENABLE); /* Special case for F8000 auto PWM mode / Thermostat mode */ if (data->type == f8000 && ((data->pwm_enable >> 2 * nr) & 1)) { switch (val) { case 2: data->pwm_enable &= ~(2 << (2 * nr)); break; /* Normal auto mode */ case 3: data->pwm_enable |= 2 << (2 * nr); break; /* Thermostat mode */ default: count = -EINVAL; goto leave; } } else { switch (val) { case 1: /* The f71858fg does not support manual RPM mode */ if (data->type == f71858fg && ((data->pwm_enable >> (2 * nr)) & 1)) { count = -EINVAL; goto leave; } data->pwm_enable |= 2 << (2 * nr); break; /* Manual */ case 2: data->pwm_enable &= ~(2 << (2 * nr)); break; /* Normal auto mode */ default: count = -EINVAL; goto leave; } } f71882fg_write8(data, F71882FG_REG_PWM_ENABLE, data->pwm_enable); leave: mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_interpolate(struct device *dev, struct device_attribute *devattr, char *buf) { int result; struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; result = (data->pwm_auto_point_mapping[nr] >> 4) & 1; return sprintf(buf, "%d\n", result); } static ssize_t store_pwm_interpolate(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; unsigned long val; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->pwm_auto_point_mapping[nr] = f71882fg_read8(data, F71882FG_REG_POINT_MAPPING(nr)); if (val) val = data->pwm_auto_point_mapping[nr] | (1 << 4); else val = data->pwm_auto_point_mapping[nr] & (~(1 << 4)); f71882fg_write8(data, F71882FG_REG_POINT_MAPPING(nr), val); data->pwm_auto_point_mapping[nr] = val; mutex_unlock(&data->update_lock); return count; } /* Fan / PWM attr common to all models */ static struct sensor_device_attribute_2 fxxxx_fan_attr[4][6] = { { SENSOR_ATTR_2(fan1_input, S_IRUGO, show_fan, NULL, 0, 0), SENSOR_ATTR_2(fan1_full_speed, S_IRUGO|S_IWUSR, show_fan_full_speed, store_fan_full_speed, 0, 0), SENSOR_ATTR_2(fan1_alarm, S_IRUGO, show_fan_alarm, NULL, 0, 0), SENSOR_ATTR_2(pwm1, S_IRUGO|S_IWUSR, show_pwm, store_pwm, 0, 0), SENSOR_ATTR_2(pwm1_enable, S_IRUGO|S_IWUSR, show_pwm_enable, store_pwm_enable, 0, 0), SENSOR_ATTR_2(pwm1_interpolate, S_IRUGO|S_IWUSR, show_pwm_interpolate, store_pwm_interpolate, 0, 0), }, { SENSOR_ATTR_2(fan2_input, S_IRUGO, show_fan, NULL, 0, 1), SENSOR_ATTR_2(fan2_full_speed, S_IRUGO|S_IWUSR, show_fan_full_speed, store_fan_full_speed, 0, 1), SENSOR_ATTR_2(fan2_alarm, S_IRUGO, show_fan_alarm, NULL, 0, 1), SENSOR_ATTR_2(pwm2, S_IRUGO|S_IWUSR, show_pwm, store_pwm, 0, 1), SENSOR_ATTR_2(pwm2_enable, S_IRUGO|S_IWUSR, show_pwm_enable, store_pwm_enable, 0, 1), SENSOR_ATTR_2(pwm2_interpolate, S_IRUGO|S_IWUSR, show_pwm_interpolate, store_pwm_interpolate, 0, 1), }, { SENSOR_ATTR_2(fan3_input, S_IRUGO, show_fan, NULL, 0, 2), SENSOR_ATTR_2(fan3_full_speed, S_IRUGO|S_IWUSR, show_fan_full_speed, store_fan_full_speed, 0, 2), SENSOR_ATTR_2(fan3_alarm, S_IRUGO, show_fan_alarm, NULL, 0, 2), SENSOR_ATTR_2(pwm3, S_IRUGO|S_IWUSR, show_pwm, store_pwm, 0, 2), SENSOR_ATTR_2(pwm3_enable, S_IRUGO|S_IWUSR, show_pwm_enable, store_pwm_enable, 0, 2), SENSOR_ATTR_2(pwm3_interpolate, S_IRUGO|S_IWUSR, show_pwm_interpolate, store_pwm_interpolate, 0, 2), }, { SENSOR_ATTR_2(fan4_input, S_IRUGO, show_fan, NULL, 0, 3), SENSOR_ATTR_2(fan4_full_speed, S_IRUGO|S_IWUSR, show_fan_full_speed, store_fan_full_speed, 0, 3), SENSOR_ATTR_2(fan4_alarm, S_IRUGO, show_fan_alarm, NULL, 0, 3), SENSOR_ATTR_2(pwm4, S_IRUGO|S_IWUSR, show_pwm, store_pwm, 0, 3), SENSOR_ATTR_2(pwm4_enable, S_IRUGO|S_IWUSR, show_pwm_enable, store_pwm_enable, 0, 3), SENSOR_ATTR_2(pwm4_interpolate, S_IRUGO|S_IWUSR, show_pwm_interpolate, store_pwm_interpolate, 0, 3), } }; static ssize_t show_simple_pwm(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int val, nr = to_sensor_dev_attr_2(devattr)->index; val = data->pwm[nr]; return sprintf(buf, "%d\n", val); } static ssize_t store_simple_pwm(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; long val; err = kstrtol(buf, 10, &val); if (err) return err; val = clamp_val(val, 0, 255); mutex_lock(&data->update_lock); f71882fg_write8(data, F71882FG_REG_PWM(nr), val); data->pwm[nr] = val; mutex_unlock(&data->update_lock); return count; } /* Attr for the third fan of the f71808a, which only has manual pwm */ static struct sensor_device_attribute_2 f71808a_fan3_attr[] = { SENSOR_ATTR_2(fan3_input, S_IRUGO, show_fan, NULL, 0, 2), SENSOR_ATTR_2(fan3_alarm, S_IRUGO, show_fan_alarm, NULL, 0, 2), SENSOR_ATTR_2(pwm3, S_IRUGO|S_IWUSR, show_simple_pwm, store_simple_pwm, 0, 2), }; static ssize_t show_fan_beep(struct device *dev, struct device_attribute *devattr, char *buf) { struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; if (data->fan_beep & (1 << nr)) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static ssize_t store_fan_beep(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; unsigned long val; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->fan_beep = f71882fg_read8(data, F71882FG_REG_FAN_BEEP); if (val) data->fan_beep |= 1 << nr; else data->fan_beep &= ~(1 << nr); f71882fg_write8(data, F71882FG_REG_FAN_BEEP, data->fan_beep); mutex_unlock(&data->update_lock); return count; } /* Attr for models which can beep on Fan alarm */ static struct sensor_device_attribute_2 fxxxx_fan_beep_attr[] = { SENSOR_ATTR_2(fan1_beep, S_IRUGO|S_IWUSR, show_fan_beep, store_fan_beep, 0, 0), SENSOR_ATTR_2(fan2_beep, S_IRUGO|S_IWUSR, show_fan_beep, store_fan_beep, 0, 1), SENSOR_ATTR_2(fan3_beep, S_IRUGO|S_IWUSR, show_fan_beep, store_fan_beep, 0, 2), SENSOR_ATTR_2(fan4_beep, S_IRUGO|S_IWUSR, show_fan_beep, store_fan_beep, 0, 3), }; static ssize_t show_pwm_auto_point_channel(struct device *dev, struct device_attribute *devattr, char *buf) { int result; struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; result = 1 << ((data->pwm_auto_point_mapping[nr] & 3) - data->temp_start); return sprintf(buf, "%d\n", result); } static ssize_t store_pwm_auto_point_channel(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; long val; err = kstrtol(buf, 10, &val); if (err) return err; switch (val) { case 1: val = 0; break; case 2: val = 1; break; case 4: val = 2; break; default: return -EINVAL; } val += data->temp_start; mutex_lock(&data->update_lock); data->pwm_auto_point_mapping[nr] = f71882fg_read8(data, F71882FG_REG_POINT_MAPPING(nr)); val = (data->pwm_auto_point_mapping[nr] & 0xfc) | val; f71882fg_write8(data, F71882FG_REG_POINT_MAPPING(nr), val); data->pwm_auto_point_mapping[nr] = val; mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_auto_point_pwm(struct device *dev, struct device_attribute *devattr, char *buf) { int result; struct f71882fg_data *data = f71882fg_update_device(dev); int pwm = to_sensor_dev_attr_2(devattr)->index; int point = to_sensor_dev_attr_2(devattr)->nr; mutex_lock(&data->update_lock); if (data->pwm_enable & (1 << (2 * pwm))) { /* PWM mode */ result = data->pwm_auto_point_pwm[pwm][point]; } else { /* RPM mode */ result = 32 * 255 / (32 + data->pwm_auto_point_pwm[pwm][point]); } mutex_unlock(&data->update_lock); return sprintf(buf, "%d\n", result); } static ssize_t store_pwm_auto_point_pwm(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, pwm = to_sensor_dev_attr_2(devattr)->index; int point = to_sensor_dev_attr_2(devattr)->nr; long val; err = kstrtol(buf, 10, &val); if (err) return err; val = clamp_val(val, 0, 255); mutex_lock(&data->update_lock); data->pwm_enable = f71882fg_read8(data, F71882FG_REG_PWM_ENABLE); if (data->pwm_enable & (1 << (2 * pwm))) { /* PWM mode */ } else { /* RPM mode */ if (val < 29) /* Prevent negative numbers */ val = 255; else val = (255 - val) * 32 / val; } f71882fg_write8(data, F71882FG_REG_POINT_PWM(pwm, point), val); data->pwm_auto_point_pwm[pwm][point] = val; mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_auto_point_temp(struct device *dev, struct device_attribute *devattr, char *buf) { int result; struct f71882fg_data *data = f71882fg_update_device(dev); int pwm = to_sensor_dev_attr_2(devattr)->index; int point = to_sensor_dev_attr_2(devattr)->nr; result = data->pwm_auto_point_temp[pwm][point]; return sprintf(buf, "%d\n", 1000 * result); } static ssize_t store_pwm_auto_point_temp(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, pwm = to_sensor_dev_attr_2(devattr)->index; int point = to_sensor_dev_attr_2(devattr)->nr; long val; err = kstrtol(buf, 10, &val); if (err) return err; val /= 1000; if (data->auto_point_temp_signed) val = clamp_val(val, -128, 127); else val = clamp_val(val, 0, 127); mutex_lock(&data->update_lock); f71882fg_write8(data, F71882FG_REG_POINT_TEMP(pwm, point), val); data->pwm_auto_point_temp[pwm][point] = val; mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_auto_point_temp_hyst(struct device *dev, struct device_attribute *devattr, char *buf) { int result = 0; struct f71882fg_data *data = f71882fg_update_device(dev); int nr = to_sensor_dev_attr_2(devattr)->index; int point = to_sensor_dev_attr_2(devattr)->nr; mutex_lock(&data->update_lock); if (nr & 1) result = data->pwm_auto_point_hyst[nr / 2] >> 4; else result = data->pwm_auto_point_hyst[nr / 2] & 0x0f; result = 1000 * (data->pwm_auto_point_temp[nr][point] - result); mutex_unlock(&data->update_lock); return sprintf(buf, "%d\n", result); } static ssize_t store_pwm_auto_point_temp_hyst(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct f71882fg_data *data = dev_get_drvdata(dev); int err, nr = to_sensor_dev_attr_2(devattr)->index; int point = to_sensor_dev_attr_2(devattr)->nr; u8 reg; long val; err = kstrtol(buf, 10, &val); if (err) return err; val /= 1000; mutex_lock(&data->update_lock); data->pwm_auto_point_temp[nr][point] = f71882fg_read8(data, F71882FG_REG_POINT_TEMP(nr, point)); val = clamp_val(val, data->pwm_auto_point_temp[nr][point] - 15, data->pwm_auto_point_temp[nr][point]); val = data->pwm_auto_point_temp[nr][point] - val; reg = f71882fg_read8(data, F71882FG_REG_FAN_HYST(nr / 2)); if (nr & 1) reg = (reg & 0x0f) | (val << 4); else reg = (reg & 0xf0) | val; f71882fg_write8(data, F71882FG_REG_FAN_HYST(nr / 2), reg); data->pwm_auto_point_hyst[nr / 2] = reg; mutex_unlock(&data->update_lock); return count; } /* * PWM attr for the f71862fg, fewer pwms and fewer zones per pwm than the * standard models */ static struct sensor_device_attribute_2 f71862fg_auto_pwm_attr[3][7] = { { SENSOR_ATTR_2(pwm1_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 0), SENSOR_ATTR_2(pwm1_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 0), SENSOR_ATTR_2(pwm1_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 0), SENSOR_ATTR_2(pwm1_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 0), SENSOR_ATTR_2(pwm1_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 0), SENSOR_ATTR_2(pwm1_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 0), SENSOR_ATTR_2(pwm1_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 0), }, { SENSOR_ATTR_2(pwm2_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 1), SENSOR_ATTR_2(pwm2_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 1), SENSOR_ATTR_2(pwm2_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 1), SENSOR_ATTR_2(pwm2_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 1), SENSOR_ATTR_2(pwm2_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 1), SENSOR_ATTR_2(pwm2_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 1), SENSOR_ATTR_2(pwm2_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 1), }, { SENSOR_ATTR_2(pwm3_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 2), SENSOR_ATTR_2(pwm3_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 2), SENSOR_ATTR_2(pwm3_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 2), SENSOR_ATTR_2(pwm3_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 2), SENSOR_ATTR_2(pwm3_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 2), SENSOR_ATTR_2(pwm3_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 2), SENSOR_ATTR_2(pwm3_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 2), } }; /* * PWM attr for the f71808e/f71869, almost identical to the f71862fg, but the * pwm setting when the temperature is above the pwmX_auto_point1_temp can be * programmed instead of being hardcoded to 0xff */ static struct sensor_device_attribute_2 f71869_auto_pwm_attr[3][8] = { { SENSOR_ATTR_2(pwm1_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 0), SENSOR_ATTR_2(pwm1_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 0, 0), SENSOR_ATTR_2(pwm1_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 0), SENSOR_ATTR_2(pwm1_auto_point3_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 0), SENSOR_ATTR_2(pwm1_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 0), SENSOR_ATTR_2(pwm1_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 0), SENSOR_ATTR_2(pwm1_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 0), SENSOR_ATTR_2(pwm1_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 0), }, { SENSOR_ATTR_2(pwm2_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 1), SENSOR_ATTR_2(pwm2_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 0, 1), SENSOR_ATTR_2(pwm2_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 1), SENSOR_ATTR_2(pwm2_auto_point3_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 1), SENSOR_ATTR_2(pwm2_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 1), SENSOR_ATTR_2(pwm2_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 1), SENSOR_ATTR_2(pwm2_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 1), SENSOR_ATTR_2(pwm2_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 1), }, { SENSOR_ATTR_2(pwm3_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 2), SENSOR_ATTR_2(pwm3_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 0, 2), SENSOR_ATTR_2(pwm3_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 2), SENSOR_ATTR_2(pwm3_auto_point3_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 2), SENSOR_ATTR_2(pwm3_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 2), SENSOR_ATTR_2(pwm3_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 2), SENSOR_ATTR_2(pwm3_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 2), SENSOR_ATTR_2(pwm3_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 2), } }; /* PWM attr for the standard models */ static struct sensor_device_attribute_2 fxxxx_auto_pwm_attr[4][14] = { { SENSOR_ATTR_2(pwm1_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 0), SENSOR_ATTR_2(pwm1_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 0, 0), SENSOR_ATTR_2(pwm1_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 0), SENSOR_ATTR_2(pwm1_auto_point3_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 2, 0), SENSOR_ATTR_2(pwm1_auto_point4_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 3, 0), SENSOR_ATTR_2(pwm1_auto_point5_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 0), SENSOR_ATTR_2(pwm1_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 0), SENSOR_ATTR_2(pwm1_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 1, 0), SENSOR_ATTR_2(pwm1_auto_point3_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 2, 0), SENSOR_ATTR_2(pwm1_auto_point4_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 0), SENSOR_ATTR_2(pwm1_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 0), SENSOR_ATTR_2(pwm1_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 1, 0), SENSOR_ATTR_2(pwm1_auto_point3_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 2, 0), SENSOR_ATTR_2(pwm1_auto_point4_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 0), }, { SENSOR_ATTR_2(pwm2_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 1), SENSOR_ATTR_2(pwm2_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 0, 1), SENSOR_ATTR_2(pwm2_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 1), SENSOR_ATTR_2(pwm2_auto_point3_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 2, 1), SENSOR_ATTR_2(pwm2_auto_point4_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 3, 1), SENSOR_ATTR_2(pwm2_auto_point5_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 1), SENSOR_ATTR_2(pwm2_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 1), SENSOR_ATTR_2(pwm2_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 1, 1), SENSOR_ATTR_2(pwm2_auto_point3_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 2, 1), SENSOR_ATTR_2(pwm2_auto_point4_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 1), SENSOR_ATTR_2(pwm2_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 1), SENSOR_ATTR_2(pwm2_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 1, 1), SENSOR_ATTR_2(pwm2_auto_point3_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 2, 1), SENSOR_ATTR_2(pwm2_auto_point4_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 1), }, { SENSOR_ATTR_2(pwm3_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 2), SENSOR_ATTR_2(pwm3_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 0, 2), SENSOR_ATTR_2(pwm3_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 2), SENSOR_ATTR_2(pwm3_auto_point3_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 2, 2), SENSOR_ATTR_2(pwm3_auto_point4_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 3, 2), SENSOR_ATTR_2(pwm3_auto_point5_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 2), SENSOR_ATTR_2(pwm3_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 2), SENSOR_ATTR_2(pwm3_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 1, 2), SENSOR_ATTR_2(pwm3_auto_point3_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 2, 2), SENSOR_ATTR_2(pwm3_auto_point4_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 2), SENSOR_ATTR_2(pwm3_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 2), SENSOR_ATTR_2(pwm3_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 1, 2), SENSOR_ATTR_2(pwm3_auto_point3_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 2, 2), SENSOR_ATTR_2(pwm3_auto_point4_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 2), }, { SENSOR_ATTR_2(pwm4_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 3), SENSOR_ATTR_2(pwm4_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 0, 3), SENSOR_ATTR_2(pwm4_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 3), SENSOR_ATTR_2(pwm4_auto_point3_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 2, 3), SENSOR_ATTR_2(pwm4_auto_point4_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 3, 3), SENSOR_ATTR_2(pwm4_auto_point5_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 3), SENSOR_ATTR_2(pwm4_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 3), SENSOR_ATTR_2(pwm4_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 1, 3), SENSOR_ATTR_2(pwm4_auto_point3_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 2, 3), SENSOR_ATTR_2(pwm4_auto_point4_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 3), SENSOR_ATTR_2(pwm4_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 3), SENSOR_ATTR_2(pwm4_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 1, 3), SENSOR_ATTR_2(pwm4_auto_point3_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 2, 3), SENSOR_ATTR_2(pwm4_auto_point4_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 3), } }; /* Fan attr specific to the f8000 (4th fan input can only measure speed) */ static struct sensor_device_attribute_2 f8000_fan_attr[] = { SENSOR_ATTR_2(fan4_input, S_IRUGO, show_fan, NULL, 0, 3), }; /* * PWM attr for the f8000, zones mapped to temp instead of to pwm! * Also the register block at offset A0 maps to TEMP1 (so our temp2, as the * F8000 starts counting temps at 0), B0 maps the TEMP2 and C0 maps to TEMP0 */ static struct sensor_device_attribute_2 f8000_auto_pwm_attr[3][14] = { { SENSOR_ATTR_2(pwm1_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 0), SENSOR_ATTR_2(temp1_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 0, 2), SENSOR_ATTR_2(temp1_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 2), SENSOR_ATTR_2(temp1_auto_point3_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 2, 2), SENSOR_ATTR_2(temp1_auto_point4_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 3, 2), SENSOR_ATTR_2(temp1_auto_point5_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 2), SENSOR_ATTR_2(temp1_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 2), SENSOR_ATTR_2(temp1_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 1, 2), SENSOR_ATTR_2(temp1_auto_point3_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 2, 2), SENSOR_ATTR_2(temp1_auto_point4_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 2), SENSOR_ATTR_2(temp1_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 2), SENSOR_ATTR_2(temp1_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 1, 2), SENSOR_ATTR_2(temp1_auto_point3_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 2, 2), SENSOR_ATTR_2(temp1_auto_point4_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 2), }, { SENSOR_ATTR_2(pwm2_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 1), SENSOR_ATTR_2(temp2_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 0, 0), SENSOR_ATTR_2(temp2_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 0), SENSOR_ATTR_2(temp2_auto_point3_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 2, 0), SENSOR_ATTR_2(temp2_auto_point4_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 3, 0), SENSOR_ATTR_2(temp2_auto_point5_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 0), SENSOR_ATTR_2(temp2_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 0), SENSOR_ATTR_2(temp2_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 1, 0), SENSOR_ATTR_2(temp2_auto_point3_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 2, 0), SENSOR_ATTR_2(temp2_auto_point4_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 0), SENSOR_ATTR_2(temp2_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 0), SENSOR_ATTR_2(temp2_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 1, 0), SENSOR_ATTR_2(temp2_auto_point3_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 2, 0), SENSOR_ATTR_2(temp2_auto_point4_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 0), }, { SENSOR_ATTR_2(pwm3_auto_channels_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_channel, store_pwm_auto_point_channel, 0, 2), SENSOR_ATTR_2(temp3_auto_point1_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 0, 1), SENSOR_ATTR_2(temp3_auto_point2_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 1, 1), SENSOR_ATTR_2(temp3_auto_point3_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 2, 1), SENSOR_ATTR_2(temp3_auto_point4_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 3, 1), SENSOR_ATTR_2(temp3_auto_point5_pwm, S_IRUGO|S_IWUSR, show_pwm_auto_point_pwm, store_pwm_auto_point_pwm, 4, 1), SENSOR_ATTR_2(temp3_auto_point1_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 0, 1), SENSOR_ATTR_2(temp3_auto_point2_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 1, 1), SENSOR_ATTR_2(temp3_auto_point3_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 2, 1), SENSOR_ATTR_2(temp3_auto_point4_temp, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp, store_pwm_auto_point_temp, 3, 1), SENSOR_ATTR_2(temp3_auto_point1_temp_hyst, S_IRUGO|S_IWUSR, show_pwm_auto_point_temp_hyst, store_pwm_auto_point_temp_hyst, 0, 1), SENSOR_ATTR_2(temp3_auto_point2_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 1, 1), SENSOR_ATTR_2(temp3_auto_point3_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 2, 1), SENSOR_ATTR_2(temp3_auto_point4_temp_hyst, S_IRUGO, show_pwm_auto_point_temp_hyst, NULL, 3, 1), } }; /* Super I/O functions */ static inline int superio_inb(int base, int reg) { outb(reg, base); return inb(base + 1); } static int superio_inw(int base, int reg) { int val; val = superio_inb(base, reg) << 8; val |= superio_inb(base, reg + 1); return val; } static inline int superio_enter(int base) { /* Don't step on other drivers' I/O space by accident */ if (!request_muxed_region(base, 2, DRVNAME)) { pr_err("I/O address 0x%04x already in use\n", base); return -EBUSY; } /* according to the datasheet the key must be send twice! */ outb(SIO_UNLOCK_KEY, base); outb(SIO_UNLOCK_KEY, base); return 0; } static inline void superio_select(int base, int ld) { outb(SIO_REG_LDSEL, base); outb(ld, base + 1); } static inline void superio_exit(int base) { outb(SIO_LOCK_KEY, base); release_region(base, 2); } static int f71882fg_create_sysfs_files(struct platform_device *pdev, struct sensor_device_attribute_2 *attr, int count) { int err, i; for (i = 0; i < count; i++) { err = device_create_file(&pdev->dev, &attr[i].dev_attr); if (err) return err; } return 0; } static void f71882fg_remove_sysfs_files(struct platform_device *pdev, struct sensor_device_attribute_2 *attr, int count) { int i; for (i = 0; i < count; i++) device_remove_file(&pdev->dev, &attr[i].dev_attr); } static int f71882fg_create_fan_sysfs_files( struct platform_device *pdev, int idx) { struct f71882fg_data *data = platform_get_drvdata(pdev); int err; /* Sanity check the pwm setting */ err = 0; switch (data->type) { case f71858fg: if (((data->pwm_enable >> (idx * 2)) & 3) == 3) err = 1; break; case f71862fg: if (((data->pwm_enable >> (idx * 2)) & 1) != 1) err = 1; break; case f8000: if (idx == 2) err = data->pwm_enable & 0x20; break; default: break; } if (err) { dev_err(&pdev->dev, "Invalid (reserved) pwm settings: 0x%02x, " "skipping fan %d\n", (data->pwm_enable >> (idx * 2)) & 3, idx + 1); return 0; /* This is a non fatal condition */ } err = f71882fg_create_sysfs_files(pdev, &fxxxx_fan_attr[idx][0], ARRAY_SIZE(fxxxx_fan_attr[0])); if (err) return err; if (f71882fg_fan_has_beep[data->type]) { err = f71882fg_create_sysfs_files(pdev, &fxxxx_fan_beep_attr[idx], 1); if (err) return err; } dev_info(&pdev->dev, "Fan: %d is in %s mode\n", idx + 1, (data->pwm_enable & (1 << (2 * idx))) ? "duty-cycle" : "RPM"); /* Check for unsupported auto pwm settings */ switch (data->type) { case f71808e: case f71808a: case f71869: case f71869a: case f71889fg: case f71889ed: case f71889a: data->pwm_auto_point_mapping[idx] = f71882fg_read8(data, F71882FG_REG_POINT_MAPPING(idx)); if ((data->pwm_auto_point_mapping[idx] & 0x80) || (data->pwm_auto_point_mapping[idx] & 3) == 0) { dev_warn(&pdev->dev, "Auto pwm controlled by raw digital " "data, disabling pwm auto_point " "sysfs attributes for fan %d\n", idx + 1); return 0; /* This is a non fatal condition */ } break; default: break; } switch (data->type) { case f71862fg: err = f71882fg_create_sysfs_files(pdev, &f71862fg_auto_pwm_attr[idx][0], ARRAY_SIZE(f71862fg_auto_pwm_attr[0])); break; case f71808e: case f71869: err = f71882fg_create_sysfs_files(pdev, &f71869_auto_pwm_attr[idx][0], ARRAY_SIZE(f71869_auto_pwm_attr[0])); break; case f8000: err = f71882fg_create_sysfs_files(pdev, &f8000_auto_pwm_attr[idx][0], ARRAY_SIZE(f8000_auto_pwm_attr[0])); break; default: err = f71882fg_create_sysfs_files(pdev, &fxxxx_auto_pwm_attr[idx][0], ARRAY_SIZE(fxxxx_auto_pwm_attr[0])); } return err; } static void f71882fg_remove(struct platform_device *pdev) { struct f71882fg_data *data = platform_get_drvdata(pdev); int nr_fans = f71882fg_nr_fans[data->type]; int nr_temps = f71882fg_nr_temps[data->type]; int i; u8 start_reg = f71882fg_read8(data, F71882FG_REG_START); if (data->hwmon_dev) hwmon_device_unregister(data->hwmon_dev); device_remove_file(&pdev->dev, &dev_attr_name); if (start_reg & 0x01) { switch (data->type) { case f71858fg: if (data->temp_config & 0x10) f71882fg_remove_sysfs_files(pdev, f8000_temp_attr, ARRAY_SIZE(f8000_temp_attr)); else f71882fg_remove_sysfs_files(pdev, f71858fg_temp_attr, ARRAY_SIZE(f71858fg_temp_attr)); break; case f8000: f71882fg_remove_sysfs_files(pdev, f8000_temp_attr, ARRAY_SIZE(f8000_temp_attr)); break; case f81866a: f71882fg_remove_sysfs_files(pdev, f71858fg_temp_attr, ARRAY_SIZE(f71858fg_temp_attr)); break; default: f71882fg_remove_sysfs_files(pdev, &fxxxx_temp_attr[0][0], ARRAY_SIZE(fxxxx_temp_attr[0]) * nr_temps); } if (f71882fg_temp_has_beep[data->type]) { if (data->type == f81866a) f71882fg_remove_sysfs_files(pdev, &f81866_temp_beep_attr[0][0], ARRAY_SIZE(f81866_temp_beep_attr[0]) * nr_temps); else f71882fg_remove_sysfs_files(pdev, &fxxxx_temp_beep_attr[0][0], ARRAY_SIZE(fxxxx_temp_beep_attr[0]) * nr_temps); } for (i = 0; i < F71882FG_MAX_INS; i++) { if (f71882fg_has_in[data->type][i]) { device_remove_file(&pdev->dev, &fxxxx_in_attr[i].dev_attr); } } if (f71882fg_has_in1_alarm[data->type]) { f71882fg_remove_sysfs_files(pdev, fxxxx_in1_alarm_attr, ARRAY_SIZE(fxxxx_in1_alarm_attr)); } } if (start_reg & 0x02) { f71882fg_remove_sysfs_files(pdev, &fxxxx_fan_attr[0][0], ARRAY_SIZE(fxxxx_fan_attr[0]) * nr_fans); if (f71882fg_fan_has_beep[data->type]) { f71882fg_remove_sysfs_files(pdev, fxxxx_fan_beep_attr, nr_fans); } switch (data->type) { case f71808a: f71882fg_remove_sysfs_files(pdev, &fxxxx_auto_pwm_attr[0][0], ARRAY_SIZE(fxxxx_auto_pwm_attr[0]) * nr_fans); f71882fg_remove_sysfs_files(pdev, f71808a_fan3_attr, ARRAY_SIZE(f71808a_fan3_attr)); break; case f71862fg: f71882fg_remove_sysfs_files(pdev, &f71862fg_auto_pwm_attr[0][0], ARRAY_SIZE(f71862fg_auto_pwm_attr[0]) * nr_fans); break; case f71808e: case f71869: f71882fg_remove_sysfs_files(pdev, &f71869_auto_pwm_attr[0][0], ARRAY_SIZE(f71869_auto_pwm_attr[0]) * nr_fans); break; case f8000: f71882fg_remove_sysfs_files(pdev, f8000_fan_attr, ARRAY_SIZE(f8000_fan_attr)); f71882fg_remove_sysfs_files(pdev, &f8000_auto_pwm_attr[0][0], ARRAY_SIZE(f8000_auto_pwm_attr[0]) * nr_fans); break; default: f71882fg_remove_sysfs_files(pdev, &fxxxx_auto_pwm_attr[0][0], ARRAY_SIZE(fxxxx_auto_pwm_attr[0]) * nr_fans); } } } static int f71882fg_probe(struct platform_device *pdev) { struct f71882fg_data *data; struct f71882fg_sio_data *sio_data = dev_get_platdata(&pdev->dev); int nr_fans = f71882fg_nr_fans[sio_data->type]; int nr_temps = f71882fg_nr_temps[sio_data->type]; int err, i; int size; u8 start_reg, reg; data = devm_kzalloc(&pdev->dev, sizeof(struct f71882fg_data), GFP_KERNEL); if (!data) return -ENOMEM; data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; data->type = sio_data->type; data->temp_start = (data->type == f71858fg || data->type == f8000 || data->type == f81866a) ? 0 : 1; mutex_init(&data->update_lock); platform_set_drvdata(pdev, data); start_reg = f71882fg_read8(data, F71882FG_REG_START); if (start_reg & 0x04) { dev_warn(&pdev->dev, "Hardware monitor is powered down\n"); return -ENODEV; } if (!(start_reg & 0x03)) { dev_warn(&pdev->dev, "Hardware monitoring not activated\n"); return -ENODEV; } /* Register sysfs interface files */ err = device_create_file(&pdev->dev, &dev_attr_name); if (err) goto exit_unregister_sysfs; if (start_reg & 0x01) { switch (data->type) { case f71858fg: data->temp_config = f71882fg_read8(data, F71882FG_REG_TEMP_CONFIG); if (data->temp_config & 0x10) /* * The f71858fg temperature alarms behave as * the f8000 alarms in this mode */ err = f71882fg_create_sysfs_files(pdev, f8000_temp_attr, ARRAY_SIZE(f8000_temp_attr)); else err = f71882fg_create_sysfs_files(pdev, f71858fg_temp_attr, ARRAY_SIZE(f71858fg_temp_attr)); break; case f8000: err = f71882fg_create_sysfs_files(pdev, f8000_temp_attr, ARRAY_SIZE(f8000_temp_attr)); break; case f81866a: err = f71882fg_create_sysfs_files(pdev, f71858fg_temp_attr, ARRAY_SIZE(f71858fg_temp_attr)); break; default: err = f71882fg_create_sysfs_files(pdev, &fxxxx_temp_attr[0][0], ARRAY_SIZE(fxxxx_temp_attr[0]) * nr_temps); } if (err) goto exit_unregister_sysfs; if (f71882fg_temp_has_beep[data->type]) { if (data->type == f81866a) { size = ARRAY_SIZE(f81866_temp_beep_attr[0]); err = f71882fg_create_sysfs_files(pdev, &f81866_temp_beep_attr[0][0], size * nr_temps); } else { size = ARRAY_SIZE(fxxxx_temp_beep_attr[0]); err = f71882fg_create_sysfs_files(pdev, &fxxxx_temp_beep_attr[0][0], size * nr_temps); } if (err) goto exit_unregister_sysfs; } for (i = 0; i < F71882FG_MAX_INS; i++) { if (f71882fg_has_in[data->type][i]) { err = device_create_file(&pdev->dev, &fxxxx_in_attr[i].dev_attr); if (err) goto exit_unregister_sysfs; } } if (f71882fg_has_in1_alarm[data->type]) { err = f71882fg_create_sysfs_files(pdev, fxxxx_in1_alarm_attr, ARRAY_SIZE(fxxxx_in1_alarm_attr)); if (err) goto exit_unregister_sysfs; } } if (start_reg & 0x02) { switch (data->type) { case f71808e: case f71808a: case f71869: case f71869a: /* These always have signed auto point temps */ data->auto_point_temp_signed = 1; fallthrough; /* to select correct fan/pwm reg bank! */ case f71889fg: case f71889ed: case f71889a: reg = f71882fg_read8(data, F71882FG_REG_FAN_FAULT_T); if (reg & F71882FG_FAN_NEG_TEMP_EN) data->auto_point_temp_signed = 1; /* Ensure banked pwm registers point to right bank */ reg &= ~F71882FG_FAN_PROG_SEL; f71882fg_write8(data, F71882FG_REG_FAN_FAULT_T, reg); break; default: break; } data->pwm_enable = f71882fg_read8(data, F71882FG_REG_PWM_ENABLE); for (i = 0; i < nr_fans; i++) { err = f71882fg_create_fan_sysfs_files(pdev, i); if (err) goto exit_unregister_sysfs; } /* Some types have 1 extra fan with limited functionality */ switch (data->type) { case f71808a: err = f71882fg_create_sysfs_files(pdev, f71808a_fan3_attr, ARRAY_SIZE(f71808a_fan3_attr)); break; case f8000: err = f71882fg_create_sysfs_files(pdev, f8000_fan_attr, ARRAY_SIZE(f8000_fan_attr)); break; default: break; } if (err) goto exit_unregister_sysfs; } data->hwmon_dev = hwmon_device_register(&pdev->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); data->hwmon_dev = NULL; goto exit_unregister_sysfs; } return 0; exit_unregister_sysfs: f71882fg_remove(pdev); /* Will unregister the sysfs files for us */ return err; /* f71882fg_remove() also frees our data */ } static int __init f71882fg_find(int sioaddr, struct f71882fg_sio_data *sio_data) { u16 devid; unsigned short address; int err = superio_enter(sioaddr); if (err) return err; devid = superio_inw(sioaddr, SIO_REG_MANID); if (devid != SIO_FINTEK_ID) { pr_debug("Not a Fintek device\n"); err = -ENODEV; goto exit; } devid = force_id ? force_id : superio_inw(sioaddr, SIO_REG_DEVID); switch (devid) { case SIO_F71808E_ID: sio_data->type = f71808e; break; case SIO_F71808A_ID: sio_data->type = f71808a; break; case SIO_F71858_ID: case SIO_F71858AD_ID: sio_data->type = f71858fg; break; case SIO_F71862_ID: sio_data->type = f71862fg; break; case SIO_F71868_ID: sio_data->type = f71868a; break; case SIO_F71869_ID: sio_data->type = f71869; break; case SIO_F71869A_ID: sio_data->type = f71869a; break; case SIO_F71882_ID: sio_data->type = f71882fg; break; case SIO_F71889_ID: sio_data->type = f71889fg; break; case SIO_F71889E_ID: sio_data->type = f71889ed; break; case SIO_F71889A_ID: sio_data->type = f71889a; break; case SIO_F8000_ID: sio_data->type = f8000; break; case SIO_F81768D_ID: sio_data->type = f81768d; break; case SIO_F81865_ID: sio_data->type = f81865f; break; case SIO_F81866_ID: case SIO_F81966_ID: sio_data->type = f81866a; break; default: pr_info("Unsupported Fintek device: %04x\n", (unsigned int)devid); err = -ENODEV; goto exit; } if (sio_data->type == f71858fg) superio_select(sioaddr, SIO_F71858FG_LD_HWM); else superio_select(sioaddr, SIO_F71882FG_LD_HWM); if (!(superio_inb(sioaddr, SIO_REG_ENABLE) & 0x01)) { pr_warn("Device not activated\n"); err = -ENODEV; goto exit; } address = superio_inw(sioaddr, SIO_REG_ADDR); if (address == 0) { pr_warn("Base address not set\n"); err = -ENODEV; goto exit; } address &= ~(REGION_LENGTH - 1); /* Ignore 3 LSB */ err = address; pr_info("Found %s chip at %#x, revision %d\n", f71882fg_names[sio_data->type], (unsigned int)address, (int)superio_inb(sioaddr, SIO_REG_DEVREV)); exit: superio_exit(sioaddr); return err; } static int __init f71882fg_device_add(int address, const struct f71882fg_sio_data *sio_data) { struct resource res = { .start = address, .end = address + REGION_LENGTH - 1, .flags = IORESOURCE_IO, }; int err; f71882fg_pdev = platform_device_alloc(DRVNAME, address); if (!f71882fg_pdev) return -ENOMEM; res.name = f71882fg_pdev->name; err = acpi_check_resource_conflict(&res); if (err) goto exit_device_put; err = platform_device_add_resources(f71882fg_pdev, &res, 1); if (err) { pr_err("Device resource addition failed\n"); goto exit_device_put; } err = platform_device_add_data(f71882fg_pdev, sio_data, sizeof(struct f71882fg_sio_data)); if (err) { pr_err("Platform data allocation failed\n"); goto exit_device_put; } err = platform_device_add(f71882fg_pdev); if (err) { pr_err("Device addition failed\n"); goto exit_device_put; } return 0; exit_device_put: platform_device_put(f71882fg_pdev); return err; } static struct platform_driver f71882fg_driver = { .driver = { .name = DRVNAME, }, .probe = f71882fg_probe, .remove_new = f71882fg_remove, }; static int __init f71882fg_init(void) { int err; int address; struct f71882fg_sio_data sio_data; memset(&sio_data, 0, sizeof(sio_data)); address = f71882fg_find(0x2e, &sio_data); if (address < 0) address = f71882fg_find(0x4e, &sio_data); if (address < 0) return address; err = platform_driver_register(&f71882fg_driver); if (err) return err; err = f71882fg_device_add(address, &sio_data); if (err) goto exit_driver; return 0; exit_driver: platform_driver_unregister(&f71882fg_driver); return err; } static void __exit f71882fg_exit(void) { platform_device_unregister(f71882fg_pdev); platform_driver_unregister(&f71882fg_driver); } MODULE_DESCRIPTION("F71882FG Hardware Monitoring Driver"); MODULE_AUTHOR("Hans Edgington, Hans de Goede <hdegoede@redhat.com>"); MODULE_LICENSE("GPL"); module_init(f71882fg_init); module_exit(f71882fg_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1